European Science Foundation

Standing Committee for Physics and Engineering Sciences (PESC)

ESF PESC EXPLORATORY WORKSHOP

2nd Workshop on *ab initio* phonon calculations

SCIENTIFIC REPORT

Cracow, Poland 6–8 December 2007

Convened by: Krzysztof Parlinski

EXECUTIVE SUMMARY

The "2nd Workshop on *ab initio* phonon calculations" has been hold in Cracow, Poland, in the period from **6 to 8 December, 2007**. The Workshop took place in the Lecture Hall of "prof. W.Danka", and Computer Rooms in the Pedagogical University in Cracow. There were 75 participants from 16 countries.

The Workshop was organised in the framework of the Ψ_k Programme on *Electronic Structure Calculations of Solids and Surfaces Network*, and sponsored by the Polish Academy of Science and the Pedagogical University. The organisation task has been carried out by the staff of Department of Materials Research by Computers of the Institute of Nuclear Physics, PAN, Cracow, and the Institute of Technics of Pedagogical University, Cracow.

During the Workshop recent advances of the density functional theory (DFT) as well as the methods of dynamical and thermodynamical properties calculation of crystalline systems were provided. The DFT approach allows to finds structure, electronic properties, and interatomic forces in temperature T=0K regime, while the dynamical matrix, which can be calculated within the DFT approach, define the phonons, and thermodynamical properties at finite temperature. During the Workshop computer tutorials gave an opportunity to learn how to obtain vibrational and thermodynamical quantities using presented methods.

SCIENTIFIC CONTENT

In the first day of the Workshop there were lectures, poster session and computer tutorials. Georg Kresse gave comments about the advantages of the direct method against the linear response method, where the last one has recently been implemented in VASP. The advantage of the direct method becomes essential for the systems and problems which require to consider large supercells. The novel features of VASP code which include the hybrid functional, with mixture of certain fraction of local exchange with the Hartree-Fock exchange was presented. Peter Blaha demonstrated several examples of using Wien2k+Phonon calculations to establish the phase transitions in complex crystalline systems. Helmut Schober showed the interconnection between ionic conductors, their atomic vibrations and the possibilities to study this systems by inelastic neutron scattering technique. Wilfried Wunderlich analysed bond-length spectrum in strontium titanate as a way for better understanding of the electron-phonon coupling in this material. Terry Frankcombe discussed the influence of anisotropy on the quantities derived within the quasiharmonic approximation. Krzysztof Parlinski showed several applications of the VASP+PHONON code to actinide compounds, graphene lattice, and surface vibrations. Mark Johnson described the application of ab initio phonon approach to systems with hydrogen bonds. He argued that these bonds play a fundamental role in enzymatic catalysis. Michael Krisch gave an overview of the determination of the phonon dispersion relations in crystalline materials using inelastic X-ray scattering. Substantial progress was achieved for strongly correlated systems and materials under extreme pressure and temperature with respect to the study of the surface vibrations.

There were 23 oral contributions, which covered rather wide range of topics of computer simulations. The experimental data on lithium nitride, being a promising material for high capacity hydrogen storage, were presented in details. The anharmonicity of protons in sodium and potassium hydrogen disulfate was discussed on the basis of inelastic neutron scattering measurements including the overtones. The reason for expected low thermal conductivity in skutterudites, as a promising material for thermoelectric devices, was given. The new mechanism of Verwey phase transition in magnetite, involving two primary order parameters, one of which is strongly coupled to electronic states of X_3 , has explained the variety of features observed for this material. It was shown that the nuclear inelastic scattering of synchrotron radiation is able to provide phonon density of state data not only for Fe⁵⁷ isotope but also for Sm and Eu rare earth metals, for which the ab initio calculations are really challenging. The *ab initio* method has also been successfully applied to light actinides containing the f-electrons, Th and U, in which electron-phonon interaction seems to be essential.

