Category Archives: Events

Report on CECAM Workshop: “Emerging Technologies in Scientific Data Visualisation”.

Title: Emerging Technologies in Scientific Data Visualisation
Location: CECAM-IT-SISSA-SNS Node, in Scuola Normale Superiore (Pisa, Italy)
Webpage with list of participants, schedule and abstracts of presentations: https://www.cecam.org/workshop-1586.html

Dates: April 4, 2018 to April 6, 2018
Organizers:

Stefano de Gironcoli (International School for Advanced Studies (SISSA) and CNR-DEMOCRITOS IOM, Trieste, Italy)

Emine Kucukbenli (SISSA, Trieste, Italy)

Giordano Mancini (Scuola Normale Superiore, Pisa, Italy)

Monica Sanna (Scuola Normale Superiore, Pisa, Italy)

State of the art:

Visualisation allows us to tap into high-bandwidth cognitive hierarchies of our brains and allows us to process high densities of information at once. In the field of atomistic and molecular simulations, it is a key element to research: we use ball-and-stick figures to represent the simulation scenarios, graphs to recognize or communicate parametric relationships of equations. The “Big Data” trend gave rise to several projects with vast output of data, many data-driven approaches are being introduced. For instance, a new EU Center of Excellence, “NOMAD”, is established to collect, store and regularize data to build a materials encyclopedia. Continue reading Report on CECAM Workshop: “Emerging Technologies in Scientific Data Visualisation”.

Report: Workshop on Electronic Structure Theory with Numeric Atom-Centered Basis Functions 2018, July 9-11, Munich

Participants of the workshop attending one of the seminars.

This workshop held July 9 to 11, 2018, focused on methods that leverage localized, numeric atom-centered orbital (NAO) basis functions, a choice upon which a number of the strongest available electronic structure developments are founded. The workshop brought together key players from the FHI-aims code and related European and international efforts to highlight, discuss, and advance the state of the art of NAO-based modeling of molecules and materials based on the first principles of quantum mechanics. This workshop covered three days and 23 invited talks, covering:

  • development of community-based, shared infrastructure projects for electronic structure theory (Garcia, Larsen, Pouillon),
  • benchmarking efforts to assess and improve the accuracy of approximations used in electronic structure theory (Al-Hamdani, Goedecker, Liu),
  • applications of density functional perturbation theory (Laasner, Raimbault, Shang),
  • automation of workflow via machine learning and “big data” efforts (Ghiringhelli, Hoja),
  • scalability towards large systems and exascale computational resources (Huhn, Scheurer, Yu),
  • numerical algorithms and new methods for NAO-based electronic structure theory (Hermann, Ringe, Rossi), and
  • extensions beyond standard Kohn-Sham DFT (Golze, Havu, Michelitsch, Oberhofer, Ren)

Continue reading Report: Workshop on Electronic Structure Theory with Numeric Atom-Centered Basis Functions 2018, July 9-11, Munich

Report: MSSC2018 – Ab initio Modelling in Solid State Chemistry

The Department of Chemistry and the Thomas Young Centre at Imperial College London and the Computational Materials Science Group of the Science and Technology Facilities Council (STFC), in collaboration with the Theoretical Chemistry Group of the University of Torino, organised the 2018 MSSC Summer School on the “ab initio modelling of crystalline and defective solids with the CRYSTAL code”.

CRYSTAL is a general-purpose program for the study of periodic solids. It uses a local basis set comprised of Gaussian type functions and can be used to perform calculations at the Hartree-Fock, density functional or global and range-separated hybrid functionals (e.g. B3LYP, HSE06), double hybrid levels of theory. Analytical first derivatives with respect to the nuclear coordinates and cell parameters and analytical derivatives, up to fourth order, with respect to an applied electric field (CPHF/CPKS) are available.

The school provided an overview of the underlying theory and fundamental issues affecting use of the code, with particular emphasis on practical issues in obtaining reliable data efficiently using modern computer hardware.  The capabilities of CRYSTAL was illustrated with hands-on tutorials organized in the afternoon sessions.

All information about the school can be found on this website:
http://www.imperial.ac.uk/mssc2018/

Read the full workshop report here: MSSC2018_Psi-k_report

 

Report: MSSC2017 – Ab initio Modelling in Solid State Chemistry

The Department of Chemistry and the Thomas Young Centre at Imperial College London and the Computational Materials Science Group of the Science and Technology Facilities Council (STFC), in collaboration with the Theoretical Chemistry Group of the University of Torino, organised the 2017 MSSC Summer School on the “ab initio modelling of crystalline and defective solids with the CRYSTAL code”.

The school provided an overview of the underlying theory and fundamental issues affecting use of the CRYSTAL code, with particular emphasis on practical issues in obtaining reliable data efficiently using modern computer hardware.

The capabilities of CRYSTAL was illustrated with hands-on tutorials organized in the afternoon sessions.

All information about the school can be found on this website:
http://www.imperial.ac.uk/mssc2017/

Read the full workshop report here: MSSC2017_Psi-k_report

Workshop on Interfacing Machine Learning and Experimental Methods for Surface Structures (IMPRESS)

July, 11-13th 2018, Graz University of Technology, Petersgasse 16,  8010 Graz, Austria

Introduction

In the second week of July, the workshop Interfacing Machine  Learning and Experimental Methods for Surface Structures  (IMPRESS) was held at the TU Graz. The advent of machine learning  methods has drastically changed the way structure determination is  performed, since it facilitates the rational design of (new)  experiments and the analysis of large amounts of data. The target of  the workshop was to bring experimentalists and theorists together,  so that both can learn and benefit from each other’s expertise.  About 50 scientists from Asia, America, and Europe followed the  call, making the workshop, which was sponsored by CECAM and the  Psi-k, a great success.

Continue reading Workshop on Interfacing Machine Learning and Experimental Methods for Surface Structures (IMPRESS)

Advanced computing of excited state properties in solids and nanostructures with Yambo – CECAM HQ 24-28 April 2017

Organisers Grüning Myrta, Hogan Conor, Marini Andrea, Molina-Sánchez Alejandro, Varsano  Daniele

Short report

The goal of this school, co-funded by CECAM and University of Luxembourg,  was to provide the participants with the theoretical and computational tools to study the excited properties of advanced materials and nanostructures. In the morning, the students followed lectures on the fundamentals of linear response and many-body perturbation theory together with more technical lectures on the implementation of the theory into first-principles approaches.  During the afternoon sessions (and the Friday morning Continue reading Advanced computing of excited state properties in solids and nanostructures with Yambo – CECAM HQ 24-28 April 2017

Psi-k Scientific Get-Together

During the DPG Condensed Matter Meeting in Regensburg the Psi-k Network will organize again a Psi-k Scientific Get-TogetherPsi-k_Get_Together_2016_A4

We hope that you can come to the meeting and that we have a nice Get-Together. Please distribute the attached flyer to your colleagues and coworkers.

See you in Regensburg

Peter Dederichs
Honorary Chairman