The Psi-k Community

MISSION: Psi-k is a Europe-based, worldwide network of researchers working on the advancement of first-principles computational materials science. Its mission is to develop fundamental theory, algorithms, and computer codes in order to understand, predict, and design materials properties and functions. Theoretical condensed matter physics, quantum chemistry, thermodynamics, and statistical mechanics form its scientific core. Applications encompass inorganic, organic and bio-materials, and cover a whole range of diverse scientific, engineering, and industrial endeavours. Key activities of Psi-k are the organization of conferences, workshops, tutorials and training schools as well as the dissemination of scientific thinking in society.

Psi-k is a bottom-up researchers’ network, established in 1994, to build strength and cooperation in the field of computational electronic structure. Psi-k activities are coordinated by a Board of Trustees, a Scientific Advisory Committee, and 16 Working Groups. These activities encompass the organization or co-sponsoring of ~30 workshops, conferences, schools or tutorials every year, an annual research conference jointly with CECAM, and a major conference covering the entire field every 5 years.

In addition, Psi-k produces a regular newsletter with extensive scientific highlights, and allows researchers to advertise job openings, events, and other topics of mutual interest through its 5000+ members mailing list.

This new website — introduced in  2015 to replace a venerable old site that provided sterling service over many years — offers a much more flexible modern design and functionality and it is to be hoped that it will provide even more stimulus for collaboration and cooperation amongst its members. Instructions regarding how to use it are here.

Psi-k is a registered charity and can only continue to operate thanks to the contributions from our member organisations and institutions. If you would like to make a donation to Psi-k please contact us to request an invoice or make a donation directly through our PayPal account…

           

Advanced Quantum ESPRESSO school: Hubbard and Koopmans functionals from linear response

28 August – 1 September 2023
University of Pavia (Italy)

Attendees of the school in a courtyard of the University of Pavia

From August 28th to September 1st, 2023, Pavia (Italy) hosted the first in-person edition of the “Advanced Quantum ESPRESSO School: Hubbard and Koopmans functionals from linear response“. Building upon the remarkable success of the virtual edition in 2022, this year’s event welcomed  41 participants from various countries  (carefully selected from a large  pool of 170 applications). They were joined by 20 lecturers and tutors, along with 5 keynote invited speakers who enriched the school program with their seminars related to the topic of each day. Continue reading Advanced Quantum ESPRESSO school: Hubbard and Koopmans functionals from linear response

Psi-K/CECAM Flagship workshop: Open Science with the Atomic Simulation Environment

The workshop “Open Science with the Atomic Simulation Environment” was held at Daresbury Laboratory, UK, from April 24-28 2023. (Conference website)

The event consisted of scientific talks and posters, followed by parallel tutorial and “hackathon” sessions. Chemistry and physics research were presented that develop and apply atomistic methods with an emphasis on automation, interoperability and reusability.

Workshop attendees in front of offices at Daresbury Laboratory; a distinctive white tower is in the background.
Workshop attendees at Daresbury Laboratory

Sponsors

This event was primarily funded by CECAM (through the Flagship Workshop programme) and Psi-k, with additional funding from CCP5, CCP9, ALC and PSDI

Continue reading Psi-K/CECAM Flagship workshop: Open Science with the Atomic Simulation Environment

PRINCIPLES OF LIGHT-INDUCED CHARGE TRANSFER FOR OPTOGENETICS

The Workshop “Principles of Light-Induced Charge Transfer for Optogenetics” was held in Modena (Italy) from July 3 to July 5, 2023 at Complesso San Geminiano (via San Geminiano 3), in the historical city center of Modena. 

The event was organized by: 

the Nanoscience Institute of the National Research Council of Italy – CNR Nano, the University of L’Aquila – Dipartimento di Scienze Fisiche e Chimiche (DSFC), the University of Southern California, and the Karlsruher Institut fur Technologie.

The event was sponsored by:

Psi-k, the Nanoscience Institute of the National Research Council of Italy, the University of L’Aquila – Dipartimento di Scienze Fisiche e Chimiche (DSFC) and Cecam-IT-Simul. 

