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Abstract

Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram,
in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a
Mott insulating phase as a function of the lattice spacing. This is in contrast with the com-
mon belief that Mott physics and phonon-driven s-wave superconductivity are incompatible,
raising a fundamental question on the mechanism of the high-Tc superconductivity. This
article reviews recent ab initio calculations, which have succeeded in reproducing compre-
hensively the experimental phase diagram with high accuracy and elucidated an unusual
cooperation between the electron-phonon coupling and the electron-electron interactions
leading to Mott localization to realize an unconventional s-wave superconductivity in the
alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular
interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction
and a small effectively negative exchange interaction. This is realized by a subtle energy
balance between the coupling with the Jahn-Teller phonons and Hund’s coupling within the
C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and
down-spin electrons on the molecules, which enables the s-wave pairing. The emergent su-
perconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly
benefits from the strong correlations because the correlations suppress the kinetic energy of
the electrons and help the formation of the electron pairs, in agreement with previous model
calculations. This confirms that the alkali-doped fullerides are a new type of unconventional
superconductors, where the unusual synergy between the phonons and Coulomb interactions
drives the high-Tc superconductivity.
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1 Introduction

The alkali-doped fullerides with the composition of A3C60 (A = K, Rb, Cs) show the highest
transition temperature (∼ 40 K) among the molecular superconductors [1–11]. The supercon-
ductivity was first discovered in K3C60 by Hebard et al. in 1991 [1]. Since then, much effort has
been exerted to understand the mechanism of the fascinating superconductivity [12–18]. Among
various works, in this review, we mainly focus on the recent theoretical understanding on the
C60 superconductors [19–21].

1.1 Crystal structure

Figure 1 shows the crystal structure of the A3C60 systems. K3C60 and Rb3C60 have the face-
centered-cubic (fcc) structure [22–24]. Cs3C60 can be synthesized into either an fcc or an A15
structure [7, 9, 10]. In the fcc structure, the buckyballs are located at the fcc positions and
the alkali atoms are intercalated in between the C60 molecules. In the A15 structure, the C60

molecules are located on the body-centered-cubic (bcc) lattice, while a unit cell contains two C60

molecules with different orientations. In both structures, the intercalated alkali atoms donate
electrons to the fullerene bands turning the semiconducting undoped C60 solid into a metal [25].

1.2 Phase diagram

Figure 2 shows the most refined experimental phase diagrams for the (a) fcc and (b) A15
structures [7–10,26]. In both cases, the horizontal axis is labelled by the volume VC3−

60
occupied

per C3−
60 anion in the actual solid structure. In the fcc case, VC3−

60
is controlled by physical and/or

chemical pressure, where the latter is induced by changing the alkali species, with larger ions
leading to larger lattice spacing between molecules. The phase diagram for the A15 structure
was obtained by applying the physical pressure to Cs3C60 solid [8].

Both phase diagrams show a superconducting phase with a high critical temperature, whose
maximum reaches ∼ 35 K and ∼ 38 K for the fcc and A15 systems, respectively. Interestingly,
the fcc and A15 phase diagrams share a similar shape of the Tc dome as a function of VC3−

60
despite

the lack of magnetic ordering in the Mott state for the frustrated fcc lattice. The symmetry of
the superconducting order parameter was found to be of s-wave by various different experimental
techniques [27–37] as in the whole family of alkali-doped fullerides. Also the suppression of the
spin fluctuation in the superconducting state suggests a singlet pairing [38].

What makes the system more remarkable is the existence of the Mott insulating phase next
to the s-wave superconducting phase [7–10]. This adjacency of the superconductivity and the
Mott insulator is reminiscent of the cuprates [41], where the symmetry of the order parameter
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(a) (b)

Figure 1: Crystal structures of (a) fcc A3C60 (A=K, Rb, Cs) and (b) A15 Cs3C60, drawn by
VESTA [39]. The orientational disorder of the C60 molecules (merohedral disorder) [22, 23, 40],
which exists in fcc A3C60, is neglected in (a).
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Figure 2: Experimental phase diagram for (a) fcc A3C60 (A=K, Rb, Cs) and (b) A15 Cs3C60.
The data points are taken from Refs. [11] and [8] for (a) and (b), respectively. SC and AFI
denote the superconducting phase and the anti-ferromagnetic insulator, respectively. Tc (open
diamonds) and TN (open triangles) are the superconducting transition temperature and the Néel
temperature, respectively. The open circles indicate the crossover between the metal and the
insulator. In the panel (a), the data points for K3C60, Rb3C60, Cs3C60, and the fullerides with
mixed alkali composition such as Rb2CsC60 are included. In the phase diagram of fcc A3C60

[panel(a)], while not shown explicitly, there is a region close to the Mott insulating phase, which
is dubbed “Jahn-Teller metal” in Ref. [11] (see the main text for detail). The volume per C3−

60

anion is given by VC3−
60

= a3/4 for the fcc systems and VC3−
60

= a3/2 for the A15 systems, where
a is the lattice constant.
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is established to be d-wave [42,43]. In fullerides, this proximity is even more surprising because
the s-wave superconductivity is believed to be fragile to the strong correlations, as opposed to
the d-wave symmetry.

In the Mott phase, at low temperature, the antiferromagnetism has been observed in both fcc
and A15 systems [8, 10, 26]. However, the Néel temperatures TN are very different between the
two systems. In the A15 systems, which are less frustrated than the fcc systems, the transition
into the antiferromagnetic long range order with the wave vector q = (1

2 , 1
2 , 1

2) occurs at around
46 K [44]. In the fcc case, the magnetic instability is drastically suppressed to TN ∼ 2 K.
Even below TN, the magnetism is not purely long-range ordered: A specific heat measurement
suggests the coexistence of the glass-like disordered magnetism and the antiferromagnetic order
below TN [45]. The suppression of magnetism and the complicated magnetic structure in the
fcc systems are ascribed to the geometrical frustration and to disorder in the superexchange
interactions driving the coupling between localized spins [45].

1.3 Evidences of phonons

In 1990’s (well before the discovery of the Mott phase and magnetism in Cs3C60 in 2008), the
pairing mechanism had been often discussed based on the conventional phonon mechanism [14,
46–49]. Indeed, within the Migdal-Eliashberg theory [50], the theoretically and experimentally
estimated electron-phonon coupling constant λ ∼ 0.5-1 [46–49, 51–67] and the high phonon
frequency ∼ 0.1 eV [46–49,51–59,61–63,66–72] led to the prediction of a transition temperature
comparable to the experimental value under the assumption that the Coulomb repulsion is
reasonably weak. The phonon mechanism seemed consistent with the experimental observation
of the Hebel-Slichter peak [31, 32] and the isotope effect with the exponent ∼ 0.2-0.3 [73, 74],
too.1 The positive correlation between Tc and the lattice constant [5,78–81] also supported this
scenario: When the lattice is expanded, the bandwidth decreases and hence the density of states
(DOS) at the Fermi level increases. According to the Bardeen-Cooper-Schrieffer (BCS) theory,
it leads to the increase of Tc [4, 5].

