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1 Editorial

We start this issue of the Psi-k newsletter with a plea for scientific highlight articles for the
future issues, and most urgently for the August 2012 one. We would appreciate very much if all
of you could give it a serious consideration.

Following the call we have one workshop announcement and a number of abstracts of newly
submitted or recently published papers.

A very impressive scientific highlight of this issue is on ”Anisotropy of spin relaxation and
transverse transport in metals” by Yuriy Mokrousov, Hongbin Zhang, Frank Freimuth, Bernd
Zimmermann, Nguyen H. Long, Jürgen Weischenberg (Juelich), Ivo Souza (San Sebastian),
Phivos Mavropoulos and Stefan Blügel (Juelich).

The Uniform Resource Locator (URL) for the Psi-k webpage is:

http://www.psi-k.org.uk/

Please submit all material for the next newsletters to the email address below.

The email address for contacting us and for submitting contributions to the Psi-k newsletters is

function
psik-coord@stfc.ac.uk messages to the coordinators, editor & newsletter

Z (Dzidka) Szotek, Martin Lüders, Leon Petit and Walter Temmerman
e-mail: psik-coord@stfc.ac.uk
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2 General News

2.1 Call for Scientific Highlight Articles

This is an open call and also a plea for scientific highlight articles to appear in our bi-monthly
Psi-k Newsletter. We need six of such articles per year and they are very appreciated by all the
Psi-k community and others too.

These articles are meant to be a review-like and are highly sought by the IOP’s Journal of
Physics: Condensed Matter (JPCM). If accepted, they are published as topical reviews. The
refereeing process is fast and recently all the highlight articles have occured in the journal within
about two months or so.

The highlights are the most precious ingredients of our newsletters and from the very beginning
until now there have already been 111 of them. There has never been a Psi-k Newsletter without
a highlight article. Unfortunately, a person who already last year promised such an article for
the August 2012 issue, has only now withdrawn that promise. Therefore, we would like to
appeal to anybody out there who might have a half-ready review article on his/her work, or a
more general one, to offer it as a highlight for the August issue or even the later issues, starting
from February 2013, and so on. As mentioned above, the highlights can then get published in a
refereed journal, like JPCM.

Regarding the August highlight, please note that we would need this article in a latex format,
with encapsulated postscript- or pdf-files of figures, at the end of July 2012. For all the highlights
of the future issues the deadline for submission is about three days before the end of the month
preceding the month of a given issue, e. g. the 29th of July 2012 for the August 2012 issue, the
28th of September 2012 for the October 2012 issue, etc. The template for the scientific highlight
article, as well as for all the other contributions to the newsletters can be found in the Psi-k
Newsletter No 67 at http://www.psi-k.org.

For more information, please contact us at psik-coord@stfc.ac.uk.
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3 General Workshop/Conference Announcements

3.1 Spintronics Workshop in Regensburg (Germany)

September 19 - 21, 2012

Supported by:
Deutsche Forschungsgemeinschaft (DFG)

A workshop on ’Spin Phenomena in Reduced Dimensions’ will be held from September 19 to
21, 2012 in the historical downtown Regensburg/Bavaria - a UNESCO world heritage site since
July 2006. The meeting is the 5th one on spintronics and is intended to provide an overview
of the current understanding of basic physics and application related topics in this field. Sub-
jects of the meeting include new phenomena (spin-injection, spin Hall effect, spin effects on
atomic level, spin dynamics, spin-caloric effects ...), novel materials (ferromagnetic semiconduc-
tors, graphene, nanowires ...), and other topics. The workshop features mainly invited talks
from renowned scientists but there is also room for poster presentations to foster a lively debate
among the participants.

You and your collaborators/students are invited to participate in the workshop. No registra-
tion fees need to be paid. As the number of participants is limited we will register on a first
come first serve base. Please register using the following address:

http://www-app.uni-regensburg.de/Fakultaeten/Physik/Fakultaet/workshop12/

More information can be found at:

http://www-app.uni-regensburg.de/Fakultaeten/Physik/sfb689/index.en.php?cat=workshop2012

The list of invited speakers includes:

Rolf Allenspach (Zurich)
Kirsten von Bergmann (Hamburg)
Tomasz Dietl (Warsaw)
Andreas Heinrich (Almaden), Burkhard Hillebrands (Kaiserslautern)
Henri Jaffres (Paris)
Ron Jansen (Tsukuba)
Roland Kawakami (Riverside)
A. MacDonald (Austin)
Ingrid Mertig (Halle)
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Hideo Ohno (Sendai)
Yoshichika Otani (Tokyo)
Janusz Sadowski (Lund)
Shun-Qing Shen (Hong Kong)
Jairo Sinova (College Station)
Bart van Wees (Groningen)
Bruce Wessels (Evanston)
Ming Wei Wu (Hefei)
Igor Zutic (Buffalo)

Dieter Weiss (on behalf of the organizers)
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4 Abstracts

Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys

from first principles

T. P. C. Klaver, D. J. Hepburn, G. J. Ackland

Department of Materials Science and Engineering, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, The Netherlands,

Institute for Condensed Matter and Complex Systems, School of Physics and SUPA,

The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

Abstract

We present results of an extensive set of first-principles density functional theory cal-
culations of point defect formation, binding, and clustering energies in austenitic Fe with
dilute concentrations of Cr and Ni solutes. A large number of possible collinear magnetic
structures were investigated as appropriate reference states for austenite. We found that
the antiferromagnetic single- and double-layer structures with tetragonal relaxation of the
unit cell were the most suitable reference states and highlighted the inherent instabilities
in the ferromagnetic states. Test calculations for the presence and influence of noncollinear
magnetism were performed but proved mostly negative. We calculate the vacancy formation
energy to be between 1.8 and 1.95 eV. Vacancy cluster binding was initially weak at 0.1
eV for divacancies but rapidly increased with additional vacancies. Clusters of up to six
vacancies were studied and a highly stable octahedral cluster and stacking fault tetrahedron
were found with total bte by 0.1 eV and was repelled from mixed and compressive sites.
In contrast, Cr showed a preferential binding to interstitials. Calculation of tracer diffusion
coefficients found that Ni diffuses significantly more slowly than both Cr and Fe, which is
consistent with the standard mechanism used to explain radiation-induced segregation effects
in Fe-Cr-Ni austenitic alloys by vacancy-mediated diffusion. Comparison of our results with
those for bcc Fe showed strong similarity for pure Fe and no correlation with dilute Ni and
Cr.

(Submitted to Physical Review B, in press )
Contact person: klaver2@gmail.com
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Simulation of spin-polarized scanning tunneling spectroscopy on

complex magnetic surfaces:

Case of a Cr monolayer on Ag(111)

K. Palotás1, W. A. Hofer2, and L. Szunyogh1,3

1 Budapest University of Technology and Economics,

it Department of Theoretical Physics,

Budafoki út 8., H-1111 Budapest, Hungary
2 University of Liverpool, Surface Science Research Centre,

L69 3BX Liverpool, United Kingdom
3 Condensed Matter Research Group of the Hungarian Academy of Sciences,

Budafoki út 8., H-1111 Budapest, Hungary

Abstract

We propose a computationally efficient atom-superposition-based method for simulat-
ing spin-polarized scanning tunneling spectroscopy (SP-STS) on complex magnetic surfaces
based on the sample and tip electronic structures obtained from first principles. We go be-
yond the commonly used local density of states (LDOS) approximation for the differential
conductance, dI/dV. The capabilities of our approach are illustrated for a Cr monolayer on
a Ag(111) surface in a noncollinear magnetic state. We find evidence that the simulated
tunneling spectra and magnetic asymmetries are sensitive to the tip electronic structure,
and we analyze the contributing terms. Related to SP-STS experiments, we show a way to
simulate two-dimensional differential conductance maps and qualitatively correct effective
spin polarization maps on a constant current contour above a magnetic surface.

(Physical Review B 85, 205427 (2012))
Contact person: Krisztián Palotás, palotas@phy.bme.hu
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When atomic-scale resolution is not enough:

Spatial effects in in situ model catalyst studies

Sebastian Matera1*, Karsten Reuter1

1 Department Chemie, Technische Universität München,

Lichtenbergstr. 4, D-85747 Garching, Germany

Abstract

We investigate transport effects in in situ studies of defined model catalysts using a multi-
scale modeling approach integrating first-principles kinetic Monte Carlo simulations into a
fluid dynamical treatment. We specifically address two isothermal flow setups: i) a channel
flow with the gas-stream approaching the single crystal from the side, as is representative for
reactor scanning tunneling microscopy experiments; and ii) a stagnation flow with perpendic-
ular impingement. Using the CO oxidation at RuO2(110) as showcase we obtain substantial
variations in the gas-phase pressures between the inlet and the catalyst surface. In the chan-
nel geometry the mass transfer limitations lead furthermore to pronounced lateral changes
in surface composition across the catalyst surface. This prevents the aspired direct relation
between activity and catalyst structure. For the stagnation flow the lateral variations are
restricted to the edges of the catalyst. This allows to access the desired structure-activity
relation using a simple model.