It was demonstrated that the *ab initio* approach can be also applied to study the structure and magnetism of the Fe(210) grain boundary. This study could be the first stage of including phonons in such calculations and determine the complete spectral and thermodynamical properties of the grain boundary. Analysis of displacements associated with soft modes discovered in cubic antimonate rare earth metal phases, like RbSb, helped to establish the prototype phase. Moreover, a detailed *ab initio* analysis of phonon vibrations in GaN, doped with Mn impurities, proved that the spurious peak in Raman scattering spectra has a resonance character. The origin of martensitic transformation occurring in Ni₂MnGa crystals was determined from a soft mode along the [110] direction. Using quasiharmonic approximation a systematic and efficient stable shuffling structure was established. A proposition of predicting the phonon spectra of binary zincblende-type semiconductors as a function of concentration of constituents leads to an approach which gives results comparable to the measurements.

In order to test the accuracy of the screened hybrid functional method, implemented recently in VASP code, calculations of phonon dispersion curves for cubic diamond, silicon, germanium and grey tin were performed. Still, phenomenological phonon dispersion curves of graphene with a model of two coordination spheres could be fitted to a few experimental data for graphite. The spin-orbit coupling has been especially considered for the one- and twodimensional cobaltates. There was a presentation of software able to analyse the infrared response such as transmittance, reflectance or emittance. The program called FOCUS, is available on the web.

The virtual crystal approximation, often applied to ideal substitutional disorder, can be essentially improved by considering the proper phonons. The accuracy of the *ab initio* phonon calculations within DFT, and the applicability of the quasiharmonic approximation have been discussed on the examples of a large set of fcc metals. Phonons were also calculated for two solid phases of oxygen. Ion bombardment with MeV kinetic energy allows to observe the structural modifications on insulator and semiconductor surfaces. Under deexcitation the phononic signal can be observed. It was shown that the atomic vibrations influence and modify the relaxations of crystal surfaces as a function of temperature. Analytical expressions for the diffusivity and effusivity of thin layers starting from the time-domain thermoreflectance were proposed. A correlation of a rapid increase of surface temperature in thin Bi film exposed to a fs-laser pulses, with a weak electron-phonon coupling leads to explanation of observed delay in rising the sample temperature. The electron-phonon scattering times for collisions with short-wavelength phonons in semiconductors were determined within the *ab initio* method.

At the end of the first day of workshop, there was a tutorial in the Computer Lab, where the participants could exercise the use of the Phonon program, using data of Hellmann-Feynman files already computed by VASP or Wien2k programs. This time was also used to exchange information, and learn methodological details, which routinely are not included in published articles. All participants obtained a CD with the Mini-Phonon program, which can be used to perform simple phonon calculations in combination with an *ab initio* program, and can help to illustrate phonon physics in student educational processes.

There were 29 posters. Special time was devoted to Poster session, but posters were displayed during the whole Workshop, also during the breaks, therefore, there was enough time to look at them carefully.

ASSESSMENT OF THE RESULTS, CONTRIBUTION TO THE FUTURE DIRECTION OF THE FIELD

A number of topics have been indicated as important areas for future research with increasing prospective potential. Phonons will still be used to search for soft modes and identify the structural phase transitions. Phonon calculations will facilitate the analysis of vibration in crystals, including molecular crystals, and estimate the phonon peak's intensities in inelastic neutron and X-ray scattering experiments. Knowledge of phonon vibrations allows to calculate, in an *ab initio* way, the thermodynamical functions important in prediction of phase transition, phase diagrams, and some chemical reactions. The mentioned approach can be applied to bulk crystals, crystals with defects, surfaces and multilayers, hence one may study surface and interface phonons.

In comparing to the 1st Workshop a few new topics were implemented into the computer codes. *Ab initio* codes were supplemented by the more accurate hybrid functionals. There were contributions exclusively devoted to the consideration of the electron-phonon coupling. There was also some interest in study of atomic vibrations in substitutional disordered semiconductors.

Not much progress has been made in the following topics: There is still a need to calculate the anharmonic contributions to phonon shift and width, which go beyond the quasiharmonic approximation. This should allow to include anharmonic contributions to thermodynamical functions, and to compute thermal heat conductivity. There was not enough interest in study of *ab initio* vibrations in amorphous systems.