1.4 Importance of electron correlations

On the other hand, the importance of the electron correlations has been argued since the early
stage of the study. Auger spectroscopy measurements for the undoped C60 solid, lead to an
estimate of ∼ 1.6 eV for the effective intramolecular Coulomb interaction [82], which is bigger
than the typical bandwidth of the low-energy bands ∼ 0.5 eV. Furthermore, it has been argued
that the retardation effect might be inefficient [17, 83–85]; because the electronic bands of the
fullerides are distributed sparsely in energy, the density of states does not spread continuously
any more [86–88] (Sec. 3). Based on this fact, the typical electronic energy scale has been argued
to be given by the bandwidth of the low-energy t1u bands (∼ 0.5 eV), which are energetically
isolated from the other bands. This leads to a large Coulomb pseudopotential, which chal-
lenges the conventional pairing mechanism [85]. There are also suggestions of purely electronic

1We quote the exponent measured for 99 % 13C-rich samples. The exponents obtained for the samples with

incomplete substitution range from ∼ 0.3 to ∼ 2.1 [30,75–77].
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mechanism based on the resonating valence bond scenario [89–91]. Several works have taken
into account both the electron correlations and the electron-phonon interactions to explain the
superconductivity [18,92–96].

The discovery of the Mott insulating phase in Cs3C60 strikingly confirmed the strength and the
relevance of the electron-electron correlations [7–10,26]. Through the metal-insulator transition,
there is no structural transition [7,8,10]. Therefore, the alkali-doped fullerides provide a unique
playground to study the s-wave superconductivity under the strong correlation.

This discovery has triggered both the experimental and theoretical studies [11,19–21,26,88,97–
110]. As a result, various unusual properties in both metallic and insulating phases have been
revealed. In the Mott phase, the size of the local spin per C60 molecule was found to be S = 1/2
(low-spin state) [8, 10], not S = 3/2 (high-spin state) expected from Hund’s rule. The analysis
of the infrared (IR) spectrum revealed the presence of the dynamical Jahn-Teller distortion of
the C60 molecules [97, 98, 110]. The nuclear magnetic resonance (NMR), which probes a slower
dynamics than the IR spectroscopy, observed a gradual freezing of the Jahn-Teller dynamics as
the temperature decreases [99].

The metallic and superconducting states also show interesting behaviors near the metal-insulator
transition. In the superconducting state, NMR measurements observed a deviation of the ratio
between the gap(∆) and Tc (2∆/kBTc) from the BCS value of 3.53 to a larger value, while
2∆/kBTc ∼ 3.53 holds in the region of small VC3−

60
[101,111]. The spin susceptibility in the normal

phase also shows a larger value than that expected from the smooth extrapolation from the values
in the small VC3−

60
region [26]. Moreover, an anomalous metallic region has been identified close

to the metal-insulator boundary, which has been dubbed “Jahn-Teller metal”. In this state, the
IR spectrum is similar to that of the Mott insulating phase [11]. This result can be interpreted
in terms of a slowing down of the dynamical distortion of the C60 molecules when VC3−

60
increases.

When the Mott localization is approached, the distortion timescale becomes eventually so long
that the IR experiment probes the system in a distorted state on its characteristic timescale.

1.5 Aim and outline of this article

The clear fingerprints of the electron-phonon coupling in the superconducting state and the
very existence of the Mott insulating state suggest the importance of considering both electron
correlations and phonons for the understanding of the surprising phase diagram. In particular,
it is a great challenge to understand why the s-wave superconductivity is robust against (or even
benefits from) the strong correlations.

Another challenge is an ab initio calculation of Tc of strongly-correlated unconventional su-
perconductivity. A nonempirical calculation of Tc is necessary for predicting/designing new
high-temperature superconductors. Even for the conventional superconductors, the Tc calcu-
lation usually relies on empirical parameters such as the Coulomb pseudopotential [112]. The
recent development of the density-functional theory for superconductors (SCDFT) has enabled
a Tc calculation without empirical parameters [113–116]. By assuming the phonon-mechanism,
the SCDFT has succeeded in reproducing Tc of conventional superconductors in the accuracy
of several tens percent. However, Tc of C60 superconductors is largely underestimated by the
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phonon-mechanism-based SCDFT [59]. This is another indirect indication that the alkali-doped
fullerides are unconventional superconductors. While there have been several attempts to gen-
eralize the SCDFT to include e.g. the plasmon [117–119] and the spin-fluctuation [120, 121] as
a pairing glue, there exists no established method to calculate Tc of unconventional supercon-
ductors in which strong-correlation effects are important.

In this review, among the various studies on the C60 superconductors, we mainly focus on the
most recent ab initio studies [19–21], which aimed at (i) the unified description of the phase
diagram including the s-wave superconductivity and the Mott phase and (ii) the nonempir-
ical calculation of Tc. The nonempirical calculations have elucidated that, in the fullerides,
the phonon-mediated negative exchange interaction surpasses the positive Hund’s coupling and
thereby realizes an inverted Hund’s rule, as predicted by Capone et al. [18,93–95]. On the other
hand, the intramolecular Hubbard-type interaction is strongly repulsive because the strong local
Coulomb interaction far exceeds the attraction mediated by phonons. The value of this repulsion
is larger than that of the t1u bandwidth, which brings about the Mott physics in the system.

By analyzing a realistic low-energy Hamiltonian with the above-mentioned unusual interactions,
the theoretical phase diagram was derived without empirical parameters. Remarkably, it shows
a good agreement with the experimental phase diagram at a quantitative level. In particular, the
calculated Tc’s agree with the experimental data within a difference of 10 K. It indicates that the
scheme employed in Refs. [19–21] properly captures the essence of the fulleride superconductivity.
Based on the success of our approach, we argue that the unusual intramolecular interaction is
the key to explain the phase diagram in a unified manner: It allows electrons to form a pair
on the molecules in contrast to the näıve expectation that the electron correlations drastically
suppress the pair formation [96]. Surprisingly, the strong correlations are found to even help the
formation of the pair. We show that this leads to a surprising cooperation between the phonons
and Coulomb interactions to realize an exotic high-Tc pairing next to the Mott phase.

The outline of this review is as follows. Throughout the review, we mainly focus on the fcc
systems. In Sec. 2, we describe the methods, which were employed in Refs. [19–21]. The methods
construct, from first principles, a realistic three-band Hamiltonian with including the phonon
degrees of freedom from only the information of the crystal structure. We solve it accurately by
means of a many-body method. Through the derivation of the realistic Hamiltonian, we discuss
the electronic structure of the fullerides (Sec. 3) and the detail of the above-mentioned unusual
intramolecular interaction (Sec 4). The analysis of the derived model follows in Secs. 5, 6, and
7. First, we show the theoretical phase diagram in Sec. 5. Then, we discuss the properties of
the metal-insulator transition in Sec. 6 and finally the superconducting mechanism in Sec. 7.
We give a summary of the review and future perspectives in Sec. 8.

2 Methods: DFT+DMFT with including phonon degrees of

freedom

In the case of the alkali-doped fullerides, an accurate description of the intramolecular correla-
tions induced by the Coulomb interactions and the intramolecular vibrations is important for
clarifying the underlying physics. The main playground of the intramolecular correlations and
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the intriguing low-energy phenomena is the partially-filled bands near the Fermi level. In the
fullerides, the LUMO (lowest unoccupied molecular orbital) bands, the t1u bands, are partially
filled (see Sec. 3) and they are energetically isolated from the other bands [86–88]. Therefore,
the point is how accurately we describe the intramolecular dynamics involving the t1u electrons
and the phonons.