(Submitted to Journal of Catalysis)
Contact person: Sebastian Matera, sebastian.matera@ch.tum.de

9



First-principles kinetic modeling in heterogeneous catalysis:

An industrial perspective on best-practice, gaps and needs

Maarten K. Sabbe1, Marie-Francoise Reyniers1 and Karsten Reuter2*
1 Laboratory for Chemical Technology, Department of Chemical Engineering (EA12),

Ghent University, Technologiepark 9189052, Zwijnaarde, Belgium
2 Department Chemie, Technische Universität München,

Lichtenbergstr. 4, D-85747 Garching, Germany

Abstract

Electronic structure calculations have emerged as a key contributor in modern heteroge-
neous catalysis research, though their application in the engineering community is still far
from optimal. This perspective aims to encourage the judicious use of first-principles kinetic
models in industrial settings based on a critical discussion of present-day best practices,
identifying existing gaps, and defining where further progress is urgently needed.

(Submitted to Catalysis Science and Technology as invited perspective)
Contact person: Karsten Reuter, karsten.reuter@ch.tum.de
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Generalized Wannier functions:

A comparison of molecular electric dipole polarizabilities

David D. O’Regan1,2, Mike C. Payne1, and Arash A. Mostofi3

1Cavendish Laboratory, University of Cambridge,

J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
2Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne,

Station 12, 1015 Lausanne, Switzerland
3The Thomas Young Centre and the Department of Materials, Imperial College London,

London SW7 2AZ, United Kingdom

Abstract

Localized Wannier functions provide an efficient and intuitive means by which to compute
dielectric properties from first principles. They are most commonly constructed in a post-
processing step, following total-energy minimization. Nonorthogonal generalized Wannier
functions (NGWFs) [Skylaris et al. Phys. Rev. B 66 035119 (2002); Skylaris et al. J.
Chem. Phys. 122 084119 (2005)] may also be optimized in situ, in the process of solving for
the ground-state density. We explore the relationship between NGWFs and orthonormal,
maximally localized Wannier functions (MLWFs) [Marzari and Vanderbilt Phys. Rev. B 56
12847 (1997); Souza, Marzari and Vanderbilt Phys. Rev. B 65 035109 (2001)], demonstrating
that NGWFs may be used to compute electric dipole polarizabilities efficiently, with no
necessity for post-processing optimization, and with an accuracy comparable to MLWFs.

Published in Phys. Rev. B 85, 193101 (2012).
Contact person: David D. O’Regan (david.oregan@epfl.ch)
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Ligand Discrimination in Myoglobin

from Linear-Scaling DFT+U

Daniel J. Cole1, David D. O’Regan2, and Mike C. Payne1

1Cavendish Laboratory, University of Cambridge,

J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
2Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne,

Station 12, 1015 Lausanne, Switzerland

Abstract

Myoglobin modulates the binding of diatomic molecules to its heme group via hydrogen-
bonding and steric interactions with neighboring residues, and is an important benchmark
for computational studies of biomolecules. We have performed calculations on the heme
binding site and a significant proportion of the protein environment (more than 1000 atoms)
using linear-scaling density functional theory and the DFT+U method to correct for self-
interaction errors associated with localized 3d states. We confirm both the hydrogen-bonding
nature of the discrimination effect (3.6 kcal/mol) and assumptions that the relative strain
energy stored in the protein is low (less than 1 kcal/mol). Our calculations significantly
widen the scope for tackling problems in drug design and enzymology, especially in cases
where electron localization, allostery, or long-ranged polarization influence ligand binding
and reaction.

Published in J. Phys. Chem. Lett., 2012, 3, pp 1448–1452.
Contact person: Mike C. Payne (mcp1@cam.ac.uk)
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Vanadium dioxide: A Peierls-Mott insulator

stable against disorder

Cédric Weber1, David D. O’Regan1,2, Nicholas D. M. Hine1,3,

Mike C. Payne1, Gabriel Kotliar4, and Peter B. Littlewood1,5

1Cavendish Laboratory, University of Cambridge,

J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
2Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne,

Station 12, 1015 Lausanne, Switzerland
3The Thomas Young Centre and the Departments of Materials and Physics,

Imperial College London, London SW7 2AZ, United Kingdom
4Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, U.S.A.

5Physical Sciences and Engineering, Argonne National Laboratory,

Argonne, Illinois 60439, U.S.A.

Abstract

Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this
work, we develop and carry out state of the art linear scaling DFT calculations refined
with non-local dynamical mean-field theory. We identify a complex mechanism, a Peierls-
assisted orbital selection Mott instability, which is responsible for the insulating M1 phase,
and furthermore survives a moderate degree of disorder.

Accepted for publication in Phys. Rev. Lett. (2012), arXiv:1202.1423.
Contact person: Cédric Weber (cw489@cam.ac.uk)
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Hybrid density functional theory meets quasiparticle

calculations: A consistent electronic structure approach

Viktor Atalla1, Mina Yoon2, Fabio Caruso1, Patrick Rinke1, and Matthias Scheffler1

1Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4–6, 14195 Berlin, Germany
2Materials Science and Technology Division and Center for Nanophase Materials

Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Abstract

We propose a scheme to obtain a system dependent fraction of exact exchange (α) within
the framework of hybrid density-functional theory. Employing the G0W0 approach we iden-
tify the optimum α-value for which the self-energy correction to the generalized Kohn-Sham
highest occupied molecular orbital (HOMO) is minimized. We tested this scheme for the
G2 dataset of atoms and small molecules and find α values ≥ 0.7. The scheme results in a
significantly improved energy-level spectrum with a mean absolute percentage error of ≈3%
for the generalized Kohn-Sham HOMO compared to the experimental vertical ionization
potentials.

( Submitted to Phys. Rev. Lett. (2012))
Contact person: Viktor Atalla (atalla@fhi-berlin.mpg.de)
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Electronic properties of lanthanide oxides from the GW

perspective

Hong Jiang1, Patrick Rinke2, and Matthias Scheffler2

1Beijing National Laboratory for Molecular Sciences,

State Key Laboratory of Rare Earth Materials Chemistry and Applications,

Institute of Theoretical and Computational Chemistry,

College of Chemistry and Molecular Engineering,

Peking University, 100871 Beijing, China
2Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4–6, 14195 Berlin, Germany

Abstract

A first-principles understanding of the electronic properties of f -electron systems is cur-
rently regarded as a great challenge in condensed-matter physics because of the difficulty in
treating both localized and itinerant states on the same footing by the current theoretical
approaches, most notably density-functional theory (DFT) in the local-density or general-
ized gradient approximation (LDA/GGA). Lanthanide sesquioxides (Ln2O3) are typical f -
electron systems for which the highly localized f -states play an important role in determining
their chemical and physical properties. In this paper, we present a systematic investigation
of the performance of many-body perturbation theory in the GW approach for the elec-
tronic structure of the whole Ln2O3 series. To overcome the major failure of LDA/GGA,
the traditional starting point for GW , for f -electron systems, we base our GW calculations
on Hubbard U corrected LDA calculations (LDA+U). The influence of the crystal struc-
ture, the magnetic ordering, and the existence of meta-stable states on the electronic band
structures are studied at both the LDA+U and the GW level. The evolution of the band
structure with increasing number of f -electrons is shown to be the origin for the characteris-
tic structure of the band gap across the lanthanide sesquioxide series. A comparison is then
made to dynamical mean-field theory (DMFT) combined with LDA or hybrid functionals to
elucidate the pros and cons of these different approaches.

(Submitted to Phys. Rev. B (2012))
Contact person: Hong Jiang (h.jiang@pku.edu.cn)
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A molecular perspective of water at metal interfaces

Javier Carrasco1, Andrew Hodgson2, Angelos Michaelides3

1Instituto de Catálisis y Petroleoqúımica, CSIC,

Marie Curie 2, E-28049 Madrid, Spain
2Surface Science Research Centre and Department of Chemistry,

University of Liverpool, Oxford Street, Liverpool, L69 3BX, U.K.
3Thomas Young Centre,

London Centre for Nanotechnology and Department of Chemistry,

University College London, London WC1E 6BT, U.K.

