Event listings

Announcements of conferences, workshops, schools…

The Psi-k forum mailing lists are now closed permanently. Please read this announcement about the new Psi-k mailing list.

ETSF online seminar by Roberta Farris: Friday No ... (No replies)

berger
3 years ago
berger 3 years ago
Dear colleagues,
 
The next ETSF seminar will be given by Roberta Farris from the ICN2 in Barcelona on Friday November 25 at 14:00 CET
The title of the talk is “Unraveling Heat Transport and Dissipation in Suspended MoSe2 from Bulk to Monolayer”. 
Below you will find an abstract of the seminar.
 
All ETSF members will receive an email with a zoom link a couple of days before the seminar.
If you are not an ETSF member and you would like to follow the seminar, please send an email to [email protected].
 
Best wishes,
Arjan Berger
 
 
Abstract:
 
Understanding heat flow in layered transition metal dichalcogenide (TMD) crystals is crucial for applications exploiting these materials. Despite significant efforts, several basic thermal transport properties of TMDs are currently not well understood, in particular how transport is affected by material thickness and the material's environment. This combined experimental–theoretical study establishes a unifying physical picture of the intrinsic lattice thermal conductivity of the representative TMD MoSe2. Thermal conductivity measurements using Raman thermometry on a large set of clean, crystalline, suspended crystals with systematically varied thickness are combined with ab initio simulations with phonons at finite temperature. The results show that phonon dispersions and lifetimes change strongly with thickness, yet the thinnest TMD films exhibit an in-plane thermal conductivity that is only marginally smaller than that of bulk crystals. This is the result of compensating phonon contributions, in particular heat-carrying modes around ≈0.1 THz in (sub)nanometer thin films, with a surprisingly long mean free path of several micrometers. This behavior arises directly from the layered nature of the material. Furthermore, out-of-plane heat dissipation to air molecules is remarkably efficient, in particular for the thinnest crystals, increasing the apparent thermal conductivity of monolayer MoSe2 by an order of magnitude. These results are crucial for the design of (flexible) TMD-based (opto-)electronic applications.



Back to Event listings...

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Ab initio (from electronic structure) calculation of complex processes in materials