The Psi-k Community

MISSION: Psi-k is a Europe-based, worldwide network of researchers working on the advancement of first-principles computational materials science. Its mission is to develop fundamental theory, algorithms, and computer codes in order to understand, predict, and design materials properties and functions. Theoretical condensed matter physics, quantum chemistry, thermodynamics, and statistical mechanics form its scientific core. Applications encompass inorganic, organic and bio-materials, and cover a whole range of diverse scientific, engineering, and industrial endeavours. Key activities of Psi-k are the organization of conferences, workshops, tutorials and training schools as well as the dissemination of scientific thinking in society.

Psi-k is a bottom-up researchers’ network, established in 1994, to build strength and cooperation in the field of computational electronic structure. Psi-k activities are coordinated by a Board of Trustees, a Scientific Advisory Committee, and 16 Working Groups. These activities encompass the organization or co-sponsoring of ~30 workshops, conferences, schools or tutorials every year, an annual research conference jointly with CECAM, and a major conference covering the entire field every 5 years.

In addition, Psi-k produces a regular newsletter with extensive scientific highlights, and allows researchers to advertise job openings, events, and other topics of mutual interest through its 5000+ members mailing list.

This new website — introduced in  2015 to replace a venerable old site that provided sterling service over many years — offers a much more flexible modern design and functionality and it is to be hoped that it will provide even more stimulus for collaboration and cooperation amongst its members. Instructions regarding how to use it are here.

Psi-k is a registered charity and can only continue to operate thanks to the contributions from our member organisations and institutions. If you would like to make a donation to Psi-k please contact us.

Fundamental Challenges of Electron-Density-Based Approaches to Time-Dependent Processes and Open Quantum Systems

24.-26. June 2019, ETH Zürich, Switzerland

From 24th to 26th June 2019 the ElDeBaAp workshop took place at ETH Zürich, Switzerland. This workshop gathered experts on DFT, TDDFT, density cumulant theory, Green’s function approaches and density matrix methods to discuss theoretical challenges and open problems of their approaches.

ElDeBaAp group picture

For information about the participants and the discussed topics, please have a look at the workshop website https://eldebaap-workshop.ethz.ch and at the report.

Theory Meets Experiment in Low-Dimensional Structures with Correlated Electrons

This four-day workshop brought together theorists and experimenters who work on strongly correlated nanosystems adsorbed on surfaces, or on strongly correlated electrons in general. The aim of the event was to exchange ideas and discuss perspectives and future directions of characterization and description of strongly correlated nanosystems. The topics of this workshop included:

  • single-atom and single-molecule magnets, magnetic anisotropy
  • transport through nanostructures in and out of the linear-response regime
  • tuning the electronic properties via interaction with external stimuli or with a substrate
  • scanning-probe methods
  • electronic structure theory
  • advanced valence-band and core-level spectroscopies and their interpretation

Report_nano_praha2019

Book_of_abstracts_Report_nano_praha2019

18th International Conference on Density-Functional Theory and its Applications

22-26 July 2019, Alicante, Spain

The “18th International Conference on Density-Functional Theory and its Applications” was held in Alicante, Spain, in July 2019. It was the next in the great series of biennial meetings, which have taken place in Paris (1995), Vienna (1997), Rome (1999), Madrid (2001), Brussels (2003), Geneva (2005), Amsterdam (2007), Lyon (2009), Athens (2011), Durham (2013), Debrecen (2015), and Tällberg (2017).

DFT constitutes undoubtedly one of the most brilliant quantum theories developed so far, used worldwide and with outstanding applications in many scientific fields. The conference covered all range of topics, from cutting-edge developments to fascinating applications and discoveries, bringing together scientists from all around the world and from many related fields.

The scientific schedule included plenary talks (40′), invited talks (30′), contributed talks (15′), and poster sessions, with contributions to the following broad topics:

  • New developments for exchange-correlation functionals
  • Time-dependent and real-time density-functional theory
  • Application of density-functional theory in condensed matter physics
  • Application of density-functional theory in chemistry
  • Application of density-functional theory in materials science
  • Strongly correlated systems & solids

Continue reading 18th International Conference on Density-Functional Theory and its Applications

Psi-k Workshop Funding 2020 – only 2 days left to submit!