For this purpose, one of the most appropriate schemes would be a combination of the density-
functional theory (DFT) and the dynamical mean-field theory (DMFT), so called DFT+DMFT [122].
The DMFT can accurately take into account the local dynamical correlation effect induced by
the phonons as well as the Coulomb interaction, while it neglects the spatial correlation ef-
fect [122–124]. It becomes a better approximation as the spatial dimension increases. In fcc
A3C60 having a frustrated lattice with the coordination number of 12, the DMFT is expected
to give reliable results.

In order to make a quantitative argument, we need a realistic low-energy Hamiltoinan for the
fullerides to be used in the DMFT calculation. This can be done by the ab initio downfolding
scheme [20,122,125]: It starts from the DFT band structure and constructs an effective Hamilto-
nian consisting of the low-energy electrons and the phonons, with including the renormalization
effect of the high-energy electrons. By solving thus-constructed low-energy Hamiltonian with
the DMFT, the strong-correlation effect within the partially-filled low-energy bands such as the
Mott physics, which cannot be captured by the conventional DFT, is properly taken into ac-
count in an ab initio way [122, 125]. Here, we use the word “ab initio” for calculations without
employing empirical parameters.

In fact, in Refs. [19–21], we further extended the above DFT+DMFT scheme to perform ab initio
studies on the fullerides. The outline of this generalized scheme, which explicitly considers the
phonon degrees of freedom, is as follows.

1. Band structure calculation (Sec. 3): Perform the DFT calculation for the alkali-doped
fullerides and obtain the band structure in a global energy scale.

2. Ab initio downfolding (Secs. 3 and 4): Construct a realistic Hamiltonian for the ful-
lerides. The Hamiltonian is defined for the low-energy t1u electrons and the phonons,
and is comprised of the electron hopping Ĥel, Coulomb interaction Ĥel-el, electron-phonon
coupling Ĥel-ph, and phonon one-body Ĥph terms:

Ĥ = Ĥel + Ĥel-el + Ĥel-ph + Ĥph. (1)

All the parameters in the Hamiltonian are derived by the ab initio downfolding scheme.

3. Analysis of the Hamiltonian (Secs. 5, 6, and 7): Solve the realistic low-energy Hamilto-
nian in Eq. (1) by the extended DMFT (E-DMFT) [126–131] to reveal the exotic physics
beneath the phase diagram. The E-DMFT takes into account the dynamical screening
effect of the non-local (intermolecular in the case of the fullerides) Coulomb interactions,
on top of the correlations incorporated by the DMFT.2

With this three-step scheme, the purely theoretical phase diagram for the fcc system was ob-
tained by using only the information of the crystal structure [19]. We found that the theoretical

2We note that the self-energy is still momentum independent within the E-DMFT.
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Figure 3: (a) Schematic picture for molecular-orbital levels of the C60 molecule. (b) DFT
band dispersion (red) for Cs3C60 with VC3−

60
= 762 Å3. The blue dotted curves show the band

dispersion calculated from the one-body part of the low-energy Hamiltonian (see the main text
for detail). Adapted with permission from Nomura et al., Ref. [21]. Copyright 2012 by American
Physical Society.

phase diagram agrees well with the experimental phase diagram in Fig. 2(a) even quantitatively
(Sec. 5). The quantitative agreement allows us to make a conclusive remark on the mechanism
of the high-Tc s-wave superconductivity.

In the following, we clarify the basic electronic and phonon properties of the fullerides by looking
at the realistic parameters in the low-energy Hamiltonian in Secs. 3 and 4 [the above-described
steps (i) and (ii)]. Then, we move on to the analysis of the realistic Hamiltonian by the E-DMFT
in Secs. 5, 6, and 7 [the step (iii)].

3 Electronic structure of the fullerides

Here, we discuss the electronic structure of the fcc A3C60 systems. Since A3C60 is a molecular
solid, the molecular limit is a good starting point for understanding its electronic structure [86,
132] and we expect the bands to arise from the overlap of molecular orbitals. In Fig. 3(a), we
show a schematic picture of the molecular-orbital levels. Because of the high symmetry of the
C60 molecule, molecular orbitals often have degeneracy. For example, the HOMO orbitals are
fivefold degenerate, and the LUMO and LUMO+1 orbitals are threefold degenerate. According
to their symmetries, these orbitals are called hu, t1u, and t1g orbitals, respectively.

Red curves in Fig. 3(b) show the calculated band structure for fcc Cs3C60 with VC3−
60

= 762
Å3, where we have neglected the disorder in the orientations of the C60 molecules (throughout
the paper, we neglect any disorder3). In solids, the molecular-orbital levels acquire a finite but
narrow bandwidth due to the small hoppings between the molecular orbitals [132]. Because

3There are several works which study the effect of the merohedral disorder [22,23,40] on the electronic struc-

ture [133–135].
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Figure 4: DFT density of states for the t1u bands in five different fcc A3C60 systems. Adapted
with permission from Nomura et al., Ref. [21]. Copyright 2012 by American Physical Society.

of the narrow bandwidth, each set of bands originating from degenerate molecular orbitals is
usually separated from the other molecular bands in energy. The intercalated alkali atoms
donate electrons into the molecules, hence the LUMO t1u orbitals become half-filled (3 electrons
in 3 orbitals). The doping has little effect on the dispersion of the LUMO bands (i.e., nearly
rigid band shift). The t1u bandwidth can be controlled by applying either chemical or physical
pressures and hence changing the lattice constant. Figure 4 shows the DFT density of states
of the t1u bands, which clearly shows the expected narrowing of the t1u bandwidth as VC3−

60

increases.

In Ref. [21], to define the basis set for the low-energy Hamiltonian in Eq. (1), the maximally
localized Wannier orbitals [136–138] were constructed (Fig. 5). As expected, the maximally
localized Wannier orbitals are very similar to the molecular orbitals, which are centered on
one molecule and are well localized on it. We obtain three t1u Wannier orbitals (which can
be visualized as px, py, and pz-like orbitals) per molecule. By calculating the transfer integral
between the molecular orbitals [21], we obtain a tight-binding Hamiltonian, which is used as the
electronic one-body part Ĥel in Eq (1). The form of Ĥel is

Ĥel =
∑
i,j,σ

tij ĉ
†
iσ ĉjσ, (2)

where tij is the hopping parameter with i, j being the composite index for the site and orbital.
Here, each site corresponds to each molecule. ĉ†iσ (ĉiσ) is a creation (annihilation) operator for
the electron characterized by the composite index i and the spin σ. Since the three orbitals
are degenerate, the double counting correction needed in the DFT+DMFT scheme becomes
a constant shift for all the orbitals, which can be absorbed in the chemical potential. The
blue-dotted curves in Fig. 3(b) are the dispersion of the t1u bands calculated from Ĥel, which
reproduces the DFT dispersion. It means that the one-body part Ĥel well describes the realistic
hopping structure in the fullerides.
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Figure 5: One of three maximally localized Wannier orbitals (px-like orbital) viewed along z

direction. The positive (negative) isosurfaces of the orbital are depicted by red (blue). For
visibility, we show the Wannier function of A15 Cs3C60. We note that the shape of the Wannier
functions is similar to that of the fcc system. Adapted with permission from Nomura et al.,
Ref. [21]. Copyright 2012 by American Physical Society.

