5th TYC Energy Workshop: From Atoms to Applications

The Thomas Young Centre (TYC) held their 5th Energy workshop, entitled “From Atoms to Applications” from the 25th to the 27th of July 2018 at the Department of Chemistry in University College London. The meeting was focussed on the evolution of computational materials design, specifically for Energy Materials. The aim of the workshop was to showcase the latest advances in computational materials design and to promote discussion and debate on bridging theory and experiment. We had a range of excellent speakers on the side of theory and of experiment, and it was clear from the discussions after talks and at the coffee breaks and lunches that the combination of theory and experiment is alive and thriving. The programme featured invited talks from established leaders in the field and from emerging early career researchers in the area. We scheduled 15 minutes for questions after every presentation, and this prompted lively discussion and debate. We had 99 attendees ranging from established academics, to PDRAs, PhD students and even Undergraduate students, with representation by Senior Editors from Nature and Nature Materials. The workshop featured diverse energy applications such as oxide and proton conducting fuel cells, photocatalysis, photovoltaics, LEDs, catalysis, solid state batteries, organic electronics and amorphous oxides semiconductors.

Read the full report here.

Interface Properties in Organic & Hybrid Electronics (IPOE-2019)

IPOE-2019

2d International Conference on

Interface Properties in Organic and Hybrid Electronic:

Perspectives & Key Challenges

Cergy-Pontoise, France, 8-11 July 2019

https://ipoe2019.sciencesconf.org

IPOE-2019 will be entirely devoted to the physical phenomena occurring at organic/organic, organic/inorganic and organic/metallic interfaces

IPOE-2019 is a single-session conference, comprising a plenary lecture by Prof. Rudolph A. Marcus, Nobel Prize in Chemistry, 12 keynote- and invited lectures, 36 oral contributions, and a poster session. The conferences will be followed by ample time devoted to questions (20 min / 10 min / 5 min for KN / Invited / Oral Contributions respectively), in addition to discussions during a poster session. 

The conference will cover a broad range of areas related to both experimental and theoretical aspects of these processes, comprising the following topics (but not limited to):

  • Charge separation mechanisms
  • Charge generation mechanisms
  • Energy transfer processes
  • Energy landscape at interfaces
  • Materials for interface engineering
  • Interfacial versus bulk properties
  • Hybrid organic/inorganic interfaces
  • Metal/organic interfaces
  • Organic/organic interfaces
  • Solar energy conversion
  • Organic sensors and bioelectronics
  • Molecular spintronics
  • Organic and Hybrid SCs, O&H LEDs, OFETs
  • Experimental probes
  • Molecular modeling and theoretical models

 

 

 

 

 

Report: CECAM / PSI-K Workshop Bremen on Correlated electron physics beyond the Hubbard model

CECAM Report

PROGRAM CEP

Organizers: Tim O. Wehling (Bremen), Thomas Frauenheim (Bremen), Silke Biermann (Palaiseau Cedex), Johannes Lischner (London), Nikolay Prokofiev (Amherst, Massachusetts), Malte Schüler (Bremen), Andrew Millis (New York)

Venue: University of Bremen, Bremen Center for Computational Materials Science (BCCMS), Germany, 8th until 12th of October 2018

Sponsors: University of Bremen (BCCMS), Psi-k, DFG, CECAM

Electrons in real materials are subject to Coulomb interaction among each other. This interaction is long-ranged, gives rise to correlation effects, and often poses fundamental problems in ab initio simulations of real materials. A nowadays commonly used ab initio approach for strongly correlated materials is the augmentation of density functional (DFT) based methods with many-body treatments of the Hubbard model, such as the combination of DFT and dynamical mean field theory [1]. This approach, however, neglects all correlation effects stemming from non-local Coulomb interaction, since the Hubbard model only includes the on-site part of the interaction. Combining more sophisticated diagrammatic ab initio methods (GW) with methods and models which contain the long-range contributions of the interaction (EDMFT) [2] alleviates these problems in part but comes with the introduction of further approximations. Assessing the quality of such approaches is currently hampered by the fact that even the extended Hubbard model, which is the minimal many-body model capturing explicitly non-local interactions, is at best partially understood. Continue reading Report: CECAM / PSI-K Workshop Bremen on Correlated electron physics beyond the Hubbard model

SCIENTIFIC REPORT ON “HOW EXCITING! WORKSHOP ON EXCITATIONS IN SOLIDS HUMBOLDT-UNIVERSITÄT ZU BERLIN”, BERLIN, GERMANY, JULY 31 – AUGUST 9, 2018

The fourth Berlin edition of the “HoW exciting! Workshop on excitations in solids” took place in the Campus Adlershof of the Humboldt-Universität zu Berlin between July 31st to August 9th, 2018. Excitations in solids, which were the core topic of the workshop, are among the most exciting phenomena in condensed-matter physics. In this context, the electronic-structure approach provided by density-functional theory (DFT) is only the first level in a hierarchical set of models which are needed to quantitatively describe and understand these phenomena in real materials. The main goal of the “HoW exciting! Workshop on excitations in solids” was to address these issues and to establish a robust relationship between the most recent advances in theoretical and computational methods and the different domains of applicability with respect to experiments. Specifically, in this workshop the state-of-the-art of theoretical and computational approaches to describe different kinds of excitations (optical, magnetic, vibrational, etc.) in solid-state materials were presented. Future perspectives of these methodologies and their applications in different research fields were discussed and new connections between theoretical and experimental groups, who are investigating excitations in materials from different perspectives were established. The main topics spanned the whole range of first-principles methods for excitation processes in solids, including electronic excitations, electron-phonon coupling, core-excitations, and non-equilibrium processes. Continue reading SCIENTIFIC REPORT ON “HOW EXCITING! WORKSHOP ON EXCITATIONS IN SOLIDS HUMBOLDT-UNIVERSITÄT ZU BERLIN”, BERLIN, GERMANY, JULY 31 – AUGUST 9, 2018

