Tag Archives: CECAM

Workshop on quantum dissipation by swift nuclei in condensed matter

Workshop photograph at CECAM headquarters

During 7-9 December 2022 the workshop on quantum dissipation by swift nuclei took place in Lausanne, at the CECAM headquarters. It was jointly funded by CECAM , Psi-k, and the Lawrence Livermore National Laboratory. It brought together key people in the fields of electronic stopping of nuclei in matter, non-adiabatic quantum dynamics, and density-functional theory and many-electron dynamics, to face the problem of quantum dissipation of swift nuclei in matter, from quantum friction effects of ions/molecules on surfaces and nanoconfined flow, to strong dissipation under irradiation. Invited speakers were prompted to talk about their recent work and ideas in their own topics which they thought could connect to the other subfields. The general ambition was cross-fertilisation,and exploring how connections of advances in one field might contribute to the others. In the spirit of traditional Psi-k / CECAM workshops, ample opportunity for discussion and lateral collective thinking was provided.

Full details can be found in the CECAM web page for this event.

The format consisted of three full days, including seven talks and a discussion session per day, after the afternoon coffee break. Slots of 40 min were allocated per speaker, aiming at 20-25 min of lecture and 15-20 min of discussion. Most of the talks were delivered in-person, The workshop was structured in three interconnected themes, one per day, starting with nuclei as projectiles (experiment, theory, simulation), followed by levels of theory for the dynamics of the electronic subsystem, to conclude with quantum coupled dynamics of electrons and nuclei, including connection to other non-adiabatic contexts. Each day had an associated discussion session led by one of the participants who identified important open questions to be addressed in the future, as arising from the presentations.

Key needs identified and actions proposed to address them can be summarised as follows:

  1. Promoting further interactions between modelers and experimentalists and ensuring that experimentalists’ input on relevant questions and coherence between models and experimental set up is clearly disseminated. To foster this goal, the organization of a follow-up workshop driven by experimentalists was proposed and will be pursued for 2024.
  2. Clarifying and disseminating state-of-the-art and open questions via a shared publication in the form of a roadmap paper. In particular, this work should include a more important participation by the cognate community of non-adiabatic dynamics applied to chemical processes, which has developed a number of quite advanced tools, especially in the field of photochemistry.
  3. Identify challenges and benchmark systems for currently existing techniques. In particular, an adequate description of electron thermalisation after a strong energy pulse was considered a timely and suitable challenge for the dynamical simulation techniques being used (such as TDDFT).


It was considered a quite successful meeting by all, deserving further exploration.


  • Emilio Artacho (Nanogune, DIPC, Ikerbasque, U. Cambridge),
  • Sara Bonella (CECAM, EPFL),
  • Alfredo Correa (Larence Livermore National Lab)
  • Jorge Kohanoff (U Complutense, Madrid)

Psi-K/CECAM Flagship workshop “Light-matter interaction and ultrafast nonequilibrium dynamics in plasmonic materials”

CECAM/Psi-K Flagship Workshop “Light-matter interaction and ultrafast nonequilibrium dynamics in plasmonic materials”

July 18, 2022 – July 21, 2022, University of Warwick, UK

group foto of CECAM Plasmonics workshop at U Warwick

Description of Event

The Psi-K & CECAM sponsored meeting “Light-matter interaction and ultrafast nonequilibrium dynamics in plasmonic materials” was held from 18th to 21st of July 2022 at the University of Warwick. It featured 28 talks, 4 discussion sessions, and 10 posters. It was attended by 42 in-person attendees from 12 different countries and broadcast as a webinar with between 3 and 17 virtual attendees at any time.

A full theoretical description of light-matter interaction and plasmon-induced ultrafast non-equilibrium dynamics is a formidable challenge that demands an intrinsically multidisciplinary and multiscale approach. A variety of different approaches based on time-dependent Density Functional Theory, many-body perturbation theory, molecular dynamics, Mie theory, continuum electrodynamics, and combinations thereof have emerged in recent years to address many of the open questions in plasmonics. Further improvements in theoretical descriptions are crucial to optimize SPP generation and amplification in materials, to tailor losses and plasmonic lifetimes, as well as to integrate plasmonic effects into semiconductor technology to create new quantum materials.  Due to the diverse aspects of this problem, a coherent research community around theoretical plasmonics is only slowly emerging.

The aim of this workshop was to assess the state of computational methods in this field, to identify major challenges, as well as to provide engagement between disparate communities to create space for cross-community collaboration. Continue reading Psi-K/CECAM Flagship workshop “Light-matter interaction and ultrafast nonequilibrium dynamics in plasmonic materials”

Scientific report on the “Interface Morphology Prediction with Robust and Efficient Structure Search” (IMPRESS) Workshop

Interface Morphology Prediction with Robust and Efficient Structure Search (IMPRESS)

Aalto University, Finland, 7-9 June 2017

Organisers: Dr Milica Todorović (Aalto University, Finland), Dr Oliver T. Hofmann (Technical University of Graz, Austria), Prof. Patrick Rinke (Aalto University, Finland)

Funding: CECAM, Psi-K, NOMAD CoE, Aalto University CMMP doctoral network


Determining or predicting the structure of organic ensembles on surfaces is a challenging problem that occupies basic science and engineering alike. Recently, novel machine-learning approaches have started to compete with more traditional, stochastic methods, such as basin hoping or simulated annealing. In IMPRESS, we took an interdisciplinary stance and brought together assorted experts to focus on the challenges of organic/inorganic interfaces: this is the first workshop to unite different electronic structure methods, structure search approaches and machine learning.

Continue reading Scientific report on the “Interface Morphology Prediction with Robust and Efficient Structure Search” (IMPRESS) Workshop

Scientific report of the international workshop on ‘New challenges in Reduced Density Matrix Functional Theory: Symmetries, time-evolution and entanglement’

Group photo.
CECAM-HQ-EPFL, Lausanne, Switzerland, 26-29 September 2017

Organizers:  Carlos L. Benavides-Riveros (Martin-Luther Universität Halle-Wittenberg, Germany), E. K. U. Gross (Max Planck Institute of Microstructure Physics, Germany), Miguel A. L. Marques (Martin-Luther Universität Halle-Wittenberg, Germany), and Christian Schilling (University of Oxford, United Kingdom).

Sponsors:  CECAM, Psi-k and Max Planck Institute of Microstructure Physics.


This international workshop discussed and explored new aspects and challenges in Reduced Density Matrix Functional Theory (RDMFT). The main aim was to bring together leading experts in the field to address and carefully discuss open challenges in RDMFT such as implementations of 1-particle symmetries, extensions to open-shell atoms and molecules, time-evolution, temperature dependency and new insights about RDMFT from recent progress on the 1- and 2-body N-representability problems and density matrix renormalization group. The list of speakers was carefully chosen to include experts in various disciplines required for the accomplishment of the proposed scientific program. To maximize the success of the workshop, we asked all speakers to provide rather informal and interactive presentations. We also asked them to share their slides and other supplemental materials with all the participants in advance, allowing them to prepare the workshop accordingly. This ‘homework’ enabled not only fruitful and stimulating scientific discussions, but also more involved questions. Continue reading Scientific report of the international workshop on ‘New challenges in Reduced Density Matrix Functional Theory: Symmetries, time-evolution and entanglement’