All posts by Damian Jones

Member of the STFC Scientific Computing Department. Based at STFC Daresbury Laboratory, Warrington, UK.

Nothing is perfect – the quantum mechanics of defects

Scientific report on the conference
“Nothing is perfect – the quantum mechanics of defects”
Ascona, Monte Verità
April 26th – April 29th 2015

View the full conference report here.

Topic and goal of the conference

In recent years we have been observing huge progress in first principles defect science. However, due to the widespread interest in defects, new developments have been disconnected with little crosstalk between the various disciplines and communities. In our experience, defects are typically discussed at topical conferences on specific materials or material classes. It was our aim to change this state of affairs with our proposed workshop.

By pooling expertise in a single event we intended to provide a unique opportunity for assessing the current state of the field. We have brought together a representative selection of distinguished researchers in defect science. In oral presentations, the invited speakers have addressed the different aspects of the grand challenges at stake in the modelisation of defects. Ample discussion time has been reserved after each presentation to reflect on the immediate challenge and its ramifications. In addition, we have organized a round table discussion, in which general interest topics that do not fit the regular scientific talks have been discussed.

Continue reading Nothing is perfect – the quantum mechanics of defects

Scientific Highlight of the Month – April 2015

Theory of Heusler and Full-Heusler Compounds
Iosif Galanakis
Department of Materials Science, School of Natural Sciences, University of Patras, GR-26504 Patra, Greece

Abstract
Spintronics/magnetoelectronics brought at the centre of scientific research the Heusler and full-Heusler compounds, since several among them have been shown to be half-metals. In this review we present a study of the basic electronic and magnetic properties of both Heusler families; the so-called semi-Heusler alloys like NiMnSb and the full-Heusler alloys like Co2MnGe (usual full-Heuslers), Mn2CoAl (inverse full-Heuslers) and (CoFe)MnAl (LiMgPdSn-type full-Heuslers). First-principles calculations are employed to discuss the origin of the gap which is fundamental for the understanding of their electronic and magnetic properties. For half-metallic Heusler compounds the total spin magnetic moment Mt scales linearly with the number of the valence electrons Zt in the unit cell. These simple rules connect directly the magnetic to the electronic properties opening the way to engineer new half-metallic alloys with ”à la carte” magnetic properties such as the quaternary half-metals, the so-called half-metallic antiferromagnets, magnetic semiconductors or even the more exotic spin-gapless semiconductors. Finally, special topics like exchange constants, defects, vacancies, surfaces and interfaces are being discussed.

HighlightApril2015

Read the full article here.