Event listings

Announcements of conferences, workshops, schools…

The Psi-k forum mailing lists are now closed permanently. Please read this announcement about the new Psi-k mailing list.

ETSF online seminar by Janine George: Friday Jun ... (No replies)

berger
4 years ago
berger 4 years ago
Dear colleagues,
 
The next ETSF online seminar will be given by Janine George from the Federal Institute for Materials Research and Testing, Berlin, Germany on Friday June 25 at 14:00 CET
The title of her talk is “Data-driven materials discovery and understanding".
Below you will find an abstract of the seminar.
 
All ETSF members will receive an email with a zoom link a couple of days before the seminar.
If you are not an ETSF member and you would like to follow the seminar please send an email to [email protected].
Please include your name, position and affiliation in your message.
 
Best wishes,
The ETSF seminar team.
 
 
Abstract: Developments in density functional theory (DFT) calculations, their automation and therefore easier access to materials data have enabled ab initio high-throughput searches for new materials for numerous applications. [1–3] These studies open up exciting opportunities to find new materials in a much faster way than based on experimental work alone. However, performing density functional theory calculations for several thousand materials can still be very time consuming. The use of, for example, faster chemical heuristics and machine-learned interatomic potentials would allow to consider a much larger number of candidate materials.[4–6] In addition to DFT based high-throughput searches, the seminar will discuss two possible ways to accelerate high-throughput searches.
Using data analysis on the structures and coordination environments of 5000 oxides, we were able to investigate a chemical heuristic – the famous Pauling rules – regarding its usefulness for the fast prediction of stable materials.[7–9]
We have also investigated how machine-learned interatomic potentials can be used to accelerate the prediction of (dynamically) stable materials.[10] The use of these potentials makes vibrational properties accessible in a much faster way than based on DFT. Our results based on a newly developed potential for silicon allotropes showed excellent agreement with DFT reference data (agreement of the frequencies within 0.1-0.2 THz).
In addition, we have successfully used high-throughput calculations in the search for new candidate materials for spintronic applications and ferroelectrics.[11,12]
 
References:
 
[1] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002.
[2] K. Mathew, J. H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. Tang, I. Chu, T. Smidt, B. Bocklund, M. Horton, J. Dagdelen, B. Wood, Z.-K. Liu, J. Neaton, S. P. Ong, K. Persson, A. Jain, Comput. Mater. Sci. 2017, 139, 140–152.
[3] G. Hautier, Comput. Mater. Sci. 2019, 163, 108–116.
[4] J. Schmidt, M. R. G. Marques, S. Botti, M. A. L. Marques, npj Comput Mater 2019, 5, 1–36.
[5] J. George, G. Hautier, Trends in Chemistry 2021, 3, 86–95.
[6] V. L. Deringer, M. A. Caro, G. Csányi, Adv. Mater. 2019, 31, 1902765.
[7] L. Pauling, J. Am. Chem. Soc. 1929, 51, 1010.
[8] J. George, D. Waroquiers, D. Di Stefano, G. Petretto, G. Rignanese, G. Hautier, Angew. Chem. Int. Ed. 2020, 59, 7569–7575.
[9] D. Waroquiers, J. George, M. Horton, S. Schenk, K. A. Persson, G.-M. Rignanese, X. Gonze, G. Hautier, Acta Cryst B 2020, 76, 683–695.
[10] J. George, G. Hautier, A. P. Bartók, G. Csányi, V. L. Deringer, J. Chem. Phys. 2020, 153, 044104.
[11] W. Chen, J. George, J. B. Varley, G.-M. Rignanese, G. Hautier, Npj Comput. Mater. 2019, 5, 72.
[12] M. Markov, L. Alaerts, H. P. C. Miranda, G. Petretto, W. Chen, J. George, E. Bousquet, P. Ghosez, G.-M. Rignanese, G. Hautier, arXiv:2011.09827 [cond-mat, physics:physics] 2020.



Back to Event listings...

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Ab initio (from electronic structure) calculation of complex processes in materials