Abstract

Water/solid interfaces are relevant to a broad range of physicochemical phenomena and
technological processes, such as corrosion, lubrication, heterogeneous catalysis and electro-
chemistry. Although many fields have contributed to rapid progress in the fundamental
knowledge of water at interfaces, detailed molecular-level understanding of water/solid in-
terfaces comes mainly from studies on flat metal substrates. These studies have recently
shown that a remarkably rich variety of structures form at the interface between water and
even seemingly simple flat surfaces. In this review we discuss the most exciting work in this
area, in particular the emerging physical insight and general concepts about how water binds
to metal surfaces. We also provide a perspective on outstanding problems, challenges, and
open questions.

(Nature Materials, in press)
Contact person: angelos.michaelides@ucl.ac.uk
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Non-hexagonal ice at hexagonal surfaces: the role of lattice

mismatch

Stephen J. Cox,a Shawn M. Kathmann,b John A. Purton,c Michael J. Gillan,d and

Angelos Michaelidesa

aThomas Young Centre,

London Centre for Nanotechnology and Department of Chemistry,

University College London, London WC1E 6BT, U.K.
bChemical and Materials Sciences Division, Pacific Northwest

National Laboratory, Richland, Washington 99352, United States.
cSTFC, Daresbury Laboratory, Warrington WA4 4AD, U.K.

aThomas Young Centre,

London Centre for Nanotechnology and Department of Physics and Astronomy,

University College London, London WC1E 6BT, U.K.

Abstract

It has long been known that ice nucleation usually proceeds heterogeneously on the surface
of a foreign body. However, little is known at the microscopic level about which properties
of a material determine its effectiveness at nucleating ice. This work focuses on the long
standing, conceptually simple, view on the role of a good crystallographic match between
bulk ice and the underlying substrate. We use grand canonical Monte Carlo to generate the
first overlayer of water at the surface and find that the traditional view of heterogeneous
nucleation does not adequately account for the array of structures that water may form at
the surface. We find that, in order to describe the structures formed, a good match between
the substrate and the nearest neighbour oxygenoxygen distance is a better descriptor than
a good match to the bulk ice lattice constant.

(Physical Chemistry Chemical Physics, in press)
Contact person: angelos.michaelides@ucl.ac.uk
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5 SCIENTIFIC HIGHLIGHT OF THE MONTH

Anisotropy of spin relaxation and transverse transport in metals

Yuriy Mokrousov, Hongbin Zhang, Frank Freimuth, Bernd Zimmermann, Nguyen H.

Long, Jürgen Weischenberg, Ivo Souza∗, Phivos Mavropoulos and Stefan Blügel

Peter Grünberg Institut and Institute for Advanced Simulation,

Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

∗Centro de F́ısica de Materiales and DIPC, Universidad del Páıs Vasco, 20018 San

Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain

Abstract

Using first principles methods we explore the anisotropy of the spin relaxation and trans-
verse transport properties in bulk metals with respect to the direction of the spin quantization
axis in paramagnets or of the spontaneous magnetization in ferromagnets. Owing to the pres-
ence of the spin-orbit interaction the orbital and spin character of the Bloch states depends
sensitively on the orientation of the spins relative to the crystal axes. This leads to drastic
changes in quantities which rely on interband mixing induced by the spin-orbit interaction.
The anisotropy is particularly striking for quantities which exhibit spiky and irregular distri-
bution in the Brillouin zone, such as the spin-mixing parameter or the Berry curvature of the
electronic states. We demonstrate this for three cases: (i) the Elliott-Yafet spin-relaxation
mechanism in paramagnets with structural inversion symmetry; (ii) the intrinsic anoma-
lous Hall effect in ferromagnets; and (iii) the spin Hall effect in paramagnets. We discuss
the consequences of the pronounced anisotropic behavior displayed by these properties for
spin-polarized transport applications.

1 Introduction

Phenomena belonging to the field of spintronics are associated with the spin of electrons, which
do the job of carrying information accross a device. In such a situation, the fact that the spin
and orbital degrees of freedom of Bloch electrons in a solid are fundamentally related due to the
presence of spin-orbit interaction (SOI) becomes of great importance. Normally, the spin-orbit
interaction can be considered as a small perturbation compared to the other relevant energy
scales for electrons in a crystal (such as band gaps, band widths, or exchange splittings). Its
influence is to mix the spin and orbital character of the Bloch states for each Bloch momentum
in a non-trivial fashion. If we consider now a non-equilibrium situation of an electron moving
in one of the Bloch bands across the crystal under the influence of an external electric field,
the spin-orbit mediated interaction with other Bloch states will determine its spin and orbital
dynamics. Consider the case of a paramagnetic crystal. If we manage to make our initial
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incoming electron spin-polarized − a typical situation in a spin-injection experiment − this spin
polarization will decrease in time due to random scattering off impurities or phonons [1], until it
completely vanishes. Its exponential decay in time is characterized by the spin relaxation time,
which serves as one of the most basic material parameters in spintronics [2, 3]. The presence
of the SOI modifies in a subtle way the dynamics of Bloch electrons under an applied electric
field, by adding a spin-dependent transverse component to the velocity. This will result in an
anomalous Hall effect (AHE) in ferromagnets [4], and spin Hall effect (SHE) in paramagnets [5].
Conceptually, understanding of these two phenomena over the past 12−15 years generated a
cascade of novel paradigms in modern spintronics and solid state physics in general. While
practically the AHE and SHE entered an everyday toolkit in experimental spintronics, further
exciting research in this field is still ahead of us. In particular, a lot remains to be done concerning
the microscopic understanding and first principles description of spin-relaxation phenomena and
transverse transport properties in real materials.

The crystal field in a solid is manifestly anisotropic and it lifts the degeneracy between the
states with different magnetic quantum numbers. This results in a strong dependence of the
spin and orbital character of the Bloch states on the choice of the spin quantization axis (SQA)
or the direction of the magnetization in the crystal, since the matrix elements of the orbital
angular momentum operator are strongly anisotropic themselves. In ferromagnets, the crystal
field splitting combined with the anisotropy of the orbital angular momentum operator results
in a dependence of the eigenvalues on the direction of the magnetization, and leads to the
magneto-crystalline anisotropy energy (MAE) [6–8] − one of the most fundamental characteris-
tics of magnetic materials. In the field of transport phenomena in metals, the anisotropy of the
electronic structure with respect to the magnetization direction leads to such prominent phe-
nomena as anisotropic magnetoresistance (AMR) [9], tunneling anisotropic magnetoresistance
(TAMR) [10,11] and ballistic anisotropic magnetoresistance (BAMR) [12]. As in the case of the
MAE, these effects can be already captured in many cases by considering only the changes in the
band topology in the Brillouin zone, as the orientation of the magnetization is varied [10,12–14].
This situation is in contrast to the case of the AHE and SHE, which are often governed by band
degeneracies at the Fermi level [15]. In this case the dependence of the eigenenergies on the
SQA/magnetization is either absent or can often be neglected, while the anisotropy of the spin
and orbital resolution of the wavefunctions becomes of primary importance, and could lead to
very large values of the anisotropy of the Hall conductivities, as speculated already by Fivaz in
1969 for the anomalous Hall effect [16].

The significant anisotropy of the spin-relaxation and Hall effects is a valuable tool for tuning the
transport properties of spintronics devices. Since such anistropy is an intrinsic property of the
mono-crystalline solid, it should be properly averaged when using polycrystalline samples, as well
as when considering the effect of temperature and magnetization dynamics on the measured spin-
polarization or transverse current [17]. Experimentally, only the anisotropy of the anomalous
Hall effect has been researched in the past and in many cases a very large anisotropy was
found [18–25], while evidence of anisotropy in the spin Hall effect [26] and spin-relaxation has
been presented only recently [27,28].

Here, we review the present theoretical understanding of anisotropy in three phenomena occur-
ing in perfect crystals: (i) spin relaxation, (ii) intrinsic anomalous Hall effect, and (iii) intrinsic

19



spin Hall effect, Fig. 1. We will focus on the developments which took place over the past
years [17, 29–34]. In particular, we present agruments and show from first-principles calcula-
tions that due to the sensitivity of spin-relaxation and Hall effects to the SOI-mediated coupling
between (nearly) degenerate states in the vicinity of the Fermi level, the anisotropy of these
effects can be gigantic, and has in principal no theoretical limit. Manifestly, for some directions
of the SQA and magnetization in the crystal the spin relaxation rates and Hall currents can
be suppressed by orders of magnitude, or even display a change of sign in corresponding con-
ductivity components. We discuss possible applications of such large anisotropies, encourage
further experimental studies in this area, and emphasize that a wide range of materials exhibit
anisotropic transverse transport and spin relaxation, from bulk solids to surfaces and interfaces
with essentially lowered lattice symmetry.

