Next training Oct.24th-28th @Univ.Strasbourg/on-line

https://q4chem.strasbourg2022.eu/

Who should attend

•Anyone looking for an overview of quantum computing and applications

- •Computational chemists, theoretical physicists and STEM
- •Developers who want to learn to code quantum algorithms

Training content: modular and multi-audience

DAY 1	DAY 2	DAY 3	DAY 4	DAY 5
Quantum Computing Foundations	Overview of (Quantum) Chemistry	Use-Cases "Getting Ready" Workshop	Short Term Algorithm Tests	Use Case examples Simulations
- Introduction to Quantum Computing	- Quantum Chemistry on Quantum Computers	- Use Case Brainstorming	- Programming Tutorials Using Qulacs and Other Libraries	- Advanced VQE – Excited State Calculations
- Working in an Ecosystem Model (QPARC)	- Limitations (DFT, Hartree- Fock, Many-Body Schrodinger Equation)	- Analyzing and Prioritizing Use Cases	- Guidance and Mock Development; Testing Qamuy Examples	- Advanced VQE – Molecular Properties
- State of the Art: Technology Trends, Use Case Examples	- Quantum Skills Review: Algebra and Chemistry	- Maximizing Quantum Opportunities	- VQE Review: Ansatz Design, Ground States	- Advanced VQE – Molecular Dynamics Using Qamuy
- Working in Quantum Computing	- Quantum information foundations: concepts & algorithms	- Approaching Use Case Development	- Long-Term Quantum Algorithms	- Advanced VQE – Periodic Systems Using Qamuy

End-to-end training

Training content: modular and multi-audience

DAY 1	DAY 2	DAY 3	DAY 4	DAY 5
Quantum Computing Foundations	Overview of (Quantum) Chemistry	Use-Cases "Getting Ready" Workshop	Short Term Algorithm Tests	Use Case examples Simulations
- Introduction to Quantum Computing	- Quantum Chemistry on Quantum Computers	- Use Case Brainstorming	- Programming Tutorials Using Qulacs and Other Libraries	- Advanced VQE – Excited State Calculations
- Working in an Ecosystem Model (QPARC)	- Limitations (DFT, Hartree- Fock, Many-Body Schrodinger Equation)	- Analyzing and Prioritizing Use Cases	- Guidance and Mock Development; Testing Qamuy Examples	- Advanced VQE – Molecular Properties
- State of the Art: Technology Trends, Use Case Examples	- Quantum Skills Review: Algebra and Chemistry	- Maximizing Quantum Opportunities	- VQE Review: Ansatz Design, Ground States	- Advanced VQE – Molecular Dynamics Using Qamuy
- Working in Quantum Computing	- Quantum information foundations: concepts & algorithms	- Approaching Use Case Development	- Long-Term Quantum Algorithms	- Advanced VQE – Periodic Systems Using Qamuy

Generalist module

Training content: modular and multi-audience

DAY 1	DAY 2	DAY 3	DAY 4	DAY 5
Quantum Computing Foundations	Overview of (Quantum) Chemistry	Use-Cases "Getting Ready" Workshop	Short Term Algorithm Tests	Use Case examples Simulations
- Introduction to Quantum Computing	- Quantum Chemistry on Quantum Computers	- Use Case Brainstorming	- Programming Tutorials Using Qulacs and Other Libraries	- Advanced VQE – Excited State Calculations
- Working in an Ecosystem Model (QPARC)	- Limitations (DFT, Hartree- Fock, Many-Body Schrodinger Equation)	- Analyzing and Prioritizing Use Cases	- Guidance and Mock Development; Testing Qamuy Examples	- Advanced VQE – Molecular Properties
- State of the Art: Technology Trends, Use Case Examples	- Quantum Skills Review: Algebra and Chemistry	- Maximizing Quantum Opportunities	- VQE Review: Ansatz Design, Ground States	- Advanced VQE – Molecular Dynamics Using Qamuy
- Working in Quantum Computing	- Quantum information foundations: concepts & algorithms	- Approaching Use Case Development	- Long-Term Quantum Algorithms	- Advanced VQE – Periodic Systems Using Qamuy

Developer module

