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The phase field model (PFM) is a powerful and
versatile computational tool for the simulation of [ High-fidelity phase-field modeling ]
microstructure evolution in complex materials. To- of microstructure evolution
day, the scope of applications of the PFM ranges
from solidification and structural transformations
at mesoscale [1] (standard PFM) to grain bound-
ary segregation [2] and displacive transformations
[3]at atomic scale (phase field crystal -PFC- [4] and —
. . Recurrent neural network Low-dimensional
quasi-particules -QA- [5] approaches). However, be- [ prediction ]
cause the system is therein described by a set of
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and time, phase field models turn to be computa- s P“",L - el
tionally expensive and cumbersome to implement. "ch‘\;\»;U'U’TULP‘)m

This significantly curtails the capacity of the
PFM to perform quantitative predictions of
the microstructure on space and time scales
sufficient to connect to the macroscopic prop-
erties of the material.

Recently, a new strategy has been proposed, that allows to upscale PFM simulations based on a class
of history-dependent ML algorithms called Recurrent Neural Network (RNN). RNN demonstrated its
ability to learn evolution rules of various dynamics using low dimensionality representation of a large set
of microstructure generated by PFM simulations [6, 7]. The trained RNN was then used to extrapolate
the evolution of the system to substantially larger space domains, longer times, and new parametric

Figure 1: Accelerated PFM workflow [6].
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configurations, yet requiring drastically less computational resources (time and memory) than PFM
calculations (see figure 1). However, PFM informed RNN multi-scale models currently remain at the
state of proof of concept. In this context, the central motivation of this project is to develop
a new machine learning approach based on the RNN framework, in order to upscale
recent 3D high end PFM simulations of specific challenging applications where time and
space scale limitations preclude the quantitative connection of materials microstructure
with macroscopic properties. Depending on the progress of the project, the proposed methodology
will be applied to the PFC/QA modelling of structural transformations at atomic scale, and/or the
dendritic growth of faceted crystals at mesoscale in three dimensions. The project will be organized as
follows:

1. The first step of the workflow will be to generate a vast dataset of high fidelity PFM simulations,
destined to train and test the RNN procedure. For that purpose, high throughput PFM
simulations (standard PFM and/or QA/PFC) will be straightforwardly performed using our
pre-existing home-made parallel code on the supercomputer of Normandy (CRIANN).

2. The second step of the procedure will be to project the PFM simulation outputs in a so-called
latent space via a dimensionality-reduction method. One ideal candidate will be to compute
autocorrelation functions that capture the degree of spatial correlations between locations, and
then perform principal component analysis (PCA) on these functions [6]. Features calculation
may be performed via the Scikit-Learn python open access library.

3. The third step of the project will be the development of a learning algorithm based on RNN.
This will rely on the open-source neurone-network library Keras available on CRIANN.

Expected skills:

1. General skills in Machine Learning are required. A previous experience of neural networks
would be valuable.

2. Good programming skills in Python, or at least in a close language (Julia, C/C++, etc.) is
mandatory.

3. Background knowledge in the field of materials and/or condensed matter will be useful.

4. Background knowledge in phase field models (standard PFM, phase field crystal, etc.) will be
appreciated.
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