4 Unusual intramolecular interactions

Next, we turn to the effective interaction between the electrons, which is to be used in the
E-DMFT calculation. This is a very important quantity because the intramolecular interaction
dominates the local dynamics of the electrons. The effective interaction is given by the sum of the
repulsive Coulomb and attractive phonon-mediated interactions (see Fig. 6 for a schematic pic-
ture). The former and the latter are calculated by the constrained random phase approximation
(cRPA) [139], and the constrained density-functional perturbation theory (cDFPT) [20,140], re-
spectively. Here, it will be worth emphasizing that the fullerides are multi-orbital systems, which
accommodate various types of interactions including density-density type interactions such as
the Hubbard U , and the non-density type interactions such as the pair-hopping and spin-flip
interactions (Fig. 7).

In the following, we will show that the fullerides are strongly correlated materials because the
intramolecular Hubbard interaction (∼ 1 eV) is larger than the low-energy t1u bandwidth (∼ 0.5
eV) [21]. On the other hand, Hund’s coupling is found to be very small (∼ 34 meV) [21]. This
small positive exchange interaction is overcome by a negative contribution from the coupling with
the Jahn-Teller phonons, which leads to an effectively negative total exchange interaction [19,20],
as anticipated on the basis of more phenomenological estimates [18,94]. In this section, we start
from the Coulomb contribution to the effective interaction in Sec. 4.1. Then, in Sec. 4.2, we
discuss the phonon contribution. Finally, we investigate the total effective interaction in Sec. 4.3.
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Figure 6: Schematic picture which shows that the effective interaction is given by the sum of the
Coulomb interaction v and the retarded phonon-mediated interaction g2D with the electron-
phonon coupling g and the phonon propagator D. The solid lines denote the electron propaga-
tors.
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Figure 7: Schematic picture for various types of the intramolecular interactions. Here, the
phonon-mediated interactions are depicted as if they were instantaneous interactions. In reality,
they are retarded interactions.
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4.1 Coulomb interactions

4.1.1 Formulation

Using the Wannier basis, we define the Coulomb interaction part

Ĥel-el =
∑
i,j,k,l

∑
σ,σ′

Vij,kl ĉ
†
iσ ĉ†lσ′ ĉkσ′ ĉjσ (3)

in the low-energy Hamiltonian in Eq. (1). The Coulomb interaction parameters Vij,kl are calcu-
lated by the cRPA [139]. The cRPA provides partially screened Coulomb interactions which are
screened only by the polarization processes involving the high-energy bands (the bands other
than the t1u bands). The partially screened interactions can be considered as effective Coulomb
interactions within the t1u manifold [139]. Because the screening processes within the low-energy
subspace are considered by the E-DMFT, they are excluded in the cRPA calculation to avoid
the double counting of them.

4.1.2 Results

Table 1 lists the cRPA interaction parameters. The intramolecular Hubbard U is about 1 eV,
which is larger than the t1u bandwidth W . Since the ratio U/W exceeds 1, the alkali-doped
fullerides can be regarded as strongly-correlated materials. The previous estimates of U in the
literature give U ∼ 1-1.5 eV [82, 141–143]. Compared to them, the cRPA values are slightly
small. Despite that the size of the maximally localized Wannier orbitals depends on materials
only weakly [21], the material dependence in the Hubbard U is nonnegligible. This is because
the screening strength by the high-energy bands depends on materials [21]. While U is larger
than W , Hund’s coupling J is small ∼ 34 meV. This is explicable by the fact that the Wannier
orbitals spread over the molecules, which makes the exchange Coulomb matrix element small.

The cRPA Coulomb interactions have a long-range tail proportional to 1/r with respect to the
distance r between the centers of the Wannier orbitals [21], whose nearest-neighbor part V is

Table 1: The cRPA interaction parameters taken from Ref. [21]. The values in the parentheses
after the material denote VC3−

60
in Å3. U , U ′, and J are intramolecular interactions (see Fig. 7 for

their definition), for which the relation U ′ ∼ U − 2J holds well. There is no orbital dependence
in U , U ′, and J . V is the nearest neighbor intermolecular interaction. For comparison, the DFT
bandwidth W of the t1u bands is also listed.

material U U ′ J V W

(fcc structure) [eV] [eV] [meV] [eV] [eV]

K3C60 (722) 0.82 0.76 31 0.24-0.25 0.50

Rb3C60 (750) 0.92 0.85 34 0.26-0.27 0.45

Cs3C60 (762) 0.94 0.87 35 0.27-0.28 0.43

Cs3C60 (784) 1.02 0.94 35 0.28-0.29 0.38

Cs3C60 (804) 1.07 1.00 36 0.30 0.34
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∼ 0.25-0.3 eV. The offsite Coulomb interactions effectively reduce the size of the onsite Coulomb
interaction [144]. This effect is taken into account by the E-DMFT. While the offsite Coulomb
interactions quantitatively shift the phase boundaries between e.g., the metal and the insulator,
they do not play an essential role in driving the superconductivity. We find that it is the form
of onsite (intramolecular) interactions that is important. In Appendix A, we discuss this point
in more detail.

4.2 Phonon-mediated interactions

4.2.1 Formulation

The electron-phonon coupling Ĥel-ph and phonon one-body Ĥph terms in the low-energy Hamil-
tonian in Eq. (1) are written as

Ĥel-ph =
∑
i,j,σ

∑
ν

gν
ij

(
ĉ†iσ ĉjσ − 〈ĉ†iσ ĉjσ〉

)
x̂ν (4)

with the displacement operator x̂ν = b̂†ν + b̂ν , and

Ĥph =
∑

ν

ων b̂
†
ν b̂ν , (5)

respectively. Here, b̂†ν (b̂ν) is a creation (annihilation) operator of the phonon and ν is a com-
posite index for the momentum and the branch. In solids, the electron-phonon coupling gν

ij

and the phonon frequency ων are subject to renormalization by the electrons: The electron-
phonon coupling is screened by the electronic polarization; the phonons are dressed by elec-
trons, which results in phonon softening. As in the case of the Coulomb interaction parameters
in Eq. (3), in order to avoid the double counting of the renormalization, gν

ij and ων in the ef-
fective low-energy Hamiltonian should not include the renormalization effect originating from
the low-energy electrons [20, 140, 145]. The recently developed cDFPT [20, 140] calculates such
partially-renormalized phonon quantities by taking into account only the renormalization pro-
cesses involving the high-energy electrons. It is an extension of the DFPT [146–149], which is
a well-established ab initio scheme to calculate the phonon properties in solids. The expecta-
tion value 〈ĉ†iσ ĉjσ〉 in Eq. (4) is calculated at the DFT level, where the subtraction of 〈ĉ†iσ ĉjσ〉
corresponds to the double-counting correction with respect to the equilibrium positions of the
ions [20].

In the action corresponding to the low-energy Hamiltonian in Eq. (1), the phonon fields are at
most quadratic. Integrating out the phonon degrees of freedom, we obtain an effective action
involving only the electronic degrees of freedom. There, the effective interaction between the
electrons is given by the sum of the Coulomb interactions and the retarded phonon-mediated
interactions (Fig. 6). This retarded phonon-mediated interactions V ph

ij,kl(iΩn) at the Matsubara
frequencies (Ωn = 2πnT with the temperature T ) are given by [20,140]

V ph
ij,kl(iΩn) = −

∑
ν

2gν
ijg

ν∗
kl

Ω2
n + ω2

ν

. (6)

An important point here is that the phonon-mediated interaction is given by the sum over
the phonon modes. We do not assume any particular type of the vibration modes a priori
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to study the superconductivity. We call the onsite (intramolecular) part of these interactions
Uph(= V ph,onsite

αα,αα ), U ′
ph(= V ph,onsite

αα,ββ ), and Jph(= V ph,onsite
αβ,βα = V ph,onsite

αβ,αβ ), respectively, with the
orbital indices α and β.

