

Research Networking Programmes

Science Meeting – Scientific Report

Proposal Title: HoW exciting! Hands-on Workshop on Excitations in Solids 2014

Application Reference N°: 5266

1) Summary

The "HoW exciting! 2014" hands-on workshop combined keynote lectures giving an introduction to theoretical foundations for the calculation of excitations in solids with hands-on exercises using the software package exciting. The workshop took place at the campus Adlershof of the Humboldt-Universität zu Berlin from July 31 to August 8, 2014. The CECAM workshop was the third event in a series after the very successful workshops, which took place in November 2010 in Lausanne, Switzerland, and in August 2012 in Berlin, Germany. The participants enjoyed a varied programme of interesting lectures, hands-on exercises and discussions. It turned out to be very successful and reached all the expected goals.

Web pages:

http://www.cecam.org/workshop-1071.html http://how-exciting-2014.physik.hu-berlin.de

Notes of the lectures presented at the workshop can be found as PDF files at the following link:

http://exciting-code.org/how-exciting-2014-hands-onworkshop-berlin

The list and description of the tutorial exercises is also available at:

http://exciting-code.org/tutorials-boron

2) Description of the scientific content of and discussions at the event

The first day of the workshop was dedicated to the foundations of density-functional theory (DFT) and augmented plane-waves (APW) methods, with the keynote lectures by Kieron Burke and Andris Gulans. In the talk by Burke, the main ingredients of DFT were presented and discussed, including the Hohenberg-Kohn theorems, the Kohn-Sham scheme, and the most common approximations for the exchange-correlation (xc) energy functional. Andris Gulans presented DFT in the flavor of the full-potential, all-electron APW scheme, as implemented in the exciting code. The main characteristics of this approach were presented, in close connection with the code structure. The tutorial talk by Pasquale Pavone presented an introduction to exciting, showing an overview of properties that can be computed with this code. The following lab session was dedicated to familiarize with the code and with the computational parameters which mainly impact of the results obtained with exciting. Convergence studies of the influence of the k-points sampling and the size of the basis set were performed in the following hands-on tutorial.

The second day of the workshop was dedicated to electronic properties and structural optimization. Kieron Burke gave the morning keynote lecture, presenting the main open issues related to DFT, which may affect crucially the description of the electronic properties of materials at the mean-field level. The tutorial talk by Jürgen Spitaler introduced electronic-structure calculations in exciting. In the hands-on session, the participants used exciting to calculate the electronic properties (band structure, density of states, and Kohn-Sham wave-functions) of prototypical metallic and semiconducting materials. In the afternoon lecture, Jorge Sofo talked about graphene, which is extremely sensitive to geometrical modifications and distortions. In the following tutorial talk, Pasquale Pavone presented the approaches implemented in exciting to perform structural optimization and atomic relaxation. In the hands-on session the participants put their knowledge into practice, using exciting to optimize and relax different crystal structures (simple cubic, wurzite, etc.) and simple molecules. In the evening the poster session took place. About 15 participants presented their posters in a scientifically stimulating and lively atmosphere.

On the third day, Lucia Reining presented the foundations of theoretical spectroscopy, with specific focus on time-dependent DFT (TDFFT). The tutorial talk by Santiago Rigamonti introduced the implementation of TDDFT in exciting. In the lab session, the students performed a basic TDDFT calculation for the loss function of bulk silver in the long-wavelength limit. In the afternoon session, Miguel Marques gave a keynote lecture about xc functional, explaining their main features and their applicability to different kind of materials. He introduced hybrid functionals, which have been the subject of an intense research in recent years. These topics were further explained and discussed in the tutorial talk by Ute Werner, who explained how hybrid functionals are implemented in exciting. She also introduced the library of xc functionals libxc, which is supported by exciting. During the following tutorial session participants could use the libxc to calculate the optimal volume and bulk modulus of silicon. Students could also learn how to perform band-structure calculations using hybrid functionals, in the flavor of optimized effecitve potential - exact-exchange method by calculating the band-structure of diamond. During the lab session post-processing tools to include Van der Waals corrections to the total energy of graphite were also introduced, in order to find the equilibrium interlayer separation and the corresponding binding energy.