FINAL PROGRAM

Wednesday, December 1, 2007

17:00-20:00	Registration
19:00-	Informal reception at Demel Hotel
Thursday, Dec	cember 2, 2007
9:00 - 9:10 9:10 - 9:50	Welcome Georg Kresse VASP: linear response and hybrid functionals
9:50 - 10:30	Peter Blaha Electronic structure, atomic forces, structural relaxations and phonons by WIEN2k
10:30- 11:00	Coffee break
11:00- 11:40	Helmut Schober Dynamic instability at the origin of oxygen ion conduction in solid oxides at ambient temperature
11:40- 12:20	Wilfried Wunderlich Phonons in SrTiO ₃ analyzed by difference bond-length spectrum
12:20- 12:40	Daniel J. Bull Vibrational modes in light-metal imides and amides for hydrogen storage

12:40–14:10 Lunch at Demel Hotel

14:10- 14:50	Terry J. Frankcombe Anisotropic phonon effects in complex metal hydrides
14:50- 16:20	Poster Session
15:30- 16:00 16:20- 17:00	Coffee break Krzysztof Parlinski Lattice dynamics with PHONON
17:00- 19:00	Tutorial Session

Friday, December 3, 2007

9:00 - 9:40	Mark Johnson
	Inter-molecular hydrogen bonds; from temperature-driven proton transfer in molecular crystals to denaturation of DNA
9:40 - 10:00	Nina Verdal
	Strong hydrogen bonds in trialkali hydrogendisulfates studied with inelas- tic neutron scattering and periodic density functional theory
10:00- 10:20	Michael M. Koza
	Vibrational dynamics of nano-cage based thermoelectric materials — skut- terudites, clathrates and osmates
10:20- 10:50	Coffee break
10:50- 11:30	Michael Krisch
	Recent advances in inelastic x-ray scattering from phonons
11:30- 11:50	Przemysław Piekarz
	Mechanism of the Verwey phase transition in magnetite
11:50- 12:10	Svetoslav Stankov
	Lattice dynamics of Sm and Eu metallic films by nuclear inelastic scattering of synchrotron radiation
12:10- 12:30	Johann Bouchet
	Lattice dynamics of the light actinides
12:30- 14:00	Lunch at Demel Hotel
14:00- 14:20	Adam Kiejna
	Effect of impurities on grain boundary cohesion in iron

14:20- 14:40	Stefaan Cottenier
	Phonon information as a useful ingredient in the search for the high pres- sure phase of RSb
14:40-15:00	Wojciech Gebicki
	Lattice dynamics and Raman scattering of GaN:Mn crystals
15:00- 15:20	Tilmann Hickel
	Determination of symmetry reduced structures by a soft-phonon analysis in magnetic shape memory alloys
15:20- 15:40	Andrei Postnikov
	Impurity vibration modes in diluted semiconductor alloys
15:40- 16:10	Coffee break
16:10- 16:30	Kerstin Hummer
	Lattice dynamics of the group IV semiconductors: An ab initio study using screened hybrid density functionals
16:30- 16:50	Leonid A. Falkovsky
	Phonon dispersion in graphene
16:50-17:10	Hua Wu
	Orbital physics in the 1D cobaltates and 2D ruthenate
17:10- 17:30	Domingos De Sousa Meneses
	Software for retrieving the phonon response from infrared spectra
18:40	Bus departure from Za Kolumnami Hotel
18:50	Bus departure from Demel Hotel
19:00-	Dinner in Modlnica

Saturday, December 4, 2007

9:00 - 9:20	Olivier Pagès Phonon behavior in semiconductor alloys: A unified picture
9:20 - 9:40	Blazej Grabowski From ab initio to materials properties: Accuracy and error bars of DFT ther- modynamics
9:40 - 10:00	Duck Y. Kim Lattice vibration in the phase transition of solid oxygen: ϵ - and ζ -phase

10:00-10:20	Orkhan Osmani
	Ab initio calculations of phononic temperatures by relaxation of hot elec- trons

10:20-10:50 Coffee break

10:50–11:10 Pawel Scharoch Understanding the temperature dependent surface multilayer relaxation of Al(110): An ab initio approach

