Event listings

Announcements of conferences, workshops, schools…

The Psi-k forum mailing lists are now closed permanently. Please read this announcement about the new Psi-k mailing list.

ETSF online seminar by Pedro Miguel M. C. de Mel ... (No replies)

berger
4 years ago
berger 4 years ago
Dear colleagues,

 
The next ETSF seminar will be given by Pedro Miguel M. C. de Melo from the University of Utrecht (Netherlands), on Friday October 29 at 14:00 CEST
The title of the talk is “Optical signals of qubits in defected 2D TMDs”. Below you will find an abstract of the seminar.
 
I remind you that you can nominate your students and colleagues for future ETSF seminars, or propose your own abstract by sending me an email ([email protected]).

All ETSF members will receive an email with a zoom link a couple of days before the seminar.
If you are not an ETSF member and you would like to follow the seminar please send an email to [email protected].
Please include your name, position and affiliation in your message.
 
Best wishes,
The ETSF seminar team
 
 
Abstract:
The coupling between spin and valley degrees of freedom is one of the most intriguing properties of transition metal dichalcogenides (TMDs). This effect allows us to populate a single spin and valley combination using a circularly polarised laser. However, it has been shown that intrinsic properties alone cannot sustain long lived spin signals and that these must come from extrinsic properties [1]. Among the latter, defects offer the possibility to enrich the optical properties of TMDs, with vacancies and impurities are present in non-negligible concentrations even in the best high-quality samples[2,3]. In this work we link different types of defects to specific optical signatures by employing many-body perturbation theory with the Yambo package [2] to obtain the optical absorption spectra of defected transition metal dichalcogenides. 
We find that the largely unstudied metal vacancies show a larger set of polarized excitons than chalcogen vacancies, introducing localized excitons in the sub-optical-gap region [3] whose wave functions and spectra make them good candidates as quantum emitters. However, when dealing with substitutional defects, the spin texture and pristine exciton energies are preserved, despite the strong interaction with the defect. Nevertheless, as the full optical-gap region remains free, these defects can be used as sites for grafting and patterning in optical detectors. A redistribution of excitonic weight between the A and B excitons is visible in both cases and may allow the quantification of the defect concentration. This work establishes excitonic signatures to characterize defects in 2D materials and highlights vacancies as qubit candidates for quantum computing.
 
[1] M. Ersfeld, F. Volmer, P. M. M. C. de Melo, et al, Nano Lett. 19 (2019) 4083
[2] D. Edelberg et al, Nano Letters 19, 7 4371 (2019).
[3] N. Briggs et al, 2D Materials, 6, 2 022001 (2019)
[4] D. Sangalli, et al, Journal of Physics: Condensed Matter 31 (2019), 325902
[5] P. M. M. C. de Melo, Z. Zanolli, and M. J. Verstraete, Adv. Quantum Technol. 4 (2021) 2000118



Back to Event listings...

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Ab initio (from electronic structure) calculation of complex processes in materials