The aim of the workshop was to gather leading experts in the experimental and theoretical investigation of photoactive proteins that find application in the field of optogenetics. After the successful virtual edition of the same workshop in 2021, we organized a new, fully in presence, edition of the “Principles of light-induced charge transfer for optogenetics” workshop to  emphasize new results and point out new directions, challenges and opportunities in the following fields:

  • Charge transfer processes in light-sensitive proteins,
  • Excited state properties of biological matter,
  • Photoreceptor thermodynamics and photocycle kinetics,
  • Interplay between photoexcitation and protein conformations.

These and other issues were faced from a chemical physical perspective, highlighting the main recent achievements in this timely and stimulating research field. Continue reading PRINCIPLES OF LIGHT-INDUCED CHARGE TRANSFER FOR OPTOGENETICS

Young Researcher’s Hybrid School on Theory and Simulation in Electrochemical Conversion Processes Report

Young Researcher’s Hybrid School on Theory and Simulation in Electrochemical Conversion Processes  – 23-26/05/2023, Paris

State of the Art and Workshop Objectives 

Electrochemical processes are the cornerstone of green chemistry and energy-conversion devices. The accurate modelling of electrocatalytic reactions in the presence of electric fields, in particular, is key to the study of reduction/oxidation processes involved in the synthesis of value-added chemicals, as well as to shedding light on the mechanisms underlying the origin of life (i.e., prebiotic chemistry). The theoretical treatment of electrochemical phenomena is characterised by a high level of complexity. Non-trivial chemistry and electrodynamics are intertwined to form intrinsically multiscale systems, with certain aspects that can be treated only at the atomistic level, while others must be treated as a continuum. From a methodological perspective, the simulation of a system’s dynamics at the atomic scale in the presence of applied potentials benefits from a number of advancements that have brought the modelling of electrode-reactants-electrolyte interactions from a fairly quantitative to a strikingly accurate predictive ability. On the one hand, grand-canonical density functional theory (GC-DFT) methods have been extensively used to simulate the quantum properties of electrochemical interfaces and, due to their ab-initio nature, have proven to be particularly suited for the simulation of electrochemical reactions and the rationalisation of absorption mechanisms. On the other hand, constant-potential molecular dynamics (MD) methods have been used to model complete electrochemical cells under an applied voltage, paving the way to the atomistic simulation of energy-storage devices. Recent advancements in classical density functional theories (c-DFT) make it possible to compute accurate solvation free-energies of electrochemical interfaces and gain new insights on the thermodynamic stability of electrochemical products and reactants. Finally, the modern theory of polarisation and its application to deal with finite electric fields or electric displacement fields have fostered recent advancements in the modelling of metal-electrolyte interactions, allowing for an explicit treatment of the electrolyte while maintaining a quantum-level description of the system. On this front, equivariant and long-range machine-learning methods hold great promise in overcoming the time and length scale limit associated with current ab-initio approaches and predicting the non-local electronic response of the electrochemical interface under applied fields. The event aims at bringing together a multidisciplinary array of leading experts and young researchers working on the theory and simulation of electrochemical conversion processes.  Continue reading Young Researcher’s Hybrid School on Theory and Simulation in Electrochemical Conversion Processes Report

ETSF-19th Young Researchers’ Meeting

The Young Researchers’ Meeting (YRM) of the European Theoretical Spectroscopy Facility (ETSF) is an annual event that brings together young researchers working on theoretical and computational approaches for studying the electronic and optical properties of materials. It is specifically aimed at MSc and Ph.D. students, as well as postdoctoral researchers. In other words, researchers who have not obtained yet a permanent position are eligible to attend, exchange, and present their research work. Over the years, the focus of the YRM has expanded beyond theoretical spectroscopy to include various other fields such as transport, magnetism, spintronics, correlated systems, and multiscale modelling, and more recently, in the current edition, we also included a session fully dedicated to quantum computing. The objective of the meeting is to provide a platform for young researchers to present their work, learn about state-of-the-art theoretical methods in their field and provide insights into related fields to help the ETSF community to grow further and expand their scope with ideas from different geographical areas and research orientations. Continue reading ETSF-19th Young Researchers’ Meeting

Ab initio many-body perturbation theory: from equilibrium to time-resolved spectroscopies and nonlinear optics