*** FINAL CALL*** There are only 2 days remaining to submit your funding pre-proposals for workshops between 1 April 2020 and 31 March 2021. The deadline for pre-proposals is this Friday, 30 August!

Herewith we solicit for proposals for activities in the field of electronic-structure theory and calculations to be held between 1 April 2020 and 31 March 2021, to be funded (in full/partially) by the Psi-k Network and Charity.

Please note: for this year only events that take place between mid-August and mid-October 2020 will NOT be considered for funding to avoid a clash with the Psi-k Conference that will take place in Lausanne, September 2020.

Psi-k has introduced a two-step application process, to improve planning and avoid duplication of efforts.

First, a pre-proposal should be submitted by Friday 30 August 2019 (midnight CEST), describing the planned event. The working groups (http://psi-k.net/groups/) will either approve this pre-proposal for full submission, reject it, or suggest a merger between different activities – you are very welcome to contact the working group leaders or members beforehand. Continue reading Psi-k Workshop Funding 2020 – only 2 days left to submit!

Combined events “ABINIT developer workshop” and “workshop on precision quantification in DFT” – Report

20-24 May 2019, Louvain-la-neuve, Belgium.

In order to benefit from an interesting synergy, the Abinit developer (ABIDEV) workshop 20-22/5/2019, and the workshop on precision quantification in DFT (PQ-DFT) 23-24/5/2019 were organized one after the other, in Louvain-la-neuve, Belgium. Both events attracted together more than 80  people, who attended the joint social dinner, on the evening of Wednesday 22 May.

A brief account of the ABIDEV workshop is now given, followed by the one of the PQ-DFT workshop. Links to the programs, the abstracts, the videos, the lists of participants are mentioned in the text. Group pictures  are presented at the bottom. Continue reading Combined events “ABINIT developer workshop” and “workshop on precision quantification in DFT” – Report

Young Researcher’s Workshop on Machine Learning for Material Science 2019 – report

The Young Researcher’s Workshop on Machine Learning for Material Science took place in the Aalto Design Factory, Espoo, Finland on date 06th-10th/05/2019. Workshop programme, abstract book, and workshop material (i.e. tutorial material, registration of talks and slides) for download can be found at https://ml4ms2019.aalto.fi/.

Below we resume the highlight of the event.

ML4MS SCHOOL

The first two days of the workshop involved introductory talks and a one-day long hands-on tutorial session. The aim of this initial workshop programme was to bestow the attendees with a pedagogical and practical introduction to the most established tools and techniques exploiting machine learning algorithms employed to solve outstanding problems in physical chemistry and chemical science.

On Monday, Dr. Luca Giringhelli introduced the attendees to the nuances of material space exploration via regularized and symbolic regression, together with a didactical intro on both supervised and unsupervised learning. The key role of descriptors that need to capture the complexity of the physical system under scrutiny was highlighted. A state of the art application to the agnostic and insightful classification of binary compounds was presented. The topics of open science, reproducibility and good use of repositories were also tackled in detail. Continue reading Young Researcher’s Workshop on Machine Learning for Material Science 2019 – report

3rd Daresbury QUESTAAL School

Daresbury Laboratory, UK, 13-17 May 2019

Organisers:

Daresbury: Leon Petit, Jerome Jackson, Martin Lüders

King’s College London: Mark van Schilfgaarde, Dimitar Pashov

The third Questaal school concentrated on qsGW and DMFT using the code’s new interface to the TRIQS library.  A series of tutorials enabled the 31 participants (mostly post-doctoral researchers and lecturers) to setup and run calculations starting from density functional theory and working up to GW, qsGW, LDA + Bethe Salpeter (BSE), or the inclusion of ladder diagrams in W: qsGW^BSE, and DMFT.  The participants were encouraged to experiment with a diverse range of materials, including itinerant magnets, f-electron systems, simple semiconductors and strongly correlated insulators.