The fifth day started with the keynote lecture by Mark van Schilfgaarde about *GW* methods. He introduced the Green's functions formalism in theoretical spectroscopy,

presenting an overview of this approach ranging from the simplest approximations (e.g. COHSEX), to the conventional G_0W_0 approach, up to the most sophisticated selfconsistent methodologies. In the tutorial session, Dmitrii Nabok introduced the implementation of G_0W_0 in exciting. In the hands-on tutorial, the participants could compute the electronic structure of bulk silicon by applying G_0W_0 . In the afternoon session, Lucia Reining presented the Bethe-Salpeter Equation (BSE) approach to compute optical spectra in solids, including explicitly the electron-hole interaction. In the tutorial talk, Caterina Cocchi presented the implementation of BSE in exciting, introducing the main parameters in the code. In the lab session, participants could put their knowledge into practice, by computing the BSE absorption spectrum of lithium fluoride using exciting. They could also investigate the behavior of different TDDFT kernels, which explicitly include many-body effects, also applied to lithium fluoride.

The first part of the sixth day was dedicated to phonons and electron-phonon coupling. Miguel Margues presented the topic in his keynote lecture, focusing especially on the formalism of density-functional perturbation theory (DFPT). He introduced the main concepts and formulas behind DFPT and presented some results showing the importance of electron-phonon coupling in the properties of insulators, semiconductors and superconducting materials. The frozen-phonon approach, as implemented in exciting, was discussed in details in Karsten Hannewald's tutorial talk. In the handson session, participants calculated the phonon-dispersion curves of diamond, as prototypical material. In the afternoon, Silvana Botti gave a keynote lecture about advances in many-body perturbation theory (MBPT). She presented some recent results about photovoltaic materials, where many-body effects play a crucial role. Examples of these materials are kesterites, which are promising light-harvesting compounds. The tutorial talk by Weine Olovsson was focused on X-ray absorption spectroscopy (XAS), computed within exciting in the framework of MBPT. He showed that core-level excitations can accurately be described by explicitly including the electron-hole interaction, as in the BSE formalism. In the lab session afterward, the students could use the BSE package of exciting to compute XAS of prototypical materials such as lithium fluoride and cubic boron nitride.

On the seventh day of the workshop, the first keynote lecture was given by Clas Persson, who discussed the recent theoretical advances about solar cells. The tutorial session was dedicated to Raman spectroscopy, introduced by Stefan Kontur in his talk. He presented newly implemented routines that allow to calculate Raman spectra with exciting. In the lab session, participants could use the code to compute the Raman spectrum of bulk silicon. In the same hands-on session, another tutorial was presented, concerning the calculation of thermal-expansion coefficient, as well as the mode Grüneisen parameters of diamond. In the afternoon session, Jorge Sofo gave a plenary talk on thermoelectric materials, introducing the main formalism to compute thermoelectric properties from first-principles. The tutorial session was introduced by Rostam Golesorkhtabar, who presented the package Elastic, which is interfaced to exciting for the calculation of elastic constants in any crystal structure. In the lab session the participants could use this tool to compute the elastic constants of diamond and of beryllium in the hexagonal crystal phase. In the same session, students used exciting to compute ground-state energy of strained materials and the derivatives of the energy-vs-strain curves at zero strain. They could learn how these quantities are related to elastic constants. They also computed the full stress tensor of hexagonal beryllium, as a prototypical example. The second part of the tutorial session was dedicated to spin-polarized calculations, including spin-orbit coupling. As an example, participants focused on the ground-state properties of iron, with different types of magnetic order.

The morning session of the eighth day started with the keynote lecture by Christian Carbogno about heat transport. He presented the formalism and showed results about zirconia. The tutorial session was introduced by Santiago Rigamonti, who presented the magneto-optical Kerr effect (MOKE) and its implementation in exciting. He also showed how to obtain scanning-tunneling-microscopy (STM) spectra with exciting. Participants could use the exciting code to compute MOKE on nickel and the STM spectrum of tungsten. In the afternoon, Anton Kozhevnikov gave a keynote lecture about SIRIUS, a parallel library interfaced to exciting, which allows to efficiently compute ground-state properties of huge systems (>1000 atoms).