11:10–11:30 Jean-Luc Battaglia Thermal diffusivity and effusivity of thin layers based on thermoreflectance with femtosecond laser pulse

11:30–11:50 Anja Hanisch Thermal boundary resistance and discrete phonon spectrum of ultrathin Bi(111) heterolayers on Si(001): An ultrafast time resolved electron diffraction study

- 11:50–12:10 Jelena Sjakste Ab initio method for the electron-phonon scattering times in semiconductors
- 12:10– Closing

FINAL LIST OF PARTICIPANTS

Jean-Luc Battaglia	jean-luc.battaglia@bordeaux.ensam.fr
	Ecole Nationale Supérieure d'Arts et Métiers 33405 Talence Cedex, France
Yevgen Bilotsky	yevgen@cc.hut.fi
	Laboratory of Materials Processing and Powder Metallurgy, Helsinki University of Technology, P. O. Box 6200, FIN-02015 Helsinki, Finland
Peter Blaha	pblaha@theochem.tuwien.ac.at
	Institute of Materials Chemistry, TU Vienna, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
Marcia V.	vianey@ipicyt.edu.mx
Bojórquez-Avitia	Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a sección, CP 78216 San Luis Potosí, S.L.P., Mexico
Denis Bormann	denis.bormann@cnrs-orleans.fr CNRS Université d'Orleans, 1d, av de la Recherche Scientifique 45071 ORLEANS cedex 2 FRANCE, Orleans, France
Johann Bouchet	johann.bouchet@cea.fr
	Commissariat a l'Energie Atomique, Bruyeres le Chatel, France
Marta Bruska	marta.bruska@gmail.com
	Institute of Physics, Jagiellonian University, Kraków, Poland
Daniel J. Bull	D.J.Bull@salford.ac.uk Institute for Materials Research, University of Salford, Salford, Greater Manchester, M5 4WT, UK
Miroslav Cak	cak@ipm.cz
	Masaryk University, Faculty of Science, Kotlarska 2, 611 37 Brno, Czech Republic

Lucia Capogna	capogna@ill.fr INFM CNR-SOFT, OGG 6 Rue J. Horowitz, 38042 Grenoble, France
Stefaan Cottenier	stefaan.cottenier@fys.kuleuven.be Institute for Nuclear and Radiation Physics, K.U. Leuven, Belgium
Pavlina Elstnerova	xchemzalova@fch.vutbr.cz Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
Leonid A. Falkovsky	falk@itp.ac.ru L.D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow, Rus- sia
Terry J. Frankcombe	terry@chem.gu.se Department of Chemistry, Göteborgs Universitet, Göteborg, Sweden
Wojciech Gębicki	wojtg@if.pw.edu.pl Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00–661 Warszawa, Poland
Blazej Grabowski	grabowski@mpie.de Max-Planck-Institut für Eisenforschung GmbH, Postfach 140444, 40074 Düsseldorf, Germany
Sathya Hanagud	hanagud@aerospace.gatech.edu School of Aerospace Engineering, Georgia Institute of Technology, 30332-0150 Atlanta Georgia USA
Anja Hanisch	anja.hanisch@uni-due.de Department of Physics, Universität Duisburg-Essen, 47048 Duisburg, Germany
Daniel Heinert	daniel.heinert@uni-jena.de Friedrich-Schiller-Universität, Institut für Festkörperphysik, Helmholtzweg 5, D-07743 Jena, Germany
Tilmann Hickel	hickel@mpie.de Max-Planck-Institut für Eisenforschung GmbH, Postfach 140444, 40074 Düsseldorf, Germany
Kerstin Hummer	kerstin.hummer@univie.ac.at Computational Materials Physics, Vienna University, Sensengasse 8/12, 1090 Vienna, Austria
Zunbeltz Izaola	zunbeltz.izaola@hmi.de Hahn-Meitner Institute, Glienicker Str. 100, D-14109 Berlin, Germany
Tomasz Jaroń	tjaron@chem.uw.edu.pl Faculty of Chemistry, The University of Warsaw, Pasteur 1, 02–093 Warszawa, Poland
Paweł T. Jochym	Pawel.Jochym@ifj.edu.pl Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 32–342 Kraków, Poland
Mark Johnson	johnson@ill.fr Institut Laue Langevin, Grenoble, France
Jakub Kaczkowski	jakub_k@ifmpan.poznan.pl Institute of Molecular Physics, ul. Mariana Smoluchowskiego 17, 60–179 Poznań, Poland
Tomas Kana	t.kana@email.cz K.U. Leuven, Institut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, Parijsstraat 35B, B-3000 Leuven, Belgium
Stanisław Kaprzyk	kaprzyk@poczta.neostrada.pl Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30059 Kraków, Poland
Adam Kiejna	kiejna@ifd.uni.wroc.pl Institute of Experimental Physics, University of Wrocław, Plac M. Borna 9, 50–204 Wrocław, Poland

