Category Archives: reports

13th ETSF Young Researchers’ Meeting (London)

ETSF-YRM

For 13 years now ETSF has encouraged young researchers to take part in the ETSF Young Researchers’ Meeting (YRM). This event which is organised by young researchers for young researchers made its way to London for the first time, as always the high standard of talks encouraged much debate and discussion among the attendees while enjoying all that London has to offer (for a brief moment we had some sun too!!!).

Continue reading 13th ETSF Young Researchers’ Meeting (London)

Probing Potential-Energy Surfaces (PPES IV)

pic1PPES

The potential energy surface (PES) is a central quantity in the modelling of materials properties. Ab initio total energy methods like density-functional theory are increasingly used to probe the PES in order to determine not only the equilibrium configurations of particular systems, but also potential energy barriers for certain processes and/or attempt frequencies. The goal of the workshop was to discuss current issues and perspectives in the underlying theoretical concepts and methods, as well as corresponding applications in the fields of heterogeneous catalysis, crystal growth, or biophysics.

After successful meetings in 1994, 1999, and 2005, the workshop stayed within the interdisciplinary tradition of the PPES series and brought together scientists with different backgrounds, e.g. in condensed matter physics, materials science, computational physics, chemistry, and industry. Experts of the field of total-energy calculations, scientists who develop or enhance methods, and those who apply the information gained by these techniques had the possibility to exchange ideas and experiences.

A special focus of the PPES-IV workshop was on big-data-driven materials science, e.g. the Materials Encyclopedia and the development of Big-Data Analytics tools for materials science of the NOMAD Center of Excellence.

pic2PPES Continue reading Probing Potential-Energy Surfaces (PPES IV)

EUSpec Winter School on core-level spectroscopies – Fundamentals and applications of ab-initio methods in spectroscopy

ewins-header

The idea that a two-week school should be held in Slovenia first emerged during the first Whole Action Meeting (WAM 2014) of COST Action EUSpec in Louvain-la-Neuve, Belgium. In compliance with the naming of other action meetings, the school was nicknamed as “EWinS”, standing for “EUSpec Winter School”. The preparations for the school started in spring 2015 and in autumn they became rather intense with many skype calls between the local organizers and Hubert Ebert (action chair), Didier Sébilleau (co-chair), Amélie Juhin as well as other members of the school international committee. The ideas on the table were many and the uncertainties on practical aspects were even more. Let us introduce the context. “EWinS” is the first two-week school organized within the framework of EUSpec. “Being the first” is already a source of concerns. “Being the first” in a small town of 6600 inhabitants in the middle of west Slovenia becomes an epic quest. Fortunately, with the help of volunteers, long and difficult budget plans, creative accommodation and transportation plans, on Monday the 1st of February all trainees were attending the first lecture given by Maria N. Piancastelli. After the coffee break Lucia Reining explained the basis of electronic excitations under a theoretical point of view.

DSC_4753

Continue reading EUSpec Winter School on core-level spectroscopies – Fundamentals and applications of ab-initio methods in spectroscopy

Simulation of chemistry‐driven growth phenomena for metastable materials – SimGrow 2015

SimGrow_group-picture

The controlled growth of thin films based on metastable materials by chemistry‐driven processes is of high technological importance for topics like semiconductor devices or optical coatings. Computational modelling of this inherently multiscale process is crucial for an atomistic understanding and enables a decoupling and separate optimization of the growth‐determining factors of non‐equilibrium materials. The challenge faced for modelling of these complex phenomena is the coverage of various length and time scales and the necessary close interaction with colleagues from the experimental sciences who are able to outline the most pressing open questions.

This was the starting point to initiate the SimGrow workshop.

Read the full workshop report here.

Continue reading Simulation of chemistry‐driven growth phenomena for metastable materials – SimGrow 2015

Advanced thermoelectrics at nanoscale: from materials to devices

Scientific report on the “Advanced thermoelectrics at nanoscale: from materials to devices” workshop.
Paris, France
July 7th – July 10th 2015

View the full report here.

Amato2015Fig

Thermoelectric nanomaterials, whose combination of thermal, electrical, and semiconducting properties allows them to convert heat into electricity, are expected to play an increasingly important role in meeting the energy challenge of the future. Major advances in this field strongly depend on our fundamental understanding of heat and charge carrier transport and on the ability of finding new strategies to design and fabricate high efficiency thermoelectric devices and circuits. Despite of the substantial advances in the description of thermal and electronic dynamics in bulk materials, the extension of transport bulk theory to nanostructures, is still under development. One of the main problems in modeling the nanostructures for thermoelectrics is the fact that they usually have complex compositions and structures. To these complex structures, usually, several external elements are added to improve either the thermoelectric properties and to become functional elements of devices and circuits. The final material is hence a quite complex object whose phononic and electronic structure is unknown. Continue reading Advanced thermoelectrics at nanoscale: from materials to devices

Computer Simulations of Condensed Phase Systems – From Correlated Electrons to Novel Materials

Scientific report on the conference Computer Simulations of Condensed Phase Systems – From Correlated Electrons to Novel Materials
Rome, Italy
June 4th – June 6th 2015

View the full report here.