4.2.2 Electron-phonon coupling

Among 189 (= 63 × 3) phonon branches, it has been argued that the intramolecular lattice
vibrations mainly contribute to the total electron-phonon coupling [14, 46, 47]. The couplings
between the t1u electrons and the other phonon modes such as the intermolecular, alkali-ion, and
libration modes have been argued to be small compared to the intramolecular contribution [14,
53, 150–154]. In the molecular limit, by using the group theory, it can be shown that the
intramolecular vibrations which couple to t1u electrons are limited to the Ag and Hg modes [46,
155, 156]. The Hg vibrations are the Jahn-Teller modes, which induce a split of the t1u energy
levels, while they do not change the center of the levels [46,155,156]. On the other hand, the Ag

modes are not of the Jahn-Teller type. They couple to the total t1u occupations on the molecule,
i.e., they shift the energy levels of each t1u orbital equally. While the Jahn-Teller modes, which
have off-diagonal coupling with respect to the orbital, contribute to Jph, the non-Jahn-Teller
modes, such as the Ag modes, do not. We can show that, in the molecular limit, the Hg modes
give the intramolecular electron-electron interaction with the form Uph(iΩn) = −2U ′

ph(iΩn) =
1.5Jph(iΩn) < 0 [20]. The contribution of the Ag modes gives Uph(iΩn) = U ′

ph(iΩn) < 0 and
Jph(iΩn) = 0.

4.2.3 Phonon frequencies

Here, we look at the partially-dressed phonon frequencies needed to calculate the phonon-
mediated interaction in Eq. (6). Figure 8 shows the partially-dressed phonon frequencies (red
curves) calculated by the cDFPT for the frequency range from 1100 to 1400 cm−1. In the cDFPT
calculation, the renormalization of the phonon frequencies coming from the t1u electrons is ex-
cluded. These partially-dressed frequencies are defined in the low-energy Hamiltonian. Thus,
they cannot be directly compared to the experimental data. To compare with experiments, we
need to solve the low-energy Hamiltonian to obtain fully-dressed phonon frequencies.

In Fig. 8, for comparison, we also show the fully-dressed phonon frequencies (blue-dotted curves)
calculated by the conventional DFPT, where the renormalization effect of the t1u electrons is
further incorporated within the DFPT framework. The dispersion of both the partially and
fully dressed frequencies is tiny, which reflects the intramolecular nature of the modes (almost
perfectly described as the Einstein phonons). We see that the red curves agree with the blue-
dotted curves for the majority of the bands, and that the main difference is in the bands around
the frequency of 0.14 and 0.16 eV. These two correspond to the two Hg modes out of the eight
Hg modes. Because of the cubic symmetry, the frequencies of the Hg modes, which are fivefold
degenerate in the molecular limit, are split into threefold- and twofold-degenerate frequencies.
The Ag modes are located at the energies beyond the range of Fig. 8. Experimentally, the two
Ag modes are observed at 496 and 1470 cm−1 for undoped C60 [68].

The difference between the partially- and fully-dressed phonon frequencies in Fig. 8 originates
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Figure 8: Partially-dressed (red) and fully-dressed (blue-dotted) phonon frequencies for fcc
Cs3C60 with VC3−

60
= 762 Å3, calculated by the cDFPT and the DFPT respectively. For visibility,

the frequency region is limited from 1100 to 1400 cm−1. Reprinted with permission from Nomura
and Arita, Ref. [20]. Copyright 2015 by American Physical Society.

from the renormalization effect of the t1u electrons. Therefore, the frequencies of the Hg modes,
which couple to the t1u electrons, are further renormalized from the partially-dressed frequencies
in the red curves, while the other modes are not.4

Because the C-C bonds are rather stiff and the mass of C atom is light, the maximum frequency
of the intramolecular phonons can be rather large, reaching about 0.2 eV, which is comparable
to the t1u bandwidth ∼ 0.5 eV. It indicates that we cannot ignore the vertex corrections, i.e.,
the Migdal theorem [157] does not hold any more. The low-energy vertex corrections within a
molecule can be captured by the E-DMFT, while the nonlocal vertex corrections are not.

4.2.4 Results

Table 2 shows the phonon-mediated interactions at zero frequency (Ωn = 0) calculated with
the partially-renormalized phonon frequencies and electron-phonon interactions [19, 20]. The
frequency dependence of these interactions is discussed in Sec. 4.3. The value of the intraorbital
interaction Uph(0) lies between −0.15 eV and −0.1 eV, which are small compared to the Hubbard
repulsion U . On the other hand, an unusual situation is realized in the exchange channel: The
phonon-mediated exchange interaction Jph(0) is about −51 meV, and its absolute value is larger
than the value of Hund’s coupling J ∼ 34 meV. As discussed in Sec. 4.2.2, only the Jahn-
Teller phonons contribute to Jph(0). Thus, this means that the Jahn-Teller phonons surpass
the Coulomb exchange interactions and realize an effectively negative exchange interaction.
However, the size of this negative exchange interaction (∼ −17 meV) is small.

4In Fig. 8, the difference between the partially and fully-dressed phonon frequencies is small. This is because

the electron-phonon coupling constant λ between the t1u electrons and each individual mode is small [20], while

the sum of the contribution from all the modes becomes substantial.

15

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.245108
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.245108


Table 2: The phonon-mediated interactions at zero frequency calculated by the cDFPT. The
values are taken from Ref. [19]. The values in the parentheses after the material compositions
denote VC3−

60
in Å3. See Fig. 7 for the definition of Uph, U ′

ph, and Jph. There is no orbital
dependence in Uph, U ′

ph, and Jph. The relation U ′
ph ∼ Uph − 2Jph holds well.

material Uph(0) U ′
ph(0) Jph(0)

(fcc structure) [meV] [meV] [meV]

K3C60 (722) −152 −53 −50

Rb3C60 (750) −142 −42 −51

Cs3C60 (762) −114 −13 −51

Cs3C60 (784) −124 −22 −51

Cs3C60 (804) −134 −31 −52

Figure 9 summarizes the VC3−
60

dependence of the Coulomb interactions and the phonon-mediated
interactions. As VC3−

60
increases, the Hubbard U increases, while the DFT t1u bandwidth W

decreases. Thus, the change in U/W is steeper than that expected from the change in the
bandwidth. Hund’s coupling J and the phonon-mediated exchange interaction Jph(0) are al-
most constant throughout the VC3−

60
range. In Fig. 9, only the phonon attraction Uph(0) has

nonmonotonic VC3−
60

dependence. This can be ascribed to the contribution from the alkali-ion
vibrations [20]. We find that the contribution from the intramolecular modes is nearly VC3−

60

independent [20]. Like the Ag modes, the alkali-ion phonons couple to the total t1u occupa-
tions. Therefore, they do not contribute to Jph(0). The couplings to the alkali modes seem
to be nonnegligible, however, one has to pay attention to the fact that they do not include
the screening from the t1u electrons. When the metallic screening is considered by solving the
model, these couplings are efficiently screened and the fully-screened couplings become very
small. Thus, these alkali modes do not play an important role in the superconductivity. On the
other hand, the Jahn-Teller-type couplings are poorly screened [20] and contribute essentially
to the superconductivity.

