Report: CECAM/Psi-k Workshop Bremen on Crystal defects for qubits, single photon emitters and nanosensors

CECAM Qubit_Abstract book

ProgramQubits

CECAM_DFG/Psik2018Report

Organizers: Adam Gali (Budapest), Thomas Frauenheim (Bremen), Jörg Wrachtrup (Stuttgart)

Venue: University of Bremen, Bremen Center for Computational Materials Science (BCCMS), Germany, 9th until 13th of July 2018

Sponsors: University of Bremen (BCCMS), Psi-k, DFG

https://www.bccms.uni-bremen.de/veranstaltungen/2018/cecam-qubit/

Point defects acting as color centers in solids may realize single photon source and quantum bits that can be harnessed in quantum information processing and nanoscale sensor applications which may revolutionize the info-communication technology, biological research and therapy. The leading contender is the nitrogenvacancy center in diamond which may be considered as a robust quantum tool. Several quantum algorithms and protocols for sensing have been already demonstrated by this center. However, researchers face many materials science problems in order to maintain the favorable intrinsic properties of this color center that can be perturbed by other defects either in bulk or at the surface of diamond that is difficult to resolve because of its chemical hardness and the concurrent stability of carbon allotropes.

Recently, theory-driven search for alternative materials could identify other quantum bit candidates in technologically mature wide band gap semiconductors, particularly silicon carbide, that have been recently demonstrated in experiments. However, the knowledge about these color centers is scarce and only the tight collaboration of experimental and atomistic simulation researchers would lead to a rapid progress in the field. The proposed workshop aims at bringing together world-leading experts in all these fields to improve interdisciplinary cooperation overcoming traditional boundaries between scientific disciplines.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.