GBB60_cover

The workshop “Computer simulations for condensed phase systems: from correlated electrons to novel materials” took place in Rome, at the headquarters of the CNR (Italian National Research Council) , on the 4th and 5th of May 2015. It was meant as a celebration of Giovanni Bachelet’s 60th birthday, organized by several of his former students who are currently active in the field of electronic structure calculations. Continue reading Computer Simulations of Condensed Phase Systems – From Correlated Electrons to Novel Materials

Theory of metal atoms, clusters and nanoparticles interacting with organic matter

Scientific report on the conference “Theory of metal atoms, clusters and nanoparticles interacting with organic matter”
Helsinki, Finland
June 10th – June 12th 2015

View the full conference report here.

SNM15

Due to recent progress in nano-fabrication there is a large, growing interest in stabilized metal-organic hybrids. However, at present not many computational ab-initio studies have been performed and they are scattered across different fields and communities. The workshop goal was then to address current challenges and successful methods to study the electronic properties of organo-metal nanocomposites bringing together leading scientists working both on ground and excited state electronic properties of organic stabilized metal complexes.

Continue reading Theory of metal atoms, clusters and nanoparticles interacting with organic matter

Nothing is perfect – the quantum mechanics of defects

Scientific report on the conference
“Nothing is perfect – the quantum mechanics of defects”
Ascona, Monte Verità
April 26th – April 29th 2015

View the full conference report here.

Topic and goal of the conference

In recent years we have been observing huge progress in first principles defect science. However, due to the widespread interest in defects, new developments have been disconnected with little crosstalk between the various disciplines and communities. In our experience, defects are typically discussed at topical conferences on specific materials or material classes. It was our aim to change this state of affairs with our proposed workshop.

By pooling expertise in a single event we intended to provide a unique opportunity for assessing the current state of the field. We have brought together a representative selection of distinguished researchers in defect science. In oral presentations, the invited speakers have addressed the different aspects of the grand challenges at stake in the modelisation of defects. Ample discussion time has been reserved after each presentation to reflect on the immediate challenge and its ramifications. In addition, we have organized a round table discussion, in which general interest topics that do not fit the regular scientific talks have been discussed.

Continue reading Nothing is perfect – the quantum mechanics of defects

QMC visit to the Scuola Normale in Pisa

scuola_normale

Sam and I were in Pisa recently at the invitation of Prof. Vincenzo Barone from the Theoretical Chemistry group at the Scuola Normale. Prof. Barone is amongst other things, Professor of Theoretical and Computational Chemistry in Pisa,  President of the Italian Chemical Society, and author of more than 650 publications, which for a young man like me still stuck on around 60 papers is something to aspire to, to say the least.

Despite the literal meaning of ‘Normal School’ – which in English sounds like somewhere you go if you can’t get into a good school –  the Scuola Normale is probably Italy’s most prestigious university – founded in 1810 by Napoleonic decree as the sister  of the École Normale in Paris. It is very much an elite institution, and to become a student there, candidates have to pass an extremely selective admissions exam with only a 6% pass rate – every year only sixty candidates are admitted out of nearly 1000 applicants. The main building is the overwhelmingly beautiful Palazzo della Carovana (pictured above) which was designed and built by Giorgio Vasari in the 1500s as the headquarters of the Knights of Saint Stephen. It is situated in Piazza dei Cavalieri  – the second main square in Pisa and right in the heart of the action. What a fantastic place to work,  I have to say! It certainly beats the modern incarnation of the pebble-dashed prefab Cavendish Laboratory – which was moved out of the centre of Cambridge to a field three miles away in the 1970s. This was done at probably the worst moment in history for British architecture at a cost of only two million pounds and it really shows;  despite inflation that wasn’t very much money back then either.

Continue reading QMC visit to the Scuola Normale in Pisa

Conference report: Quantum Monte Carlo in the Apuan Alps IX

I learned from Daniela the barmaid that the old people  were saying it was the worst summer weather in Tuscany since 1915. Surely they weren’t so old that they would actually remember? Well, round here you never know — they might be — and despite the rain, almost a hundred years later forty-six people have gathered in Vallico Sotto to attend the ninth “Quantum Monte Carlo in the Apuan Alps” international workshop. From the 26th of July to the 2nd of August 2014 our resident physicists and chemists spent each morning listening to talks on quantum Monte Carlo and related computational electronic structure methods, followed by afternoons that were often full of mountain walking, caving, canyoning and other activities but — for pretty much the first time ever in history of events at TTI — were equally often cancelled because of the appalling weather.

A great deal of interesting science was presented and discussed at the meeting, and much of this is summarized in the scientific report further down this page. I think it’s now clear to most people that the quantum Monte Carlo method is continuing to grow in utility and importance, and for those with a big enough computer it self-evidently ought to be the method of choice for highly accurate benchmark quantum-mechanical calculations of molecules and materials — certainly those with more than a few atoms.

Continue reading Conference report: Quantum Monte Carlo in the Apuan Alps IX