Physics by the Lake Workshop

The psi-k sponsored Physics by the Lake Workshop in Theoretical Condensed Matter ran in Cumberland Lodge, Windsor UK from July 30th through August 10th 2018

The course lecturers at the meeting were Sam Carr, Edward McCann, Richard Blythe, Chris Hooley, Martin Lueders, Andrew Fisher, Bartek Waclaw, Buddhapriya Chakrabarti, with technical demonstrators Raul Santos and Miriam Marques

Seminar speakers were  Graeme Ackland, Mike Payne, Julie Staunton, Raul Santos Alexandre Zagoskin and Mike Gunn

38 students attended

Lecture notes and attendance lists are available to psi-K members .https://www2.ph.ed.ac.uk/~gja/PBTL_2018_Notes.pdf Continue reading Physics by the Lake Workshop

Progresses in NonEquilibrium Green’s Functions VII

With the advent of nanoscale physics and ultrafast lasers it is now possible to directly probe real-time the correlated motion of electrons and nuclei in excited quantum states. In addition, the intensity and profile of the laser field can be tuned to control and manipulate the opto-electronic properties of a wide range of molecules and materials. All these progresses have opened new fields of research like, e.g., molecular transport, nanoelectronics, atto-physics/chemistry, nonequilibrium phase transitions, ultracold atomic gases, optimal control theory, etc.

Experiments are usually carried on large molecules, biological systems and nanostructures whose peculiar dynamical properties are inevitably linked to their atomistic structure. Thus, an ab-initio, time-dependent and quantum-mechanical approach is required for reliable calculations. The aim of this workshop was to gather together many of the most prominent theoretical and experimental scientists to advance our fundamental understanding of matter under extreme nonequilibrium conditions. Particular emphasis was given to many-body methods like Nonequilibrium Green’s Functions Theory (NEGF) and how to combine NEGF with ab initio methods like Density Functional Theory.

Read the full report.

Ab Initio Spin Modelling Workshop

CECAM-HQ-EPFL, Lausanne, Switzerland, 26-28 November 2018

Organizers: Jerome Jackson and Martin Lüders, STFC Daresbury Laboratory, UK

http://www.cecam.org/workshop-0-1549.html

32 speakers and participants took part in the Psi-k, CCP-magnetism and CECAM financed Workshop on the subject of Ab Initio Spin Modelling, which was held at CECAM-HQ, Lausanne, between 26—28 November 2018. The format of the event was designed to foster discussion between groups working on diverse problems in the ab initio treatment of magnetism in solids. Talks of approximately one hour by the invited speakers were interspaced with much lively and enjoyable discussion. The long talks were intended to allow detailed, in depth presentations and this was indeed the outcome. The speakers represented work in quite different methods with electronic structure (e.g., from fully relativistic KKR to perturbation theory based on pseudopotentials/plane waves) – this seemed, if anything, to motivate and promote questions and active involvement by all the participants. Productive discussion also took place during the poster sessions where the quality of the poster presentations was extremely high.

Read the full report here.

CAMD Summer School 2018

The Psi-k sponsored “CAMD Summer School 2018 Electronic Structure Theory and Materials Design” took place in the week August 12-17, 2018 at Strandhotel Marienlyst in Helsingør, Denmark. Thanks to the more than 100 external attentive summer school students and the 15 very helpful invited lecturers, the school was the nice success that we had hoped for. The school taught PhD students from all over the world the basic and more advanced concepts in modern electronic structure theory including ground state density functional theory (DFT), many-body methods materials informatics and machine learning. Emphasis was put on the methodology applied “on-top” of ab-initio calculations which is essential for the computational design of new functional materials.

Read the full report here.

Final report on psi-k funded Elk workshop

Organizers: J. K. Dewhurst, E. K. U. Gross, and S. Sharma

1.  SUMMARY

The Psi-k funded Elk-code  tutorial  took place at the Max Planck Institute of Microstructure Physics (MPI-Halle) in Halle, Germany,  from September 3 – 7, 2018. There were a total  of 14 speakers and tutors of the code and 45 students from 16 countries. We were oversubscribed and ,unfortunately, had to turn down several applicants (we received in total 61 requests for attending the Elk-tutorials).

The Elk LAPW  code (http://elk.sourceforge.net/) is an electronic structure code based on the state-of-the-art full-potential  linearized augmented plane-wave (LAPW)  method. It was designed from the start to be a user- and developer-friendly code, allowing PhD students and post-docs to both use the code for their  research as well as implement new ideas in the field of electronic structure.

The present Elk-tutorial  was fourth in the series of tutorials.  The previous tutorials were held in 2011, 2013 and 2015. The aims of the tutorials  have been introduction  to the ELK  code as well as the cutting  edge science and implementations in the field of electronic structure methods.

Continue reading Final report on psi-k funded Elk workshop

Ab initio (from electronic structure) calculation of complex processes in materials