Job listings

Job announcements relevant to people interested in electronic structure calculations…

Due to the large number of posts recently, there is currently a delay of several weeks between posts being submitted and the corresponding emails being distributed to all users. Please bear with us while we try to improve this. In the meantime – and until this notice is removed – it would assist us considerably if you could submit only important and/or urgent posts and thus help to reduce the size of the mail queue. Under no circumstances should you resend posts multiple times when you find the emails are not distributed immediately.

In light of the Russian military offensive in Ukraine, we request that announcements relating to events, jobs and other activities associated with institutions supported by the Russian and Belarusian states are not posted to the Psi-k forum.

Ab initio modeling of Extreme VU - Matter intera ... (No replies)

setten
4 years ago
setten 4 years ago

Are you ready for a PhD project in theory closely related to our new atto second lab? Are you up to the challenge to unravel the chemistry needed for the next generation on nano tech?

For many decades, progress in the electronics industry has been, and is still, driven by the miniaturization of integrated circuits (ICs). Besides getting smaller the circuit designs are also getting more and more complex. Creating the patterns to realize these circuits on a chip is performed by using photolithography. In photolithography a chemical photoresist is irradiated by laser light in the desired pattern. After washing away the non-reacted residue, the layer below the areas that are not protected by the reacted photoresist can be etched to form the desired pattern. The wavelength of the laser light ultimately restricts how small the dimensions of the printed patterns can be made. To produce the patterns of the next generation electronics we will need to use 13nm laser light. This light has an energy of 90eV and does not directly interact with the valence electrons, which participate in chemical bonding, but first with much more strongly bound core electrons. Working at these high energies, therefor, makes for a much more complex chemistry. Developing a better understanding of this chemistry is essential to enable the next generation of electronic devices.

To investigate photoresist chemistry at EUV energies, imec has built a new lab, the AttoLab. At the AttoLab, the spectroscopic properties of the photoresists can be followed starting from only tens of attoseconds after the interaction with an EUV pulse. Changes in the various spectra indicate the occurrence of a reaction step or any other change in the material. However, determining what happened at the atomic level from the spectra alone is far from trivial. By comparing the measured spectra to results from quantum chemical calculations we can assign certain states of the material to specific spectra and so understand which reactions take place. Performing these calculations, making the comparisons, and modeling the full process will eventually develop the much-needed understanding of what happens in EUV photoresists and is the topic of this PhD. project.

In the cause of this project the PhD. student will be performing state of the art ab initio calculations. Performing this correctly and efficiently requires a proper understanding of the theoretical concepts on which the methods are based and on the way they are implemented in computer code to be executed on super computers. Which calculations to perform also requires an understanding of the relevant chemistry. During the project the understanding and the necessary skills will be trained at imec.

To be eligible, applicants must have a master degree in either physics or chemistry focusing on the theoretical aspect. Due to the complexity and the high amount of individual calculations, an efficient and robust automation and data processing infrastructure is essential. We continuously develop and improve such an infrastructure for all our calculations, written in python. Good knowledge of this language is hence required. A strong motivation, a good knowledge of solid-state physics or quantum chemistry and UNIX/LINUX are a plus. Excellent writing and oral communication skills are desired.

Supervisor: Daniel Escudero

Co-supervisor: Michiel van Setten
Daily advisor: Michiel van Setten

apply at:

https://www.imec-int.com/en/work-at-imec/job-opportunities/ab-initio-modeling-extreme-vu-matter-interactions




Back to Job listings...

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Ab initio (from electronic structure) calculation of complex processes in materials