Duck Y. Kim	Duck.Young.Kim@fysik.uu.se Condensed Matter Theory Group, Department of Physics, Uppsala Uni- versity, Box 530, 75121 Uppsala, Sweden
Alexey Kislov	ank@dpt.ustu.ru Ural State Technical University, 620002, 19 Mira str., Yekaterinburg, Russia
Michael M. Koza	koza@ill.fr Institut Laue Langevin, 8 Rue Jules Horowitz, F-38042 Grenoble, France
Georg Kresse	georg.kresse@univie.ac.at Computational Materials Physics, Universität Wien, Sensengasse 8/12, 1130 Wien, Austria
Michael Krisch	krisch@esrf.fr European Synchrotron Radiation Facility, Grenoble, France
Dominik Kurzydłowski	d.kurzydlowski@student.uw.edu.pl Faculty of Chemistry, The University of Warsaw, Pasteur 1, 02–093 Warszawa, Poland
Dominik Legut	legut@ipm.cz
	Institute of Physics of Materials, Academy of Sciences, Žižkova 22, CZ-616 68 Brno, Czech Republic
Vincenzo Lordi	lordi2@llnl.gov
	Lawrence Livermore National Lab, 7000 East Ave, L-415, Livermore, CA, 94550, USA
Jan Łażewski	lazewski@wolf.ifj.edu.pl
	Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31–342 Kraków, Poland
Michał Łopuszyński	M.Lopuszynski@icm.edu.pl
	Interdisciplinary Centre for Computational and Mathematical Modelling, University of Warsaw, Pawińskiego 5a, 02–106 Warszawa, Poland
Marek Mihalkovic	mihalkovic@savba.sk Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia
David Moser	D.Moser@salford.ac.uk Institute for Materials Research, University of Salford, Salford, Greater Manchester, M5 4WT, UK
Marek Muzyk	muzyk@inmat.pw.edu.pl Warsaw University of Technology, Wołoska 141, 02–507 Warszawa, Poland
Andrzej M. Oleś	amoles@if.ui.edu.pl
	Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31–342 Kraków, Poland
Orkhan Osmani	orkhan.osmani@stud.uni-due.de Fachbereich Physik, AG Schleberger Universität Duisburg–Essen, Lotharstrasse 1, 47048 Duisburg, Germany
Szymon Owczarek	szymonow@ifd.uni.wroc.pl
	Institute of Experimental Physics, University of Wrocław, pl. Maxa Borna 9, 50204 Wrocław, Poland
Olivier Pagès	pages@univ-metz.fr
	Labolatoire de Physique des Milieux Denses, Université de Metz, Metz, France
Krzysztof Parlinski	Krzysztof.Parlinski@ifj.edu.pl Institute of Nuclear Physics, Polish Academy of Sciences ul. Radzikowskiego 152, 31–342 Kraków, Poland
Manuel Pérez Jigato	m.perez.jigato@uam.es
2	Departamento de Fisica de la Materia Condensada, Universidad Autónoma de Madrid, Facultad de Ciencias, E-28049 Madrid, Spain