4.3 Effective interaction between electrons: repulsive Hubbard and negative

exchange interactions

Figure 10 shows the real-frequency dependence of the effective interactions between the t1u

electrons, which are given by the sum of the Coulomb and the retarded phonon-mediated inter-
actions. In the frequency region below 0.2 eV, the attractions from the phonons work since the
frequencies of the intramolecular phonons exist up to ∼ 0.2 eV. Several peak-like structures re-
flect that several phonon modes with different frequencies contribute to the effective interactions.
By the phonon contribution, the effective exchange interaction Jeff(ω) becomes negative. On the
other hand, the density-type interactions Ueff(ω) and U ′

eff(ω) are strongly repulsive. However, in
the region where Jeff(ω) becomes negative, U ′

eff(ω) becomes slightly larger than Ueff(ω) because
of the relation U ′

eff(ω) ∼ Ueff(ω) − 2Jeff(ω). In the following sections, we discuss the surprising
consequence of this unusual relationship between the interactions U ′

eff > Ueff and Jeff < 0.
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5 Theoretical calculation of phase diagram and Tc from first

principles

5.1 Theoretical phase diagram

By solving the Hamiltonian in Eq. (1) by the E-DMFT,5 we derive the theoretical phase dia-
gram [19], which is shown in Fig. 11. Here we study superconductiviy by directly allowing the
symmetry breaking in the E-DMFT calculation. Within the single-site E-DMFT calculation for
the fcc lattice (non-bipartite lattice), we also allow for ferro-orbital/magnetic order, while we
do not consider a possibility of the antiferromagnetic order, which, in the actual fcc lattice, is
observed only at very low temperature, significantly smaller than the lowest temperature (10 K)
we used in our E-DMFT.

As a result, we obtain three different phases: the paramagnetic metal, the paramagnetic Mott
insulator, and the s-wave superconducting phase. The s-wave superconductivity is characterized
by a nonzero superconducting order parameter ∆ =

∑
α〈cα↓cα↑〉, which describes intraorbital

Cooper pairs for the t1u electrons. In the Mott insulating phase, the self-energy diverges and
hence the Mott gap opens in the spectral function (the blue-dotted curve in Fig. 12). Throughout
the phase diagram above 10 K, a solution with a ferro-orbital order is not stabilized. In the
region between the blue curve and the black dotted curve in Fig. 11, both metallic and insulating
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Figure 11: Theoretical phase diagram for fcc A3C60 systems obtained by the E-DMFT analysis
using the realistic Hamiltonians. SC denotes the superconducting phase. In between the blue and
black-dotted curves, the metallic and insulating solutions coexist in the E-DMFT calculations,
either of which is a metastable solution. We expect that the first-order transition curve, where
the metastable solution changes from metal to insulator or vice versa, is close to the blue
curve [161]. Adapted from Nomura et al., Ref. [19].

5In solving the Hamiltonian, we take into account the frequency dependence of the density-density-type inter-

actions [158–160]. However, the spin-flip and pair-hopping interactions are assumed to be static to avoid the sign

problem in the quantum Monte Carlo solver for the E-DMFT. See Ref. [19] for more detail.
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solutions can be stabilized depending on the initial conditions of the E-DMFT calculations. This
suggests that a first-order transition, where the global minimum of the free energy changes from
the metallic to insulating solution, should take place between these two curves. According to
general entropic arguments, we expect the transition to be close to the blue curve [161].

5.2 Comparison between theory and experiment

Comparing the theoretical phase diagram in Fig. 11 with the experimental one in Fig. 2(a), we
find a good agreement between them. The theoretical phase diagram reproduces the s-wave
superconductivity next to the Mott phase. Theoretically calculated Tc’s with the maximum of
∼ 28 K agree with the experimental Tc’s within 10 K difference. This agreement is remarkable
since our Tc calculation does not rely on any empirical parameters: It starts from the DFT
calculation using only the information of the crystal structure and all the parameters used in
the E-DMFT analysis are calculated from first principles.

Furthermore, the slope between the paramagnetic metal and insulator is consistent between
the theory and experiment. As temperature increases, the insulating region expands, which
indicates that the insulator has a larger entropy than the metal. The position of the metal-
insulator boundary is also consistent. It is known that the DMFT often overestimates the
stability of the metallic phase [162, 163] because it neglects non-local correlation effects and it
becomes exact only in the limit of large coordination number. However, in the present case, the
large coordination number (12) of the fcc lattice makes the DMFT reliable [164]. Furthermore,
the VC3−

60
dependence of the U/W ratio is rather steep so that even if the critical U/W for the

metal-insulator transition changes, it does not lead to a drastic change in the critical VC3−
60

. We
think that the above two factors lie behind the nice quantitative agreement between the theory
and experiment as far as the metal-insulator boundary is concerned.

While we see a good agreement, there are minor discrepancies between the theory and experi-
ment. For example, the metal-insulator boundary looks like a crossover in the experiment, while
the theory shows a clear first order transition. While the reason of the discrepancy is not yet
clear, one of the possible reasons is the disorder in the orientations of the buckyballs [22,23,40],
which is neglected in the calculation. Another discrepancy can be seen in the shape of the Tc

curves. In the experiment, the Tc curve shows a dome-like shape, while the theoretical Tc curve
increases toward the Mott transition. We come back to this point in Sec. 7.

6 Property of metal-insulator transition

To gain insight into the superconducting mechanism, we first look at the property of the metal-
insulator transition at 40 K.

6.1 Single-particle spectral function

Figure 12 shows the spectral functions of the t1u bands for three different A3C60 systems, derived
by the analytic continuation based on the maximum entropy method [165,166]. The DFT density
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of states for K3C60 with VC3−
60

= 722 Å3 is also shown for comparison. In the metallic phase
(red and green curves), as VC3−

60
increases, i.e., as the correlation strength increases, the width of

the quasiparticle part becomes narrower and the incoherent peaks become more prominent. We
note that the position of the incoherent part and the renormalization factor of the quasiparticle
band for K3C60 are consistent with the ARPES (angle-resolved photo-emission spectroscopy)
measurements for the K3C60 monolayer [167].6

6.2 Unusual behaviors across the Mott transition

Figure 13(a) shows the dependence of several observables on VC3−
60

calculated at 40 K [19]. Here,
we focus on the metallic solution in the coexistence region (the region delimited by the blue
and black-dotted curves in Fig. 11). The blue curve shows the size of spin S per molecule,
which decreases as VC3−

60
increases. In the insulating phase, the value of S becomes ∼ 0.5, i.e.,

the low-spin state with S = 1/2 is realized. This is because an effectively negative exchange
interaction is realized (Sec. 4.3), which favors the low-spin state rather than the high-spin state.