1.1 Spin relaxation in paramagnets

As a first example of a situation in which the importance of the anisotropy of the wavefunctions
with respect to the choice of the spin quantization axis is very pronounced we consider the
phenomenon of spin relaxation. To be concrete, here we concentrate on the Elliott-Yafet spin-
relaxation mechanism, dominant in materials with structural bulk inversion symmetry [1, 3],
which is due to scattering of electrons off phonons or impurities. Owing to the presence of
spin-orbit coupling (SOC) in the system such scattering events will flip the spin of the electron
with a certain probability, which depends on both the wavefunctions of the ideal crystal and
the scattering potential. However, according to the Elliott approximation [1], an estimate of
the ratio between momentum- and spin-relaxation times, τp and T1, can be given in a first
approximation by neglecting the form of the scattering potential as follows: τp/T1 ≈ 4b2, where
b2 is the Elliott-Yafet parameter (EYP) defined below, which is an intrinsic property of the ideal
crystal [35].

The coexistence of time-reversal and space-inversion symmetries implies that the eigenenergies
of the crystal at any given Bloch momentum k are at least two-fold degenerate. Following
Elliott, we write the corresponding states as

ψ↑kŝ(r) = [akŝ(r) |↑〉ŝ + bkŝ(r) |↓〉ŝ] eik·r , (1)

ψ↓kŝ(r) =
[
a∗−kŝ(r) |↓〉ŝ − b∗−kŝ(r) |↑〉ŝ

]
eik·r . (2)

The two spin states |↑〉ŝ and |↓〉ŝ are eigenstates of ŝ·S, where ŝ is the unit vector along the chosen
SQA, S = ~

2σp is the spin angular momentum operator, and σp are the Pauli matrices. So, for
example, |↑〉z and |↓〉z are the eigenstates of the Sz operator. More generally, the reference frame
is specified by the SQA direction ŝ, which is chosen to coincide with the polarization direction
of the initial/injected spin population. The functions akŝ(r) and bkŝ(r) exhibit the periodicity
of the crystal lattice, and we define b2kŝ as the unit cell integral

∫
u.c. d

3r |bkŝ(r)|2 (similarly for
a2
kŝ, which satisfies a2

kŝ = 1− b2kŝ ).

For fixed ŝ, the degenerate ψ↑kŝ and ψ↓kŝ states (and the corresponding akŝ(r) and bkŝ(r)) can
be chosen, via a linear combination, such that the spin-expectation value Skŝ = 〈ψ↑|Sŝ|ψ↑〉
is maximal. The spin mixing parameter is then given by b2kŝ = 1/2 − Skŝ/~, and is usually
small, due to the weakness of the SOC. In this case the Bloch states are of nearly pure spin
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character. (Thus, akŝ represents the ”large” component of the spinor, while bkŝ the ”small”
component. The relation between the large or small components of ψ↑kŝ and ψ↓kŝ, akŝ = a∗−kŝ

and bkŝ = b∗−kŝ, follows from space and time inversion symmetry). However, at special spin-flip
hot-spot points in the band structure, e.g. accidental degeneracies, Brillouin zone boundaries or
other high symmetry points [35], b2kŝ may increase significantly up to 1

2 , which corresponds to
the case of fully spin-mixed states. Generally, the distribution of the spin-mixing parameter for
a metal with a complicated Fermi surface can be very non-trivial. The Fermi-surface averaged
Elliott-Yafet parameter is given by

b2ŝ =
1

n(EF )
1
~

∫
FS

|bkŝ|2
|vF (k)| d

2k , (3)

where vF (k) is the Fermi velocity. The normalization by the density of states at the Fermi level,
n(EF ) = 1/~

∫
FS |vF (k)|−1 d2k, ensures that 0 ≤ b2ŝ ≤ 1

2 .

For the ensuing discussion it will be useful to divide the spin-orbit operator into spin-conserving
and spin-flip parts, ξ(LS↑↑) and ξ(LS↑↓), given respectively by the first and second terms of the
following expression [30]:

ξL · S = ξLŝSŝ + ξ
(
L+

ŝ S
−
ŝ + L−ŝ S

+
ŝ

)
/2 . (4)

Here ξ is the spin-orbit coupling strength, L is the operator of the orbital angular momentum,
Lŝ = L · ŝ, Sŝ = S · ŝ, and L±ŝ and S±ŝ are the raising and lowering operators for orbital and spin
angular momenta. Acting on a state of the crystal obtained without SOC, the spin-flip part of
the SOI can flip its spin, while the spin-conserving part will keep it intact. It is clear that the
dot product L · S is independent of ŝ, leaving the eigenenergies of the Hamiltonian invariant.
However, the spin-conserving and spin-flip parts, separately, depend on the choice of the SQA.
In ferromagnets, the spin-conserving part of SOI is the one which is largely responsible for the
values of the magneto-crystalline anisotropy energy and orbital moments [7,8]. In paramagnets,
the Elliott-Yafet spin-relaxation mechanism is driven by the spin-flip part of the SOI.

In an experiment, the spin polarization of the electrons subject to spin relaxation is defined by
the direction of the external magnetic field (e.g. in conduction-electron spin resonance experi-
ments) or by the polarization of ferromagnetic leads (e.g. in spin-injection experiments). In a
paramagnet, the choice of the spin-quantization axis, determined by the direction of the spin
polarization, does not influence the band energies, and its most important manifestation is in the
changes of the orbital and spin character of the Bloch states. Experimentally, the dependence
of the spin-mixing parameter on the SQA was observed in supported graphene layers [27] and
in semiconductors [28]. However, no microscopic theory of anisotropic spin-relaxation which
explicitly refers to the anisotropy of the Bloch states has been given. In bulk metals with inver-
sion symmetry, which are at the focus of this article, the Elliott-Yafet mechanism is dominant.
Below we will demonstrate that indeed the anisotropy of the EYP in metals can be gigantic.

1.2 Anomalous Hall Effect in ferromagnets

A second phenomenon, for which multiple experimental studies of anisotropy exist [18–25],
but no quantitative theoretical argumentation for its emergence had been presented until re-
cently [17], is the anomalous Hall effect [36–38]. The essence of the AHE in a ferromagnet lies
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Figure 1: Setup of the anisotropic spin-relaxation and transverse spin and anomalous Hall
effects in metals. Anisotropic spin-relaxation (left): an electron with a certain direction of spin,
injected into a solid which exhibits anisotropic spin-relaxation will lose the memory of its initial
spin polarization over a period of time, which depends on the direction of the spin-polarization
in real space (z or x, red and blue arrows correspondingly). Anisotropic spin Hal effect (middle):
the magnitude of the spin current and the direction of its spin polarization (related to the sign
and magnitude of the spin accumulation on the surfaces of the sample) measured along a certain
direction in a crystal depends on the direction of applied electric field E which generates the
longitudinal electric current J0. Anisotropic anomalous Hall effect (right): for a fixed direction
of applied electric field E and corresponding longitudinal electric current J0 (out of the plane of
the manuscript), the direction and magnitude of the Hall current JH depend on the direction
of magnetization M in the sample. Note that for a general direction of M away from high-
symmetry axes in the crystal, JH can be non-orthogonal to M.

in the generation of a charge current JH transverse to the electric field E (and corresponding
”diagonal” current J0), without any applied magnetic field [15]. Phenomenologically, the rela-
tion between the ith component of the Hall current and the jth component of the electric field
is the following:

JH,i = σijEj , (5)

where σij are the components of the anomalous Hall conductivity (AHC) tensor. Since in a
ferromagnet the anomalous Hall conductivity tensor is second rank antisymmetric, the AHC
tensor can be also seen as the AHC vector σ, whose components are related to the components
of the AHC tensor as σi = 1

2

∑
jk εijkσjk, through the Levi-Civita tensor εijk:

JH = E× σ. (6)

In general, there can be different contributions to the AHC in a ferromagnet. In a real material
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contributions to the anomalous Hall current which originate from scattering of electrons off
impurities or due to disorder are always present − this is the so-called extrinsic AHE [33,39,40].
The second important part of the AHE signal − which comes solely from the electronic structure
of the pristine crystal − is the so-called intrinsic AHE [41]. Namely, the SOC in a perfect crystal
gives rise to a transverse spin-dependent ”anomalous velocity” of electrons propagating along the
direction of the applied electric field − thus leading to the intrinsic anomalous Hall current [4,42].
In the present work we will focus exclusively on the intrinsic contribution to the AHE.

The intrinsic anomalous Hall conductivity is determined by the electronic structure of the pris-
tine crystal, which can be accurately calculated using modern first principles methods, see for
example a recent review by Gradhand et al. [43]. Several investigations of intrinsic AHC using
the first principles methods have been done, for instance, in SrRuO3 [44,45], Fe [41,46], Ni [47],
Co [17, 47] and other ferromagnets. For these materials, the calculated intrinsic AHC agrees
well with the experimental values, except for the case of fcc Ni [47], which is most probably
due to effect of electronic correlations [33, 48]. It is therefore a common belief that the AHE
in moderately resistive samples of itinerant ferromagnets is often dominated by the intrinsic
contribution.