The last day of the workshop hosted only one keynote lecture, about big data analysis, given by Matthias Scheffler. He showed the state-of-the-art approaches to treat big data and to predict properties from them.

The last two lab sessions were dedicated to users' projects. The high level of the participants contributed to stimulate lively scientific discussions. Calculations of excited-state properties using GW and BSE approaches, core level excitations and phonons were among the most discussed themes. Most of the participants used exciting to treat their own systems of interests, ranging from bulk magnetic materials, to two-dimensional heterostructures, to single molecules.

3) Assessment of the results and impact of the event on the future directions of the field

"HoW exciting! 2014" received a very positive feedback from the participants, as indicated by the analysis of a survey delivered to them on the last conference day. There were a total of 70 scientific participants, among them 5 organisers, 21 lecturers, 6 tutors, and 38 students from institutions of 18 countries, including several European nations, Algeria, Canada, Israel, Malaysia, Singapore and the USA.

Almost all the participants declared themselves very satisfied (66%) or satisfied (33%) with the workshop. In particular, they all judged good or very good the scientific program of the workshop overall, as well as the keynote lectures given by the invited speakers, the hands-on tutorial sessions lead by the members of the exciting team, and the exciting tutorial web pages. Significantly, most participants (91%) considered "HoW exciting! 2014" as an important or very important experience for their future career.

Concerning the dissemination of the code, 94% of the participants declared to be willing to use exciting in their research activity. Considerable interest has been demonstrated for the packages to compute optical properties and many-body perturbation theory (GW approximation and the Bethe-Salpeter equation). The features related to the all-electron implementation of density functional theory, as developed in exciting, including LAPW approaches and calculation of X-ray absorption spectra also attracted the attention of almost one half of the participants. They also manifested their interest in the calculation of vibrational properties, in the flavor of phonons and elastic constants, as well as Raman spectra.

Significant consideration has been devoted also to the soon available features of exciting, including its portability to high performance computing architectures. In addition, the largest majority of the participants, including undergraduate and graduate students as well as post-docs, expressed interest in future collaborations with the exciting team.

In order to reach the broadest audience and to update the user community with the newest feature of the **exciting** code, we believe it is appropriate to keep the schedule of a "HoW exciting!" tutorial every second year.

4) Annexes 4a) and 4b): Programme of the meeting and full list of speakers and participants

Annex 4a: Programme of the meeting

<u>Day 1 - July 31, 2014</u>

14:00 - 14:15	Opening	
14:15 - 15:15	Kieron Burke	DFT I
15:15 - 16:15	Andris Gulans	APW
16:15 - 16:45	Pasquale Pavone	Getting started
16:45 - 17:00	Coffee break	
17:00 - 19:00	Exercises:	How to converge ground-state calculations
19:00	Dinner	

<u> Day 2 - August 1, 2014</u>

09:00 - 10:00	Kieron Burke	DFT II
10:00 - 10:30	Jürgen Spitaler	Electronic structure
10:30 - 10:45	Coffee break	
10:45 - 12:45	Exercises:	Electronic structure and state visualization
12:45 - 14:15	Lunch break	
14:15 - 15:15	Jorge Sofo	Graphene
15:15 - 15:45	Pasquale Pavone	Structure optimization
15:45 - 16:00	Coffee break	
16:00 - 18:30	Exercises:	Optimization and molecules
18:30	Dinner	
20:30	Poster Session	

<u>Day 3 - August 2, 2014</u>

09:00 - 10:00	Lucia Reining	TDDFT
10:00 - 10:30	Santiago Rigamonti	Practical aspects of TDDFT calculations
10:30 - 10:45	Coffee break	
10:45 - 12:45	Exercises:	TDDFT
12:45 - 14:15	Lunch break	
14:15 - 15:15	Miguel Marques	Exchange correlation (xc) functionals
15:15 - 15:45	Ute Werner	Using xc functionals in \exciting
15:45 - 16:00	Coffee break	