Jacek Piechota	J.Piechota@icm.edu.pl Interdisciplinary Centre for Materials Modelling, University of Warsaw, ul. Pawińskiego 5a, 02–106 Warszawa, Poland
Przemysław Piekarz	piekarz@wolf.ifj.edu.pl
2	Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31–342 Kraków, Poland
Andrei Postnikov	postnikov@univ-metz.fr LPMD, Paul Verlaine University – Metz, 1 Bd Arago, F-57078 Metz, France
Shunichiroh Sawai	sawai@neo.pe.titech.ac.jp Quantum Nanoelectronics Research Center, Tokyo Institute of Technol- ogy, Tokyo, Japan
Paweł Scharoch	Pawel.Scharoch@pwr.wroc.pl Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50–370 Wrocław, Poland
Helmut Schober	hschober@ill.fr Sciences Chimiques de Rennes, UMR 6226 CNRS Université de Rennes 1, Inorganic Materials: Soft Chemistry and Reactivity of Solids, F-35042 France
Christian Schwarz	christian.schwarz.1@uni-jena.de FSU Jena, Institut für Festkörperphysik Helmholtzweg 5, 07743 Jena, Germany
David Sedmidubský	sedmidub@vscht.cz Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic
Raimundas Sereika	sereika@vpu.lt Department of Physics, Vilnius Pedagogical University, Studentu 39, 08106 Vilnius, Lithuania
Petr Sestak	sestak@kn.vutbr.cz Brno University of Technology, Technická 2, 616 69 Brno, Czech Repub- lic
Agata Siegel	dzwjadek@gmail.com Institute of Technology, Pedagogical University, Podchorążych 2, 30–084 Kraków, Poland
Jelena Sjakste	sjakste@theory.polytechnique.fr Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA-DSM- DRECAM, CNRS, 91128 Palaiseau, France
Domingos De Sousa Meneses	desousa@cnrs-orleans.fr Université d'Orléans - Polytech'Orléans, 8 rue Léonard de Vinci, 45072 Orléans, France
Svetoslav Stankov	stankov@esrf.fr ESRF, Grenoble, France
Paweł Starowicz	pawel.starowicz@uj.edu.pl M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30–059 Kraków, Poland
Małgorzata Sternik	Malgorzata.Sternik@ifj.edu.pl Institute of Nuclear Physics, Polish Academy of Sciences, Radzikouskiego 152, 31–342 Kraków Poland
Piotr Śpiewak	pspiewak@inmat.pw.edu.pl
	Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02–507 Warsaw, Poland
Janusz Toboła	tobola@ftj.agh.edu.pl Faculty of Physics and Applied Computer Science, AGH University of
NT: TT 1	science and recinicity, al. Mickiewicza 30, 30–059 Kraków, Poland
Nina verdal	kveraai@ani.gov Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL 60439 USA

Monika Vsianska	Monika.Vsianska@seznam.cz Masaryk University, Faculty of Science, Kotlarska 2, 611 37 Brno, Czech Republic
Urszula D. Wdowik	udw@ap.krakow.pl Institute of Technology, Pedagogical University, ul. Podchorążych 2, 30– 084 Kraków, Poland
Mirosław Werwinski	werwinski@ifmpan.poznan.pl Institute of Molecular Physics, ul. Mariana Smoluchowskiego 17, 60–179 Poznań, Poland
Bartłomiej Wiendlocha	bartekw@fatcat.ftj.agh.edu.pl Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30–059 Kraków, Poland
Jan Wróbel	jwrobel@icm.edu.pl Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02–507 Warszawa, Poland
Hua Wu	wu@ph2.uni-koeln.de Institute of Physics II, University of Cologne, Germany
Wilfried Wunderlich	wi-wunder@rocketmail.com Tokai Univeristy, Grad. School of Engineering, Department of Materials Science, Kitakaname 1117, 259-1292 Hiratsuka-shi, Kanagawa-ken, Japan
Martin Zeleny	zeleny@ipm.cz
	Institute of Physics of Materials, Žižkova 22, 616 62 Brno, Czech Repub- lic

STATISTICAL INFORMATION ON PARTICIPANTS

The 75 participants were comming from 16 countries: Austria (3), Belgium (2), Czech (7), Finland (1), France (13), Germany (8), Japan (2), Lithuania (1), Mexico (1), Poland (26), Russia (2), Slovakia (1), Spain (1), Sweden (2), UK (2), USA (3).