The intrinsic AHC considered in this work can be obtained via the linear response Kubo formula
for the off-diagonal components of the conductivity tensor σ:

σij = − e2~
∫

BZ

d3k

8π3
Ωij(k),

Ωij(k) = − 2Im
o,e∑
n,m

〈ψnk | vi |ψmk〉 〈ψmk | vj |ψnk〉
(εnk − εmk)2

,

(7)

which relates the conductivity tensor to the Brillouin zone (BZ) integral of the k-dependent
Berry curvature tensor Ω. In the latter expression ψnk and ψmk are respectively the occupied
(o) and empty (e) one-electron spinor Bloch eigenstates of the crystal, εnk and εmk are their
eigenenergies, and vi and vj are the Cartesian components of the velocity operator v. The Berry
curvature Ω appearing in the equation above is the very same quantity which arises when the
adiabatic dynamics of electrons in the reciprocal space is considered [42]. In particular, the Berry
phase acquired by a Bloch electron as it traverses a closed path in the Brillouin zone can be
calculated as an integral of the Berry curvature over the enclosed area [42,49]. Mathematically,
the Berry curvature is the curvature of the fibre bundle of occupied electronic states in an
insulator, and its integral over the whole torus of allowed Bloch vectors provides the value of the
quantized transverse charge conductivity, as first demonstrated for the case of the quantum Hall
effect by Thouless et al. [50]. The Berry curvature is a key quantity in the field of Chern and
topological insulators [51, 52]. Overall, Eq. (7) manifests the topological nature of the intrinsic
anomalous Hall effect in metals.

Let us briefly outline the concept of anisotropy as it applies to the AHE. The definition is slightly
more complicated than for the Elliott-Yafet parameter discussed previously, owing to the vector
nature of the anomalous Hall conductivity. The parameter with respect to which the anisotropy
of the AHE is studied is the direction of the magnetization M in the crystal. The anisotropy
of the AHC with respect to M is two-fold: not only the magnitude of σ depends on M, but
also the direction of σ displays a non-trivial dependence on the direction of magnetization. For
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a high symmetry direction of M the AHC vector is aligned with the magnetization so that the
Hall current is perpendicular to it. For a general direction of M away from high symmetry axes
in the crystal the AHC vector can deviate from the direction of M, in which case [17,20]:

σ(M) = σ‖(M) + σ⊥(M), (8)

where σ‖(M) is aligned with M while σ⊥(M) is perpendicular to it [17] (see also Fig. 1).
The microscopic origin of the AHE anisotropy is clear from the expression (7) for the Berry
curvature, according to which both dependence of wavefunctions as well as eigenenergies on the
magnetization direction leads to the anisotropy of the AHC. It is important to realize that in
contrast to the case of paramagnets with inversion symmetry (considered in the following with
respect to the anisotropy of the SHE and EYP), for which also the eigenspectrum does not
change with the SQA, the dependence of the wavefunctions on the magnetization direction in a
ferromagnet is far more complex, owing to broken time-reversal symmetry. Also, the anisotropy
of the velocity matrix elements has to be taken into account in uniaxial crystals. The largest
part of this work is dedicated to analyzing the anisotropy of the AHE in uniaxial crystals.

1.3 Spin Hall Effect in paramagnets

The spin Hall effect in paramagnets consists in generation of a spin current orthogonal to the
direction of an applied electric field E. In a simple picture, the spin current in the SHE can be
seen as two anomalous Hall currents, propagating in opposite directions for spin-up and spin-
down electrons. In contrast to the AHE, where the direction of the Hall current is uniquely
determined by the directions of E and M, the spin Hall current propagates in all directions
othogonal to E. For each of the directions of the spin current, the ”physical” spin-quantization
axis is determined by the direction of the current’s spin polarization. First proposed theoretically
in 1971 [5], the SHE was ”re-discovered” in 1999 [53], and eventually experimentally observed
in 2004 [54], triggering development of new directions in spintronics [55,56] and further research
in the direction of quantum spin Hall insulators [57–60]. In analogy to the anomalous Hall
effect, the observed SHE in metals contains two types of contributions: one extrinsic (driven
by disorder), and the other intrinsic (diorder-independent) [29,39,61,62]. And while very often
the spin Hall effect is associated with the resulting spin accumulation at the boundaries of the
sample, employing inverse SHE it is possible to measure directly the spin Hall conductivities
(SHCs), which are much easier to treat theoretically with ab initio methods. As in the case of
the AHE, for transition metals the experimental SHC values agree very often with the values
obtained from first principles calculations for the intrinsic SHE.

In the first principles calculations presented below we consider only the intrinsic [29,57,61,63,64]
contribution to the SHC, which results from the virtual interband transitions in the presence of
an external electric field. It may be expressed using a linear response Kubo formula analogous
to Eq. (7) for the AHC:

σsij = −e~
∫

BZ

d3k

8π3
Ωs
ij(k),

Ωs
ij(k) = − 2Im

o,e∑
n,m

〈ψnk |Qsi |ψmk〉 〈ψmk | vj |ψnk〉
(εnk − εmk)2

,

(9)
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where Qsi is the spatial i- and spin s-component of the spin velocity operator, and tensor Ω
is sometimes referred to as the ”spin Berry curvature”. If only the spin-conserving part of
the SOI is taken into account, the spin-projection along the direction of the spin-polarization
of the current ŝ is a good quantum number, and the spin velocity operator may be written as
Qsi = ~

2 viσ
p
s . In this case the SHC equals twice the value of (scaled) anomalous Hall conductivity

for spin-up electrons only. Here, σps is a Pauli matrix used to express the s-component of the
spin operator. In order to treat the spin-nonconserving part of the SOI correctly, we used the
definition of the spin current density operator given in Ref. [65].

To our knowledge, experimentally, the anisotropy of the spin Hall effect has been discussed only
once for AlGaAs quantum wells [26]. In metals the anisotropy of the SHE was investigated
recently by Freimuth et al. from first principles [29]. In many aspects, the SHC anisotropy is
analogous to that of the anomalous Hall conductivity. It is remarkable, however, that due to
the higher symmetry of the problem the anisotropy of the SHC in transition metals is what we
call purely geometrical. By this term we mean that it is exactly absent in case of a cubic crystal,
while generally the dependence of the magnitude and spin polarization of the spin current on its
direction can be reconstructed exactly from corresponding values for high-symmetry directions
in the crystal. This is in sharp contrast to the behavior of the AHC or EYP, which exhibit
anisotropy already in cubic crystals, and for which the dependence of the magnitude of the EYP
(anomalous Hall current) on the direction of the SQA (magnetization) cannot be reconstructed
from the respective ”high-symmetry” values. The middle part of this review is dedicated to the
anisotropy of spin Hall effect in transition metals.

2 Computational methods

For calculations of the Elliott-Yafet parameter and corresponding Fermi surfaces we used density
functional theory in the local density approximation [66] to calculate the underlying electronic
structure. For the self-consistent calculations we employed the Korringa-Kohn-Rostoker (KKR)
Green-function method [67] in the atomic sphere approximation and solve the Dirac equation
with angular-momentum expansion up to `max = 4. The Fermi surface is determined by the
KKR secular equation, det(M(k, EF )) = 0, which is equivalent to the condition that at least one
eigenvalue of the KKR matrix M vanishes. We search for the k-vectors fulfilling this condition
with a tetrahedron method using linear interpolation of the complex eigenvalues of M. We
choose a grid of 200 k-points for each direction in the full Brillouin zone, resulting in about 107

Fermi-surface points. We followed the procedure described in Ref. [68] to maximize the spin
component Skŝ at the Fermi-surface points. The integration (Eq. (3)) is done by evaluating the
integrand at the Fermi-surface points and interpolating linearly within the connecting triangles
(the details of the method will be published elsewhere).

For calculations of the intrinsic anomalous Hall and spin Hall conductivities we employed the
full-potential linearized augmented plane-wave (FLAPW) method, as implemented in the Jülich
code FLEUR [69]. We used the generalized gradient approximation to the DFT and experimental
lattice constants of the transition-metals. The self-consistent calculations with SOC were done
in second variation with kmax between 3.7 and 4.0 a.u.−1 and about 8000−16000 k-points in
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the full Brillouin zone. For intermediate alloys, for instance, (Fe0.5Co0.5)Pt, the virtual crystal
approximation (VCA) was applied on the 3d atomic sites, where the composition-averaged core
potential was used instead of that of pure 3d elements, together with corresponding number
of valence electrons, and interpolated lattice constants from the neighboring compounds [32].
For the calculations of the conductivities we applied the Wannier interpolation technique of
Wang et al. [46]. We followed the method introduced in Refs. [70] and [71] to construct the
maximally-localized Wannier functions (MLWFs) from the FLAPW Bloch states ψkm:

WRn(r) =
1
N

∑
k

e−ik·R
∑
m

U (k)
mnψkm(r), (10)

where WRn denotes the n-th WF centered at lattice site R, U (k)
mn refers to the unitary transforma-

tion among the Bloch states at k which minimizes the spread of the Wannier functions. Using
the self-consistent charge density with SOC included, 18 spinor MLWFs per transition-metal
atom, corresponding to s, p, d-type orbitals, were generated using wannier90 code [72].