Another interesting observation is that the double occupancy D = 〈nα↑nα↓〉 increases toward
the Mott transition. This is in contrast with the intuition and the behavior of the single-band
Hubbard model and of multiorbital models with the standard exchange interaction, where D

is suppressed by the repulsive Hubbard U . While the fullerides also have a strongly repulsive
Hubbard U , the interorbital repulsion U ′ is effectively larger than the Hubbard U (Sec. 4.3).
Therefore the electrons (3 electrons per molecule on average) prefer to sit in the same orbital
despite they pay an energy cost of U [96], which is clearly seen in the inequality 〈nα↑nα↓〉 >

〈nα↑nβ↓〉 in Fig. 13(a).

We can gain more insight by looking at the histogram of the weight of the intramolecular

6The experiment measured a monolayer system. However, the theoretical calculation assumes a bulk system.

Therefore, we do not compare a band dispersion between the theory and the experiment, and restrict ourselves

to the comparison of the angle-integrated quantities.
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Figure 13: (a) VC3−
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dependence of the size of spin S per molecule, the double occupancy
D = 〈nα↑nα↓〉, and the interorbital different-spin correlation function 〈nα↑nβ↓〉 (α, β: orbital
indices). (b) VC3−

60
dependence of weights of intramolecular electronic configurations (see the

main text for detail). In both panels, the results for the metallic solution are shown in the
region where the metallic and insulating solutions coexist in the E-DMFT calculation (the
region surrounded by the blue and black-dotted curves in Fig. 11). Adapted from Nomura et
al., Ref. [19]

electronic configurations [Fig. 13(b)]. The histogram shows which intramolecular electronic
state is dominantly realized on the molecule within the E-DMFT [168]. It is obtained by the
continuous-time quantum Monte Carlo simulation [124,169] of the E-DMFT impurity problem,
which consists of the single correlated molecule and the dynamical bath.

In Fig. 13(b), “(210)” denotes the set of the half-filled configurations in which one orbital
is doubly occupied and the third electron occupies another orbital, namely the configurations
where {n1, n2, n3} = {2, 1, 0}, {0, 2, 1}, {1, 0, 2}, {2, 0, 1}, {1, 2, 0}, and {0, 1, 2}. “(111)” denotes
the set of the half-filled configurations with equal occupations on each orbital, i.e., {n1, n2, n3} =
{1, 1, 1}. “N 6= 3” indicates the total weight of all the configurations away from half filling.

In the non-interacting limit at half filling, all the 64 intramolecular electronic configurations
have equal weight. Then, the weights for the (210), (111), and N 6= 3 configurations are 0.1875,
0.125, and 0.6875, respectively. In the presence of correlation effects, the (210) configurations
acquire the largest weight. This is again because of the unusual molecular interactions with
U ′

eff > Ueff and Jeff < 0, which prefer the (210)-type configurations to the other configurations.
The increase of the weight of the (210) configurations explains the increase of D and the decrease
of S with the increase of VC3−

60
.

In the metallic phase, however, there exist charge fluctuations because the non-half-filled (N 6=3)
configurations have a nonnegligible weight. The non-half-filled (N 6=3) configurations gradually
lose their weight toward the Mott transition. In the Mott insulating phase, we see that N 6= 3
weight becomes tiny. It indicates that the charge degrees of freedom are frozen and the filling
on each molecule is nearly fixed at half filling, which is nothing but the Mott physics induced
by the strongly repulsive Ueff [18, 94].
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However, the orbital and spin degrees of freedom are active even when the charge degrees of
freedom are frozen and the balance of the interaction favors low-spin configurations [94]. As we
discussed in Sec. 5.1, the Mott insulating phase has no ferro-orbital/spin order. Thus, all the
(210) configurations, which are dominant in the Mott phase, are degenerate, offering a room
for the orbital and spin fluctuations [18,94]. The absence of the orbital order is consistent with
the experimentally observed dynamical Jahn-Teller effect [97, 98]: each (210) configuration can
be regarded as a snapshot state where the orbital degeneracy is dynamically lifted, however,
if we take a long-time average, the orbital degeneracy is recovered. We note that the orbital
degeneracy plays a role of increasing the critical U for the Mott transition [170, 171], with
stabilizing the metallic/superconducting state against the Mott phase.

7 Superconducting mechanism

Finally, we discuss the superconducting mechanism [19]. In order to identify how the different
interaction terms give rise to the superconducting state, we check the stability of our super-
conducting solutions derived from the low-energy Hamiltonian in Eq. (1) against the change
in the parameters of the Hamiltonian. The results are reported in Table 3. We see that the
superconducting solution becomes unstable when the pair-hopping interaction becomes zero or
Ueff becomes larger than U ′

eff , while the spin-flip term can be set to zero without destroying
superconductivity. This suggests that the pair-hopping interaction and the relation U ′

eff > Ueff

are essential to the superconductivity.

As discussed in Sec. 6.2, U ′
eff > Ueff and associated Jeff < 0 favor the (210) low-spin configura-

tions. Accordingly, the pairs of the up- and down-spin electrons with the same orbital character
reside on the same molecules, which enables the system to form an s-wave order parameter with
a local pairing amplitude even in the presence of the strong local Coulomb repulsion.

A crucial point is that the formation of the electron pairs is not simply compatible with the
strong local repulsion, but it is actually assisted and favored by the strong correlations [94] in the

Table 3: Stability of the E-DMFT superconducting (SC) solutions at the temperature T = 10
K. We artificially change the interaction parameters for the E-DMFT from the ab initio values.
Then we restart the E-DMFT calculation using the SC solution of the realistic Hamiltonian as
an initial guess and examine whether the SC solution survives or not. We try three types of
change: (i) We put the pair-hopping interaction to be zero. (ii) We put the spin-flip interaction
to be zero. (iii) We set U ′

ph(iΩn) to be equal to Uph(iΩn) (which increases the attractions for
interorbital channel) so that U ′

eff(iΩn) < Ueff(iΩn) holds for all the boson Matsubara frequency
Ωn. We keep other parameters unchanged in each case. The results shown in the table do not
depend on VC3−

60
.

realistic no pair-hopping no spin-flip U ′
eff < Ueff

SC no SC SC no SC
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present multiorbital system. Since the difference between U ′
eff and Ueff , or in other words, the

size of negative Jeff (∼ −17 meV) is small compared to the typical kinetic energy scale ∼ 0.5 eV,
in the weakly correlated regime, the effect of Jeff is small [18]. However, the strongly repulsive
Ueff suppresses the kinetic energy of the electrons, driving the system into a regime where the
negative Jeff is effectively stronger. Therefore when the repulsion is increased, the negative Jeff

is more effective in forming local pairs, which can lead to an enhancement of superconductivity.
This is made possible by the fact that the pairing acts in the spin-orbital channel, which remains
active even in the presence of the strong correlation [94].

The pair-hopping interaction, whose amplitude is again given by Jeff , is also important, as
discussed in several previous works [18, 51, 94, 95, 172, 173]. The generated intraorbital pairs
can tunnel into another orbital through the pair-hopping process, which also enhances the su-
perconductivity (the Suhl-Kondo mechanism [174, 175]). In principle, the enhancement of the
superconductivity by the Suhl-Kondo mechanism occurs irrespective of the sign of the pair-
hopping interactions. However, in the present three-orbital system, the negative pair-hopping
enhances the superconductivity more efficiently than the positive one. This is because the for-
mer prefers the gap function with the same amplitude and sign for every orbital, while the latter
favors the sign change in the gap function, generating a frustration.

