Job listings

Job announcements relevant to people interested in electronic structure calculations…

The Psi-k forum mailing lists are now closed permanently. Please read this announcement about the new Psi-k mailing list.

In light of the Russian military offensive in Ukraine, we request that announcements relating to events, jobs and other activities associated with institutions supported by the Russian and Belarusian states are not posted to the Psi-k forum.

Multiple ERC-funded Ph.D. positions in functiona ... (No replies)

smrogge
9 months ago
smrogge 9 months ago

The Rogge group, embedded within the multidisciplinary Center for Molecular Modeling (molmod.ugent.be) at Ghent University, Belgium, is looking for highly motivated Ph.D. students to perform state-of-the-art computational research in functional nanostructured materials design. These positions fit within a recent Starting Grant (StG) STRAINSWITCH awarded to prof Sven M. J. Rogge by the European Research Council (ERC). This grant aims to establish strain engineering as a new in silico approach to designing functional nanostructured materials such as metal-organic frameworks and metal halide perovskites (see, e.g., doi.org/10.1016/j.matt.2023.02.009). We especially welcome candidates with a strong track record who are – or may become – eligible to apply for a prestigious Ph.D. fellowship at our national funding agency. See molmod.ugent.be/strainswitch_vacancies for more information.

More info about STRAINSWITCH and the different research topics within this ERC StG project

It is often easy to observe the ability of polymorphic materials to undergo a phase transition through changes in colour, conductivity, photovoltaic efficiency, or other functional properties. In contrast, it is challenging to control under which external stimuli, such as stress, temperature, or adsorption, these materials switch. Yet, enabling such polymorphic materials design would be a game changer for pressing societal challenges, from access to drinking water to producing green energy. However, this requires a firm understanding of how changing a material’s structure impacts its polymorphism and macroscopic function.

STRAINSWITCH aims to transform polymorphic material design by establishing the strain engineering concept. The central characteristic of this in silico approach is strain: the extent to which a material deforms due to external or internal triggers. On the one hand, external stimuli generate strain, even before they activate a phase transition. On the other hand, spatial disorder in a structure, tuneable from the atom to the device scale, also induces strain which interferes with external strain fields. Our fundamental idea is that it is possible to systematically predict which disorder is needed to ensure polymorphism only occurs under well-defined external triggers by balancing these internal and external strain fields.

Our research will initially focus on two distinct areas. We are recruiting candidates in each area:

  1. Developing state-of-the-art interatomic potentials, including machine-learning potentials and coarse-grained force fields, to model long-range and interfacial disorder;
  2. Developing an in silico nuclear magnetic resonance spectroscopy toolbox to model amorphous structures.

Don't hesitate to contact prof Rogge ([email protected]) for informal inquiries.

More info about the CMM                       

The CMM groups about 40 researchers from the Faculty of Science and the Faculty of Engineering and Architecture at Ghent University with molecular modelling interests. It is unique in the university as it clusters computational researchers with various backgrounds, from multiple departments and faculties. The CMM aims to model molecules, materials, and processes at the nanoscale by bringing together physicists, chemists, and (bio-)engineers while stimulating collaborations across disciplines. This multidisciplinary collaborative mission is the DNA of the CMM and is crucial in achieving scientific excellence in molecular modelling.

The CMM focuses on frontier research in six primary areas: computational material research on the nanoscale, model development, spectroscopy, many-particle physics, chemical kinetics in nanoporous materials, and bio-organic & organic chemistry. Our research is performed within a strong network of partners at Ghent University and at an (inter)national level. To pursue excellence, we strongly stimulate interactions between the various researchers in our team and our vast network of national and international partners. The prospective candidates will join a strongly connected research team and collaborate with national and international academic partners. The research of the CMM is internationally regarded to be at the forefront of its field.

Who are we looking for?

We are looking for highly motivated and creative Ph.D. candidates with: 

  • a Master’s degree or an international equivalent in physical chemistry, chemical physics, condensed matter physics, statistical physics, theoretical physics, or a related field obtained before your first working day at the CMM. Students obtaining their Master’s degree in the summer of 2024 are also eligible;
  • demonstrated experience with coding (Python, C, etc.) and quantum chemistry software (Gaussian, VASP, CP2K, etc.) or force-field-based simulations is an advantage;
  • a strong interest in molecular modelling;
  • excellent research and scientific writing skills;
  • perseverance and an independent, proactive working style;
  • the willingness to look beyond the borders of your discipline and a solid motivation to work in a multidisciplinary team;
  • high-level written and oral English communication skills with the ability to represent the research team effectively internally and externally, including presenting research outcomes at national and international conferences;
  • above all, the ambition to be at the forefront of in silico nanostructured materials design.

What can we offer you?  

A 4-years contract with an attractive salary. The selected candidates will moreover get the ability to strengthen their CVs within the context of a strongly motivated and multidisciplinary research team and have the ability to contribute to challenging topical research to solve critical societal questions. They will have the opportunity to attend various international conferences and to include research stays in prominent international research teams in this field. Ghent University boasts a strong community that offers a broad range of training and career possibilities for Ph.D. candidates. The training opportunities focus on research and transferable skills such as time management, presentation, and leadership skills.

How to apply?

We intend to fill these positions as soon as possible, preferably in September 2024 or before. Complete applications will be considered on receipt, with interviews occurring on a rolling basis until the positions are filled. Interested candidates are requested to prepare the following documents:

  1. the filled out application form (see molmod.ugent.be/strainswitch_vacancies);
  2. a one-page cover letter/motivation letter explaining your interest in these positions and how you fit into the profile;
  3. a curriculum vitae;
  4. copies of the relevant diplomas (Bachelor’s and Master's) and transcript (certified record of entire enrollment history at educational school), all merged together. Diplomas and transcripts not in Dutch or English should have an official translation in English.

The files should be saved as PDF and named as follows:

Application_STRAINSWITCH_PhD_[YourName]_[FileNumber1-4AsListedAbove]

In one mail, these documents should be sent to [email protected] with the subject “Application STRAINSWITCH YourName”.




Back to Job listings...

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Ab initio (from electronic structure) calculation of complex processes in materials