Working in the basis of the maximally-localized WFs allows us to construct a real-space tight-
binding Hamiltonian of the crystal, which can reproduce the electronic bands with any given
accuracy at any k-point in the Brillouin zone, given that a necessary number of k-points was
used for the generation of the WFs [46]. The real-space tight-binding hopping parameters can
be calculated as:

Hmm′(R) =
1
N

∑
kn

εkne
−ik·R

(
U (k)
nm

)∗
U

(k)
nm′ , (11)

where Hmm′(R) denotes the hopping parameter between Wannier orbitals WRm′(r) and W0m(r).
Based on those parameters, the Hamiltonian H(k), matrix elements of the velocity operator as
well as charge and spin Berry curvature in reciprocal space can be efficiently evaluated using
the Wannier interpolation technique [46].

In the section on the anomalous Hall effect, we evaluate the derived perturbation theory ex-
pressions for the AHC in L10 FePt. In order to apply the perturbation theory in the basis of
Wannier functions, we use the basis of Wannier functions constructed without SOI to calculate
the matrix elements of the spin-orbit interaction. To do this, the scalar-relativistic Hamiltonian
without SOI is set up for the majority and minority states, and diagonalized in order to obtain
the Bloch functions ψσkn(r), with σ = ↑ or ↓. The matrix elements of SOC in the basis of Bloch
states can be then calculated:

V
(k)
nσ,n′σ′ =

∑
µ

µB

~meec2

〈
ψσkn

∣∣∣∣ 1
r

dV µ(r)
dr

Lµ · S
∣∣∣∣ψσ′

kn′

〉
, (12)

where Lµ is the atomic orbital momentum operator associated with atom µ (with the potential
V µ). In the scalar-relativistic approximation, the Hamiltonian H̃σ

mm′(R) can be obtained as:

H̃σ
mm′(R) =

1
N

∑
kn

εknσe
−ik·R

(
U (k)
nmσ

)∗
U

(k)
nm′σ. (13)

Likewise, the matrix elements V (k)
nσ,n′σ′ are transformed into the basis set of Wannier functions:

V σσ′
mm′(R) =

1
N

∑
knn′

V
(k)
nσ,n′σ′e

−ik·R
(
U (k)
nmσ

)∗
U

(k)
n′m′σ′ . (14)
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The complete Hamiltonian with SOC in the WF-basis is then given by

Hσσ′
mm′(R) = H̃σ

mm′(R)δσσ′ + V σσ′
mm′(R). (15)

Such a separation enables us to perform the perturbation treatment of SOC. By calculating
from first principles an atomic shell averaged SOC parameter ξ

def
=
〈

1
r
dV (r)
dr

〉
, it is possible to

write the SOC operator approximately as ξL · S, where L (S) is the total orbital (spin) angular
momentum operator. Calculated in such a way the SOC strength ξ for Pt (about 0.6 eV) is one
order of magnitude larger than that of 3d elements, for instance, ξ = 0.06 eV for Fe.

3 Anisotropy of spin relaxation in metals

First of all, let us work out the perturbation theory expression for the spin-mixing parameter of
a certain state ψn (we omit the explicit k-dependence for the moment). Let us assume that the
spin-conserving part of the spin-orbit interaction has been included in the Hamiltonian, which
has ψn as an eigenstate. In this case, since the spin-conserving SOC keeps the spin a good
quantum number, in a paramagnet with structural inversion symmetry, the state ψn can be
characterized by a certain value of spin, say, ψn = ψ↑n. This has an exact replica but of opposite
spin ψ↓n. Upon including into the picture the spin-flip SOI, ψ↑n will acquire an admixture of the
down spin which we will denote as (ψ↑n)↓, and which corresponds to the part that includes bkŝ

in Eq. (2). It is clear that since spin-flip SOI is off-diagonal in orbital character, the down-spin
admixture of ψ↑n does not come from interaction with ψ↓n at the same energy, but comes from the
interaction with the other states in the system. Within first order non-degenerate perturbation
theory (ψ↑n)↓ can be calculated as:

(ψ↑n)↓ = ξ
∑
m6=n

〈ψ↑m|LS↑↓|ψ↓n〉
εn − εm ψ↓m. (16)

Since the spin-mixing parameter b2n is equal to |(ψ↑n)↓|2, we readily obtain from the latter ex-
pression that

b2n ≈ ξ2
∑
m6=n

|〈ψ↑n|LS↑↓|ψ↓m〉|2
(εn − εm)2

. (17)

Therefore, the spin-mixing parameter of a certain state is just a sum of amplitudes for SOC-
mediated spin-flip transitions from this state to other states and back. This picture of the
Elliott-Yafet parameter in solids had been suggested by Elliott already in 1954 [1]. Later on in
this work, we will apply a similar approach in order to perform a perturbation theory analysis
of the Hall effects.

Before proceeding with ab initio calculations, we consider a simple model which is able to
capture the origin and essential properties of the anisotropy of the spin-mixing parameter in a
solid. Namely, let us consider six p-orbitals, pσx, pσy and pσz with σ = (↑, ↓) standing for the spin
of the orbitals. In order to consider the spin-mixing separately, we explicitly separate the two
SOC terms. We have:

H = H0 + ξ(LS)� + ξ(LS)↑↓ = diag(ε, ε+ δ, ε+ ∆)⊗ 12×2 + ξ(LS)� + ξ(LS)↑↓, (18)
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where in the on-site part the four states pσx and pσy are chosen to be almost degenerate at energy
ε (separated by energy δ: δ/∆ << 1), and the pσz orbitals are shifted to higher energy ε+ ∆ in
order to mimic the uniaxiality of the lattice. The SOC strength is given by ξ, with ξ/∆ << 1.
The energetic levels and their orbital character without spin-orbit are shown in the left column
of Fig. 2, in which δ was put to zero.

Let us first consider the case when the SQA points along the z-axis and δ = 0. When only
spin-conserving SOC is added to H0, the eigenstates are (pσx ± ipσy )/

√
2 and pσz (σ =↑, ↓), with

energies as sketched in Fig. 2. The only non-vanishing matrix elements of the spin-flip SOC
are 〈p↑x − ip↑y|LS↑↓|p↓z〉 = 2 and 〈p↓x + ip↓y|LS↑↓|p↑z〉 = −2 which come from the states that are
well-separated in energy. According to Eqs. (16) and (17) this leads to a small admixture of the
pz-state of opposite spin in the lowest lying eigenstate, and corresponding spin-mixing parameter
of the order of (ξ/∆)2 when the spin-flip SOC is included. On the other hand, when the SQA is
chosen along the x-axis, the spin-conserving part of SOC mixes small ξ/∆-portions of pσy with
pσz orbitals, see Fig. 2. Now, there are four non-vanishing matrix elements of spin-flip SOI, all
of order 1, among which two transitions are very close in energy with a separation of ∼ ξ2/∆,
giving rise to a much larger spin-mixing of the order of ∆/ξ. This results in a very strong
spin-mixing between the two low-lying orbitals when the spin-flip SOC is added, and leads to a
very large spin-mixing parameter of the lowest-lying state of the order of (∆/ξ)2, meaning that
higher-order perturbation theory is needed since the spin-mixing parameter cannot exceed 1

2 .
The resulting orbital and spin character of the states when the Hamiltonian with complete SOC
is diagonalized, is presented in the right column of Fig. 2. Note, that the final eigenenergies are
the same, while the character of the states is different among the two directions of the SQA.
Obviously, the resulting anisotropy of the spin-mixing parameter of the lowest-lying state with
respect to the choice of the SQA is very large if ξ/∆ << 1.

