Job listings

Job announcements relevant to people interested in electronic structure calculations…

Due to the large number of posts recently, there is currently a delay of several weeks between posts being submitted and the corresponding emails being distributed to all users. Please bear with us while we try to improve this. In the meantime – and until this notice is removed – it would assist us considerably if you could submit only important and/or urgent posts and thus help to reduce the size of the mail queue. Under no circumstances should you resend posts multiple times when you find the emails are not distributed immediately.

In light of the Russian military offensive in Ukraine, we request that announcements relating to events, jobs and other activities associated with institutions supported by the Russian and Belarusian states are not posted to the Psi-k forum.

PhD position at Chalmers, Sweden, polaron modell ... (No replies)

julia.wiktor
4 months ago
julia.wiktor 4 months ago

We are looking for a PhD student to work on electronic structure modeling of polarons in materials for solar devices. The undeniable heart of a solar device is a specifically selected and engineered semiconductor. It serves as a photoabsorber, and converts solar photons to free electrons. Whenever we find a new material for this purpose, which improves on stability, sustainability, or efficiency, it often heralds a technological shift. In the field of solar cells the last such transition was brought on by halide perovskites, which are heavily researched for a number of applications. In the field of photoelectrochemical solar-to-fuel conversion, for instance through water splitting, complex metal oxides are the most promising. But to harness the full potential of emerging materials, we need to comprehend how they function, exactly.

Among the many quantum mechanical processes that occur between capturing solar photons and electricity in the grid, charge-lattice interactions emerge as possibly the most enigmatic, yet exceptionally influential. In polarizable solids, excess charges brought upon by photon absorption can localize in potential wells, self-generated by displacing the surrounding ions, creating quasi-particles referred to as polarons. The present project will focus on comprehensive modeling of the effect of polarons in materials for solar application. Advanced electronic structure methods like hybrid functionals and ab-initio molecular dynamics simulations will be used.

For more information about the positions, benefits, and the application procedure, visit:

https://www.chalmers.se/en/about-chalmers/work-with-us/vacancies/?rmpage=job&rmjob=12480&rmlang=UK

Application deadline: 2024-03-31

Additional inquiries can be send to Assoc. Prof. Julia Wiktor (julia.wiktor@chalmers.se)




Back to Job listings...

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Ab initio (from electronic structure) calculation of complex processes in materials