The school, themed “Ab initio many-body perturbation theory: from equilibrium to time-resolved spectroscopies and nonlinear optics,” took place from May 22nd to May 26th, 2023. The event took place in the captivating setting of Argiletum, located at the heart of Rome’s city centre.  The school was made possible through the sponsorship of the MaX Centre of Excellence — Materials Design at Exascale–, the Italian Cecam-IIT Simul node, and the Psi-k network. It brought together 39 participants from various countries, representing a diverse and inclusive community. The aim of the school was to provide comprehensive training on theoretical and computational methods, with a specific focus on the YAMBO code and its recent advancements. Continue reading Ab initio many-body perturbation theory: from equilibrium to time-resolved spectroscopies and nonlinear optics

TREX Workshop: Code Tuning for the Exascale

The TREX project is excited to announce that it will host a physical workshop entitled “Code Tuning for the Exascale” from June 05-07 in Bratislava, Slovakia. The workshop is designed for code developers and will have a strong emphasis on code optimisation. Participants are encouraged to bring their own codes to learn about techniques, methods, and solutions for enhancing performance and scalability across multiple platforms.

The workshop is co-organised by the TREX project and the AustrianCzech and Slovak National Competence Centres for HPC.
The event will be organised in a mix of tutorials and training activities, focussing mainly on performance, power consumption, and energy efficiency in HPC systems and providing hands-on sessions on a series of codes and tools including TREX CHAMP code.

The language of the workshop will be in English.

Prerequisites

  • The workshop is targeting developers and advanced HPC users with experience in parallel programming and C and/or C++ and/or Fortran programming languages.
  • Attendees are kindly requested to bring their own laptop.

Important information

  • We have a limited number of seats so please consider reserving your seat as soon as possible.
  • Boarding: Light meals will be provided for lunches. A social dinner will be organized on the 2nd day.
  • Venue: Slovak Academy of Sciences campus, Bratislava, Slovakia

Actively Learning Materials Science Workshop 2023

27.2.-3.3.2023 Helsinki/Espoo, Finland

Highly concentrated participants in one of the in-depth tutorial sessions.

From 27th to 3rd March 2023 the Actively Learning Materials Science workshop was held at Aalto University in Helsinki/Espoo, Finland. This workshop welcomed 81 in-person participants from 10 countries (and many more among the 50+ online participants), also comprising 12 invited members among lecturers, teaching assistants, organizers and technical helpers. The event was sponsored jointly by CECAM, the Psi-k organization, Aalto University, and the Finnish Center for Artificial Intelligence, with talk and poster prizes sponsored by Wiley.

The workshop was dedicated to active learning (AL) algorithms, i.e. algorithms where machine learning datasets are collected on-the-fly in the search for optimal solutions. Paradigmatic examples in this area include (but are not limited to) Active Learning methods, Reinforcement Learning protocols, and Bayesian Optimization approaches. In the tutorials, talks and poster presentations, the participants showcased how AL enables to tackle outstanding problems in the optimal design of experiments, efficient traversal of complicated search spaces for electronic structure simulations and high throughput screening.

A key strength of AL techniques lies in the automated manner in which the machine learning model selects the data to include into the dataset via acquisition strategies. The requested data points can then be evaluated via computation or experiment and included into the model iteratively, until the optimal solution converges. The resulting compact, maximally informative datasets make AL particularly suitable for applications where data is scarce or data acquisition expensive. In this way, AL has helped accelerate materials discovery  away from big-data and free of human bias. Despite recent successes, future applications of AL on experimental data are slow, given that key data infrastructure is still lacking. Working with multiple objectives, or multidimensional data remains challenging. Novel method development across the research field is needed to advance AL techniques and associated frameworks in materials research.

Actively Learning Materials Science (AL4MS) focussed on two key objectives, both from a pedagogical (first part of the event) as well as from an advanced perspective (second part of the event): 1) How could data infrastructures and AL algorithm development advance experimental materials discovery? 2) How could we combine multiple channels of information in the same AL model? Continue reading Actively Learning Materials Science Workshop 2023

Ab initio (from electronic structure) calculation of complex processes in materials