With the above considerations, we conclude that the crucial factors for the s-wave superconduc-
tivity in the alkali-doped fullerides are [19]

• the formation of the intraorbital electron pairs on molecules induced by the unusual in-
tramolecular interactions with U ′

eff > Ueff , which becomes more efficient under the strong
correlation

and

• the interorbital tunneling of the electron pairs through the pair-hopping interaction.

Since the unusual relations Jeff < 0 and U ′
eff > Ueff are a consequence of the coupling of the

electrons with the Jahn-Teller phonons, we confirm that the phonons are necessary to drive the
s-wave superconductivity in these materials. However, thanks to the unusual form of the multi-
orbital interactions, the strong correlations surprisingly cooperate with the phonons by assisting
and favoring the formation of the intraorbital electron pairs. This fact marks a sharp contrast
with the conventional phonon mechanism, where the phonons and the Coulomb interactions
compete with each other, especially when both interactions are local and for half-filled bands
[176].

The picture emerging from our fully ab-initio theory is consistent with the previous model
studies on the negative-J multiorbital Hubbard model [18, 93–95], where J in this model can
be considered as Jeff in the ab initio low-energy Hamiltonian. In these studies it was argued
that when the size of the negative J is small, a strongly-correlated superconductivity emerges
in the vicinity of the Mott transition: It benefits from the strong correlation and is distinct
from the BCS-type superconductivity. Close to the Mott transition, the charge fluctuations are
suppressed by the strong Hubbard interaction and the quasiparticle bandwidth is renormalized
as ZW with Z � 1 being the quasiparticle weight. Accordingly, the quasiparticles effectively
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feel renormalized Hubbard interaction ZU . On the other hand, J works on the spin and orbital
degrees of freedom, which are still active even when the charge degrees of freedom are frozen
(Sec. 6.2). Since J does not directly see a freezing of the charge degrees of freedom, J is not
renormalized by the correlation. As a result, the heavy quasiparticles feel the renormalized
repulsion ZU and the unrenormalized attraction J . This is why the strong correlation helps
the s-wave superconductivity: It strongly reduces the residual repulsive interaction between
the heavy quasiparticles, but it does not affect the small bare attractive interaction arising from
electron-phonon coupling. Therefore sufficiently close to the Mott transition, the overall effective
interaction turns into an attraction.

Finally, we discuss the origin of the dome shaped Tc in the experimental phase diagram, which
is not seen in our theoretical result: The calculation gives an increase of the critical temperature
as the transition to the Mott insulator is approached. As shown in the study on the negative-J
multiorbital Hubbard model [18, 93–95], the superconductivity is eventually suppressed toward
the Mott transition when Z becomes tiny. However, in the calculation for the realistic Hamilto-
nian at finite temperatures, the transition to the Mott insulating state is of first order and the Tc

curve is cut before we see a downturn of it. Indeed at T = 10 K, we observe a dome shape in the
superconducting order parameter if we follow the superconducting solution, which indicates that
the Tc dome is hidden by the insulating phase in the current calculation. Other factors, which
are not considered in the calculation such as the effect of the merohedral disorder [22, 23, 40]
and the non-local fluctuations, might also play a role in the shape of the experimental Tc curve,
which remain to be investigated.

8 Conclusion and future perspective

8.1 Summary of the review

We have reviewed the properties of alkali-doped fulleride superconductivity, starting from the
basic electronic structure of the fcc A3C60 systems. The band structure of A3C60 fullerides is
well described by a picture in terms of molecular orbital levels connected by relatively small
hoppings between them. The half-filled low-energy t1u bands are the main playground for the
superconductivity.

We have elucidated that the effective intramolecular interactions between the t1u electrons, which
arise from the combination of the Coulomb repulsion and electron-phonon interactions, have an
unusual structure characterized by a strongly repulsive Hubbard repulsion and a weakly negative
exchange interaction, which leads to an inverted Hund’s coupling. This unusual situation occurs
since the fullerides are the degenerate multi-orbital systems having tiny Hund’s coupling and
strong coupling to Jahn-Teller modes.

The realistic Hamiltonian with this form of the intramolecular interaction comprehensively re-
produces the experimental phase diagram including the adjacency of the Mott insulator and the
s-wave superconductivity. Remarkably, the agreement is not only qualitative but also quantita-
tive; the theoretically calculated Tc using only the information of the crystal structure, agrees
with the experimental Tc within a difference of 10 K. The derived Mott insulating phase is
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characterized by a low-spin (S = 1/2) state with orbital degeneracy, completely consistent with
the experimental observations.

The analysis on the superconducting mechanism reveals that the high-Tc s-wave superconduc-
tivity is driven by an unusual cooperation between the strong correlations and the Jahn-Teller
phonons. This confirms that the mechanism of the fulleride superconductivity is indeed uncon-
ventional and requires strong correlation effects, despite the crucial role of the electron-phonon
interaction and the s-wave symmetry of the order parameter.

8.2 Future perspective

8.2.1 Study on A15 Cs3C60

In this review, we have not discussed the A15 systems and have focused on the fcc systems.
Through the calculations for the fcc systems, we have found that the dynamics of the elec-
trons within the molecule with unusual form of the interactions is the most important factor
to drive the superconductivity. We expect that such intramolecular dynamics is not much af-
fected by the change of the lattice structure. This explains naturally why the superconducting
properties are similar between the A15 and fcc systems in experiment. On the other hand, the
antiferromagnetism will be strongly affected by the lattice structure: For example, the degree of
frustration and the structure of the super-exchange interactions are crucial for the magnetism.
It will be interesting to apply the present scheme also to the A15 systems and see whether it
also comprehensively explains their experimental phase diagram.

8.2.2 Light-induced superconducting-like state in K3C60

Recently, superconducting-like signatures have been reported in the optical spectra of K3C60 at
temperatures higher than 100 K (much higher than the equilibrium critical temperature Tc = 19
K) by means of impulsive excitation [177] designed to coherently excite the molecular vibration
of the fullerene molecules. This inherently nonequilibrium phenomenon has not yet been under-
stood and is surely a fascinating challenge for theory. We believe that the present understand-
ing of the equilibrium superconductivity provides a firm basis for studying the nonequilibrium
superconducting-like state.
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A Effect of intermolecular Coulomb interactions

The E-DMFT takes into account the effect of the intermolecular Coulomb interactions as a
dynamical reduction of the intramolecular interactions. We find that this dynamical screening
is not an essential ingredient in the superconductivity, while it quantitatively improves the
location of the Mott transition in Fig. 11 [19]. Since the orbital dependence of the intermolecular
interactions is negligible, the resulting dynamical screening on the intramolecular interactions
has no orbital dependence. That is, it equally reduces the intraorbital interaction Ueff and the
interorbital interaction U ′

eff and does not affect the exchange channel Jeff . Since the negative Jeff

is a key for the unconventional physics in the fullerides, even without the dynamical screening
effect from the intermolecular interactions, we obtain a phase diagram qualitatively similar to
Fig. 11. However, since the intermolecular interactions reduce the value of Ueff and U ′

eff , they
stabilize a metallic solution and shift the metal-insulator phase boundary toward a larger VC3−

60
,

making the agreement between theory and experiment better.
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Rosseinsky, and D. Arčon, Scientific Reports 4, 4265 (2014).

[112] P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

[113] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).

[114] T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001).

31
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