The model presented above allows us to make some statements concerning the general conditions
under which a large anisotropy of the spin-mixing parameter in a metal can be expected. First of
all, crucial is the presence of a degeneracy or near-degeneracy at EF , of Bloch states originating
from the atomic orbitals φm and φm′ , with the orbital characters |m −m′| 6= 1, which are the
eigenstates of the Lŝ operator for some direction of the SQA (say, z). In this case (|m−m′| 6= 1)
no direct coupling is allowed between them by the spin-flip part of the SOC Hamiltonian, and the
system is ”protected” against large-amplitude spin-flip transitions, since the spin-mixing occurs
due to interaction with other, energetically different, states. Correspondingly, the further away
these other states are from the Fermi energy, the smaller the spin-mixing parameter will be, as
exemplified for our model in Fig. 3 where at δ = 0 (we remind that δ stands for the splitting
between px and py orbitals), the parameter ∆ is varied. In this case also relative position of
the states φm and φm′ with respect to each other is not that important for the spin-mixing
parameter, see dotted line in Fig. 3, in which at constant ∆, parameter δ is varied. On the
other hand, for the SQA along the x-axis, the spin-mixing between the nearly degenerate states
φm and φm′ is favored and reaches very large values, decaying as a function of the separation δ,
see full line in Fig. 3. The spin-mixing of the nearly degenerate states with the other states is
minimal on the other hand, but it reduces the overall value of the spin-mixing parameter. The
suppression of the spin-mixing parameter of the states at the Fermi energy due to interaction
with the higher lying states is reduced, the further the latter are from the Fermi energy, as
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Figure 2: Eigenvalues of the spin-degenerate p-states described by the Hamiltonian diag(ε, ε, ε+
∆)⊗12×2 (left column), including the spin-conserving part of SOC for two different quantization
axes (middle column), and including both spin-conserving and spin-flip parts of SOC for two
different quantization axes (right column). For each doubly degenerate state the orbital and
spin decomposition is given with a label. Note that while the energy spectrum is identical for
both SQA’s in the right column, the spin character of the two low-lying states is different, which
gives rise to the anisotropy of the spin-mixing parameter. In the labels, ”ε” and ”ε′” denote a
small admixture of the corresponding state of the order of ξ/∆.

clearly visible in Fig. 3, in which ∆ is varied at constant δ = 0. Overall, by examining Fig. 3,
we conclude that the largest anisotropy of the spin-mixing parameter in a metal will be favored
when the states with |m − m′| 6= 1 at the Fermi are perfectly degenerate, and are positioned
very far away from other states.

Let us now turn to hcp osmium, which we choose as an example of a typical transition metal
with a uniaxial crystal structure and the properties of which we calcualted from first principles.
First, we take a look at the bandstructure of Os along the Γ − A path from the Brillouin zone
center along the z-axis, presented in Fig. 3 (right). The splitting of the two bands (each band is
doubly degenerate) which cross the Fermi level here (”1” and ”2”, full lines), is due to the spin-
orbit interaction, as can be verified from the fact that they fall on top of each other when scaling
down the spin-orbit coupling strength. Also, without SOC, it is straightforward to determine
the orbital character of the bands: in this case the bands have a d+1 and d−1 character, which
are superimposed to form the dxz and dyz states. Overall, we have all prerequisites for a large
anisotropy of the Elliott-Yafet parameter at this point of the Fermi surface, according to the
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Figure 3: Left: Dependence of the spin-mixing parameter of the lowest lying state in the model
from Fig. 2 on the separation δ (in eV) between nearly degenerate px and py states at constant
separation with the pz orbital ∆ = 1 eV (left), and on the separation of degenerate px and py

states (δ = 0 eV) with the pz orbital ∆ (in eV, right). The SOC strength of 0.1 eV was taken
for these calculations. Clearly, the largest anisotropy of the spin-mixing parameter is acquired
when the states px and py are perfectly degenerate and are lying far away from the pz orbital.
Right: Band structure of hcp osmium around the Fermi level, in the direction Γ−A of the BZ
with applied B-field of 40 meV. The exchange splitting of the two bands crossing the Fermi
energy (1 and 2) depends on the direction of B, reflecting the anisotropy of the spin-mixing at
the hot-spot “H” in Fig. 4.

arguments presented above, since bands ”1” and ”2” are well-separated from other bands at the
crossing with the Fermi level. Before proceeding with an explicit calculation of the Elliott-Yafet
parameter distribution over the whole Fermi surface of Os, we perform a numerical experiment
in order to examine the anisotropy of the response of the bands in Fig. 3 to a small Zeeman-like
field B with the magntiude of 40 meV. The small Zeeman field which we apply by hand lifts the
remanent degeneracy owing to the coupling to the Bloch states of the form B ·σp, which breaks
the time-reversal symmetry and defines a spin-quantization axis in the direction of B. In Fig. 3
we clearly observe a splitting of bands “1” and “2” for B along the c-axis in the crystal (dashed
lines). However, for B in the ab-plane, the degenerate pairs “1” and “2” do not split (solid lines),
which marks a very anisotropic response to a Zeeman magnetic field. We can understand this
result by employing the perturbation theory arguments from before: in first order, the energy
shift of a state due to the presence of a small Zeeman field is proportional to its spin polarization,
which is similar to that depicted in Fig. 2. Correspondingly, while in the latter case the states
are fully spin mixed and the bands do not split, in the former situation a large Zeeman splitting
is achieved.

The calculated Fermi surface of Os presented in Fig. 4(a-c) consists of two nested sheets, a
surrounding surface crossing the Brillouin zone boundary and little hole pockets (denoted by
“P”). The latter ones are ellipsoids in an extended zone scheme centered around a point on the
Brillouin zone boundary. Analyzing the distribution of the spin mixing parameter b2kŝ on the
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Figure 4: Fermi surfaces of Os (a-c) and W (d-e). For an illustration of the nested sheets only
half of the Fermi surface of Os is shown. The Elliott-Yafet parameter b2kŝ is shown with a color
code on the Fermi surface with the SQA along the c-axis (a) and in the ab-plane (b). Red arrows
at the left-lower corner of (a) and (b) indicate the direction of the SQA. The difference of b2kŝ

between the two directions of ŝ is shown in (c). Analogously, b2kŝ for ŝ along [001] and [111]
in W is shown in (d) and (e), respectively. The averaged values of b2ŝ over all directions of ŝ,
corresponding to polycrystalline samples, are 0.0666 for Os and 0.0627 for W. Note that the
color scale on the right refers only to (c). Taken from [34].

Fermi surface, we observe a strong dependence on the SQA, evident from comparing Figs. 4(a)
and (b). For ŝ along the c-axis of the crystal, Fig. 4(a), the spin mixing is relatively uniform
(b2kŝ ≈ 0.05) for large areas of the Fermi surface, reaching higher values near the pockets.
However, this picture changes drastically when ŝ is in the ab-plane (Fig. 4(b)). In this case, the
areas with full spin mixing (red, b2kŝ ≈ 0.5) are prominent, most clearly at the caps of the two
nested Fermi-surface sheets, indicated by “H”, which are formed by bands ”1” and ”2” crossing
the Fermi level in Fig. 3. Additionally, large areas with smaller, but still strong spin mixing
(b2kŝ ≈ 0.3) are visible, e.g. in the region denoted by “B”. Overall, for the two considered cases
there is a strong qualitative difference in the k-dependent spin-mixing parameter b2kŝ.

As for the Fermi-surface averaged values b2ŝ, we find b2ŝ of 4.85×10−2 and 7.69×10−2 for ŝ along
the c-axis and the ab-plane, respectively, yielding thus a gigantic anisotropy of the Elliott-Yafet
parameter, defined as A =

[
maxŝ(b2ŝ)−minŝ(b2ŝ)

]
/minŝ(b2ŝ), of 59%. On the other hand, the

anisotropy A with respect to rotations of the SQA within the ab-plane is negligible. These two
limiting cases are depicted in Fig. 5(b), in which the value of b2ŝ is shown as a function of ŝ for all
possible directions of ŝ. The absent (or very small) anisotropy in the ab-plane is reflected in the
rotationally invariant color-scale around the c-axis, as opposed to the large difference between
the ab-plane and the c-axis. The difference of b2k for the two limiting cases of SQA for each
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point at the Fermi surface is shown in Fig. 4(c). Large areas of the Fermi surface show small
orientational dependence of b2k (white areas). The anisotropy at the hot spots is very large,
but the sign is different between the hot spot “H” and the hot spots near the pockets. The
magnitude of the effect is strongly enhanced by the large extension of the two near-degenerate,
parallel sheets of the Fermi surface, resulting in a spin-flip ”hot area” around ”H” instead of a
single ”hot spot”. In addition, the reduced symmetry helps: if the crystal had cubic symmetry,
then upon change of the SQA from z to x the effects at rotationally equivalent parts of the
Fermi surface would mutually cancel.