In addition to the new TRIQS DMFT capability, the school also showcased recent developments in extending the GW self-energy by including phonon contributions and the first results of the new “Jigsaw Puzzle Orbital” basis, which is a full-potential analogue of the LMTO screening transformation which is short ranged and compact while still very precise. Continue reading 3rd Daresbury QUESTAAL School

Report on Workshop on Crystal Structure Prediction: Exploring the Mendeleev Table as a Palette to Design New Materials

Workshop on Crystal Structure Prediction: Exploring the Mendeleev Table as a Palette to Design New Materials

ICTP, Trieste, 14-18 January 2019

Final report

Thanks to enormous progress in computing power and in algorithm development, we are now closer to being able to predict the crystal structure of any material from the simple knowledge of its composition. This is the first necessary step for predicting in silico the property of a material, and planning modifications that could improve these properties. A critical discussion of the algorithms developed in the last years for the “in silico” prediction of crystal structures was the main theme of a workshop that took place at the Abdus Salam International Centre for Theoretical Physics (ICTP), in Trieste, Italy,  from 14 to 18 January 2019. The event, titled “Workshop on Crystal Structure Prediction: Exploring the Mendeleev Table as a Palette to Design New Materials”, focused in particular on approaches based on molecular modeling and was an opportunity to celebrate 2019 as the International Year of the Periodic Table, since crystal structure prediction is rooted in a deep knowledge of the properties of the atoms, and, in turn, numerous discoveries made with the help of crystal structure prediction, reveal new (often completely unexpected) sides of the behavior of the atoms. The Workshop was directed by the A. Laio, G. Desiraju, A. Oganov, and S. Scandolo. It was divided in two parts: the first three days were dedicated to an in-depth and critical discussion of the methods, with talks given by world experts in the field. The last two days were devoted to “hands-on” computer labs were the younger participants were given the opportunity to learn how to use the most advanced codes for crystal structure prediction, including the “Universal Structure Predictor: Evolutionary Xtallography” (USPEX) and the “Ab initio Random Structure Searching” (AIRSS). Continue reading Report on Workshop on Crystal Structure Prediction: Exploring the Mendeleev Table as a Palette to Design New Materials

Writing reproducible workflows for computational materials science

EPFL (Lausanne, Switzerland),  May 21-24, 2019

Today, many open questions in computational science call for more than individual computations using a single code. As the demand for integration and throughput increases, the skill of writing robust and reproducible workflows is becoming ever more important. In this context, the move towards open science raises the level of scrutiny and demands that workflows be recorded in a way that can be inspected and reused by scientific peers.

This hands-on tutorial introduced young researchers to writing reproducible computational workflows using the open-source AiiDA framework for workflow management and provenance tracking (http://​www.aiida.net), complemented by invited talks from experts in the field that highlight the power and the challenges involved with leveraging complex workflows in computational materials science.

Continue reading Writing reproducible workflows for computational materials science

ASCM2019

General comments

The Atomistic Simulation of Carbon and related Materials (ASCM2019) workshop (ascm2019.nanocarbon.fi) took place in Helsinki, Finland between the 10th and 12th of April 2019. The workshop venue was the historical main building of the University of Helsinki. The event was jointly organized by Flyura Djurabekova (University of Helsinki), Volker Deringer (University of Cambridge) and Miguel Caro (Aalto University).

A total of circa 45 participants (mostly from Europe but also from overseas) met at the heart of Helsinki for three days of discussion on the state of the art and future prospects of atomistic simulation of pure carbon compounds and nanostructures, functionalized carbon materials, carbon-containing molecules and silicon/SiC alloys. Focus topics with strong presence at the workshop were atomistic modeling of graphene and carbon nanotubes, amorphous carbon, molecular dynamics simulations of high-energy/irradiation effects, development and benchmarking of interatomic potentials and, prominently, machine learning applied to atomistic simulations in general and carbon science in particular. The oral sessions featured a nice combination of established and early-career researchers.

Continue reading ASCM2019

Ab initio (from electronic structure) calculation of complex processes in materials