16:00 - 18:30	Exercises:	xc functionals, exact exchange, and van-der-Waals functionals
18:30 - 20:00	Dinner	

<u> Day 4 - August 3, 2014</u>

Excursion	
Social dinner	

<u>Day 5 - August 4, 2014</u>

09:00 - 10:00	Mark van Schilfgaarde	GW
10:00 - 10:30	Dmitrii Nabok	Practical aspects of GW calculations
10:30 - 10:45	Coffee break	
10:45 - 12:45	Exercises:	GW
12:45 - 14:15	Lunch break	
14:15 - 15:15	Lucia Reining	Many-body perturbation theory I
15:15 - 15:45	Caterina Cocchi	Bethe-Salpeter Equation (BSE)
15:45 - 16:00	Coffee break	
16:00 - 18:30	Exercises:	BSE
18:30	Dinner	

<u> Day 6 - August 5, 2014</u>

09:00 - 10:00	Miguel Marques	Electron-phonon coupling
10:00 - 10:30	Karsten Hannewald	Phonons
10:30 - 10:45	Coffee break	
10:45 - 12:45	Exercises:	Phonons
12:45 - 14:15	Lunch break	
14:15 - 15:15	Silvana Botti	Many-body perturbation theory II
15:15 - 15:45	Weine Olovsson	X-ray scattering
15:45 - 16:00	Coffee break	
16:00 - 18:30	Exercises:	X-ray scattering
18:30	Dinner	

<u> Day 7 - August 6, 2014</u>

controlled for controlled for the control of the co
--

10:00 - 10:30	Stefan Kontur	Raman spectra
10:30 - 10:45	Coffee break	
10:45 - 12:45	Exercises:	Raman spectra and thermal expansion
12:45 - 14:15	Lunch break	
14:15 - 15:15	Jorge Sofo	Thermoelectrics
15:15 - 15:45	Rostam Golesorkhtabar	Elastic constants
15:45 - 16:00	Coffee break	
16:00 - 18:30	Exercises:	Elastic constants with ElaStic and spin-polarization
18:30	Dinner	

<u> Day 8 - August 7, 2014</u>

09:00 - 10:00	Christian Carbogno	Thermal conductivity
10:00 - 10:30	Santiago Rigamonti	Magneto-optic Kerr effect (MOKE)
10:30 - 10:45	Coffee break	
10:45 - 12:45	Exercises:	MOKE + STM
12:45 - 14:15	Lunch break	
14:15 - 15:15	Anton Kozhevnikov	SIRIUS: a large scale parallelization project
15:15 - 15:30	Coffee break	
15:30 - 18:30	User projects	
18:30	Dinner	

<u> Day 9 - August 8, 2014</u>

09:00 - 10:00	Matthias Scheffler	NoMaD: Novel Materials' Discovery
10:00 - 10:15	Coffee break	
10:15 - 12:45	User projects	
12:45 - 13:00	Closure	
12:45 - 14:15	Lunch	

Annex 4b: Full list of speakers and participants

ORGANISERS:

Pasquale Pavone	Humboldt-Universität zu Berlin, Germany
Caterina Cocchi	Humboldt-Universität zu Berlin, Germany
Giulio Biddau	Humboldt-Universität zu Berlin, Germany
Claudia Draxl	Humboldt-Universität zu Berlin, Germany
Jürgen Spitaler	Materials Center Leoben Forschung GmbH, Austria

LECTURERS:

Silvana Botti	CNRS and University of Lyon, France
Kieron Burke	University of Calithium fluorideornia Irvine, USA
Christian Carbogno	FHI Berlin, Germany
Caterina Cocchi	Humboldt-Universität zu Berlin, Germany
Rostam Golesorkhtabar	Humboldt-Universität zu Berlin, Germany
Andris Gulans	Humboldt-Universität zu Berlin, Germany
Karsten Hannewald	Humboldt-Universität zu Berlin, Germany
Stefan Kontur	Humboldt-Universität zu Berlin, Germany
Anton Kozhevnikov	CSCS, Switzerland
Miguel Marques	University of Lyon, France
Dmtrii Nabok	Humboldt-Universität zu Berlin, Germany
Weine Olovsson	Linköping University, Sweden
Pasquale Pavone	Humboldt-Universität zu Berlin, Germany
Clas Persson	University of Oslo, Norway
Lucia Reining	CNRS Palaiseau and Ecole Polytechnique, France
Santiago Rigamonti	Humboldt-Universität zu Berlin, Germany
Matthias Scheffler	FHI Berlin, Germany
Mark van Schilfgaarde	Kings College London, UK
Jorge Sofo	Penn State Unviersity, USA
Jürgen Spitaler	Materials Center Leoben, Austria
Ute Werner	Humboldt-Universität zu Berlin, Germany

TUTORS:

Pablo Garcia Risueno	Humboldt-Universität zu Berlin, Germany
Hong Li	Humboldt-Universität zu Berlin, Germany
Lorenzo Pardini	Humboldt-Universität zu Berlin, Germany
Nora Salas Illanes	Humboldt-Universität zu Berlin, Germany
Kathrin Glantschnig	University of Leoben, Austria
Olga Turkina	Humboldt-Universität zu Berlin, Germany

STUDENT PARTICIPANTS:

Adela Nicolaev	University of Bucharest, Faculty of Physics, Romania
Albin Hertrich	Humboldt-Universität zu Berlin, Germany
Archana Manoharan	Humboldt-Universität zu Berlin, Germany
Bakhtiar UI Haq	University Teknologi, Malaysia
Benjamin Aurich	Humboldt-Universität zu Berlin, Germany
Bernhard Klett	Humboldt-Universität zu Berlin, Germany
Celso Ricardo Caldeira Rêgo	Instituto de Física de São Carlos-University of São Paulo, Brazil
Estelina Lora da Silva	University of Bath, United Kingdom
Evan Laksono	National University of Singapore, Singapore
Evgeny Blokhin	Humboldt-Universität zu Berlin, Germany
Fairoja Cheenicode Kabeer	University of Kassel, Germany
Felix Kramer	Humboldt-Universität zu Berlin, Germany
Hussien Osman	Oviedo University, Spain
Jens Wehner	Max Planck Institute for Polymer Research, Germany
Jin Wen	Academy of Sciences, Czech Republic
Jonathan Skelton	University of Bath, United Kingdom
Jos Boschker	Paul-Drude-Institut, Germany
Jose David Cojal Gonzalez	Humboldt-Universität zu Berlin, Germany
Jose Lado	INL, Portugal
Joseph Gonzalez	University of South Florida, USA
Christian Vorwerk	Humboldt-Universität zu Berlin, Germany
Juan Fernández Afonso	University of Santiago de Compostela, Spain
Marcus Fenner	Humboldt-Universität zu Berlin, Germany
Maria Troppenz	Humboldt-Universität zu Berlin, Germany
Matteo Guzzo	Humboldt-Universität zu Berlin, Germany

Maximilian Nowottnick	Humboldt-Universität zu Berlin, Germany
Min Wu	University of Saskatchewan, Saskatoon, Canada
Naira Grigoryan	University of Kassel, Germany
Pattanasak Teeratchanan	University of Edinburgh, United Kingdom
Philipp Haeffner	Humboldt-Universität zu Berlin, Germany
Priyadarshini Thiyam	KTH, Royal Institute of Technology, Sweden
Ronaldo Pela	Technolical Institute of Aeronautics , Brazil
Sven Lubeck	Humboldt-Universität zu Berlin, Germany
Torsten Wendav	Humboldt-Universität zu Berlin, Germany
Vijay Singh	Post-Doctoral Fellow, Israel
Vladimir Zobac	Academy of Sciences of the Czech Republic
Wahib Aggoune	University A. Mira of Bejaia, Algeria