Job listings

Job announcements relevant to people interested in electronic structure calculations…

Due to the large number of posts recently, there is currently a delay of several weeks between posts being submitted and the corresponding emails being distributed to all users. Please bear with us while we try to improve this. In the meantime – and until this notice is removed – it would assist us considerably if you could submit only important and/or urgent posts and thus help to reduce the size of the mail queue. Under no circumstances should you resend posts multiple times when you find the emails are not distributed immediately.

In light of the Russian military offensive in Ukraine, we request that announcements relating to events, jobs and other activities associated with institutions supported by the Russian and Belarusian states are not posted to the Psi-k forum.

PhD position : Study of (U,Pu)O2-x mixed oxide p ... (No replies)

bouchetj
3 years ago
bouchetj 3 years ago

A fully funded PhD position on multi-scale modeling of mixed oxides is open at CEA CADARACHE (Aix en Provence), France. The PhD is expected to start autumn 2021 and lasts three years.

Nowadays, materials models and simulation tools are fully integrated in the experimental study of the behaviour of materials. The modelling has to be performed at the full size object (macroscopic scale) using models whose relevance is demonstrated by simulations performed at lower scales. In this multi-scale approach widely used at the CEA, atomic-scale simulations tend to occupy an increasingly large place due to their solid scientific bases and their broad field of application allowed by high performance computing. Until recently, these simulations were limited to the modelling of single crystal systems without defect. As real materials are most of the time polycrystalline and always contain defects and impurities, atomic scale simulations have to integrate these specificities.
During this thesis, we will try to apply this approach to mixed oxide (U,Pu)O2, currently used as fuels in generation 2 & 3 French nuclear reactors and best candidate for future generation IV fast neutron reactors (FNR). Currently, atomic scale simulation of this material is performed for a perfect crystal with a stoichiometry of two oxygen atoms to one metal atom (U or Pu). To relate to the real fuel material, which is by design hypostoichiometric for FNR, it is necessary to study systems including vacancies. Likewise, to move towards a better knowledge of the irradiated material, we now wish to include irradiation damages (point defects, dislocations, fission products, etc.) directly in our calculations at the atomic scale.
The student will use tools widely applied in material science (molecular dynamics, Monte Carlo, kinetic models, ...). He(She) will work in a scientific environment with extensive expertise on multiscale modelling of materials, and will have the opportunity to publish and to participate to international conferences in the field of materials, to exchange with foreign researchers and / or to share our experience with other areas of activity. In order to compare modelling to the most recent experimental results, this work will be performed in the frame of a close collaboration with the CEA experimenters in charge of fuel characterization.

The position is funded by a grant from CEA (net grant: ~1900 €/month).

The candidates must have a Master degree in quantum or solid-state physics and have strong computational skills. They shall send a CV, a letter of motivation, a transcript of academic results, and two contacts for references to:

Emeric BOURASSEAU ([email protected])
CEA
DES/IRESNE/DEC/SESC/LM2C
Institut de recherche sur les systèmes nucléaires pour la production d’énergie bas carbone (IRESNE)

and/or

Johann BOUCHET ([email protected])
CEA
DES/IRESNE/DEC/SESC/LM2C
Institut de recherche sur les systèmes nucléaires pour la production d’énergie bas carbone (IRESNE)




Back to Job listings...

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Ab initio (from electronic structure) calculation of complex processes in materials