Next, we analyze the hot-spot contribution to the averaged b2ŝ and the anisotropy A. We perform
integrals similar to Eq. (3), but restricting the integration to the part of the Fermi surface where
b2kŝ lies in certain intervals, xi < b2kŝ ≤ xi+1, with xi = 0, 0.05, 0.10, ... This integration results
in values b̃2ŝ which form the histogram presented in Fig. 5(a). As we can see, for the SQA
along the c-axis, b2ŝ is mainly determined by regions with relatively low spin-mixing parameter
(b2kŝ < 0.15), leading to the total value of 4.85 × 10−2 (denoted by the solid arrow). For ŝ in
the ab-plane there is also a considerable contribution from regions with b2kŝ > 0.15 increasing
the total value to 7.69 × 10−2 (dashed arrow). Comparing the two histograms for different
SQA, we can draw conclusions about the respective contribution of each region to the total
anisotropy, Ã = (b̃2ab − b̃2c)/b2c . Interestingly, the anisotropy originates not only from the hot
spots with b2kŝ > 0.35 leading to Ã = 12%, but mainly from the areas with smaller spin mixing
0.15 < b2kŝ ≤ 0.35 around the hot spots and regions “B”, resulting in Ã = 49%. The larger area
with low spin-mixing, b2kŝ ≤ 0.15, does not contribute to the anisotropy significantly (Ã = −2%).

Let us now turn to tungsten, which has a bcc lattice structure, and see whether higher symmetry
of the lattice brings qualitative changes in the anisotropy of the EYP. When ŝ ‖ [001], b2kŝ exhibits
hot-spots in directions perpendicular to ŝ (denoted by “C”) (Fig. 4(d)), following a formation
scenario similar to that at the “H”-point in Os. Additionally, many states with smaller spin
mixing (0.2 < b2kŝ < 0.3) are present at the Fermi surface, leading to b2ŝ = 6.49× 10−2. For the
SQA along another high symmetry direction of the lattice, ŝ ‖ [111] in Fig. 4(e), the intensity at
the point “C” is reduced, but a large area with smaller spin mixing is clearly present, resulting
in b2ŝ = 6.14× 10−2. For SQA along [110], we find b2ŝ = 6.26× 10−2. This leads to an anisotropy
A = 6%, which is still large but one order of magnitude smaller than in hcp Os. This observation
is similar to the dependence of the magnetocrystalline anisotropy energy [73] and anisotropy of
the intrinsic anomalous Hall conductivity [17] on the symmetry of the lattice in ferromagnetic
crystals: the cubic W crystal exhibits a fourfold rotational axis, causing SOC to contribute to A
in fourth order. In the uniaxial hcp structure, an axis perpendicular to the c-axis is only twofold,
and SOC enters A already in second order. Nevertheless, the comparatively large anisotropy
of spin-relaxation in W is partly a consequence of the d-states, which yield a strong directional
anisotropy of the Fermi surface. In contrast to this, the Fermi surface of gold consists of s-like
states and can be regarded as almost spherical. For the Elliott-Yafet parameter in Au, we find
a value of b2ŝ ≈ 3.25 × 10−2 which is comparable in magnitude to that in W and Os, but the
anisotropy is one order of magnitude smaller than in W. Looking at the symmetry of b2kŝ in
W, we recognize that it is lower than the symmetry of the lattice. And although for a spin
quantization axis along [001] the fourfold rotational symmetry of the lattice around this axis is
retained by b2kŝ, Fig. 4(d), further symmetry breaking will occur for an arbitrary direction of the
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Figure 5: (a) Contribution to the Fermi-surface average, b2ŝ, as function of b2kŝ (see text). The
solid (dashed) arrow denotes b2ŝ for the SQA along the c-axis (in the ab-plane). The numbers
correspond to the respective contribution of each region to the anisotropy Ã, leading to a total
anisotropy A of 59%. Note, that while the anisotropy of the EYP is clearly dominated by
intermediate region of b2kŝ, the major contribution to the EYP for both directions of the SQA
comes from the region with b2kŝ < 0.15 (96 and 60% for the SQA along the c-axis and in the
ab-plane, respectively). In (b) and (c), the integrated Elliott-Yafet parameter b2ŝ is shown as
function of the SQA direction for Os and W, respectively (different color scale). Taken from [34].

SQA, leaving only those point-group symmetry operations of the lattice that map the SQA to
itself, plus the inversion symmetry k → −k. In contrast, for the integrated value b2ŝ, Fig. 5(c),
the full symmetry of the lattice is obviously retained.

To conclude, we underline that the spin relaxation in metals can strongly depend on the orien-
tation of the injected-electron spin axis due to a corresponding anisotropy of the Elliott-Yafet
coefficient [34]. The anisotropy is expected to be largest in non-cubic crystals, in the presence
of extended, nested Fermi-surface sheets that are almost degenerate, resulting in delocalized
”spin-flip hot areas” instead of singular ”spin-flip hot spots”. Especially critical are cases where
the splitting is caused primarily by the spin-orbit coupling. Since there is no theoretical limit
on the area of the nested sheets in this scenario, the anisotropy of the EYP can be in principal
colossal, by far exceeding the values calculated and presented here for Os, Au and W.

4 Anisotropy of intrinsic spin Hall effect in metals

The spin current is characterized by velocity and spin polarization. Hence, the spin current
density Q is a tensor in R3 ⊗ R3 spanned by the basis vectors êi ⊗ f̂k. For clarity we use the
symbols f̂x, f̂y and f̂z to denote the unit vectors of spin polarization while êx, êy and êz are
the unit vectors of velocity. In terms of the spin Hall conductivity tensor, σkij (which has three
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indices: i denotes the direction of spin current, j the direction of applied external electric field,
and k the direction of spin polarization of the spin current), the spin current density for a general
direction of electric field is given by

Q =
∑
ijk

σkij êi ⊗ f̂kEj . (19)

While the anisotropy of the AHE manifests itself in the dependency of the magnitude of the
conductivity vector on the magnetization direction, in the case of the SHE in paramagnets there
is no magnetization vector M to control, only the direction of the applied electric field can be
varied. However, the spin polarization of the induced spin current depends on the direction in
which the spin current is measured (see Fig. 6(a)). Hence, for a fixed electric field a given spin
polarization ŝ is measured only in a certain direction. Thus, in analogy to Eq. (6) we may write

Qŝ = E× σ(ŝ), (20)

where Qŝ is the spin current density for spin polarization along ŝ and σ(ŝ) is the SHC vector.
(We remind that while Qŝ lives in the space of basis vectors êx, êy and êz, the direction of the
spin polarization ŝ of the spin current is spanned by basis vectors f̂x, f̂y and f̂z). If the magnitude
of the SHC vector depends on the spin polarization direction ŝ in a material, the SHE in this
material is said to be anisotropic. The spin Hall conductivity vector and SHC tensor, in analogy
to the anomalous Hall effect (see introduction), are related as follows:

σl(ŝ) =
1
2

∑
ijk

εijlσ
k
ijsk, (21)

where σl is the l-th component of the conductivity vector, ŝ = (sx, sy, sz)T and εijl is the
Levy-Civita symbol.

In cubic systems symmetry requires that σkij = σzxyεijk. Thus, the SHC may be expressed in
terms of one material parameter, Eq. (20) simplifies to Qŝ = σzxyE × ŝ, and the conductivity
vector is σ(ŝ) = σzxy ŝ. Since the magnitude of the conductivity vector, σzxy, is independent of
ŝ, the SHE is isotropic in cubic systems. The relationship between the direction of spin current
and the direction of spin polarization in cubic systems is illustrated in Fig. 6(a). For the spin-
mixing parameter and the anomalous Hall effect the dependence on the direction of the SQA
and magnetization in the sample, respectively, can be more complicated even in cubic crystals,
see e.g. Fig. 5(c).

Let us consider now rigorously the situation of the SHE in transition metals with hcp structure,
Fig. 6(b), keeping in mind that the following results remain valid also for general uniaxial
structures. If the electric field is applied along the x-direction, the magnitude of the spin
current in y-direction will generally differ from the one in z-direction since the x-axis exhibits
only 2-fold rotational symmetry. The spin current density in direction n̂ = (0, cos θ, sin θ)T is

n̂ ·Q = −(σzxy f̂z cos θ − σyzxf̂y sin θ)Ex. (22)

Note that according to Eq. (19) n̂ ·Q is a vector pointing in the direction of spin polarization.
We define the anisotropy of the SHE for spin polarization in the yz-plane as ∆zy = σzxy − σyzx.
Physically, if σzxy and σxyz have the same sign, parameter ∆zy quantifies the difference in the
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Figure 6: (a) Spin currents in cubic systems induced by an electric field along the z-axis. For
electrons e with velocity v in y-direction the spin s points in x-direction, while for electrons
going in x-direction the spin points in minus y-direction. (b) Hexagonal hcp structure of the
transition metal Ti. The spin current in direction n̂ = (0, cos θ, sin θ)T induced by an electric
field in x-direction is not perpendicular to the velocity v for a general angle θ, i.e., v and s
enclose an angle α 6= 90◦. (c) Decomposition of the SHC of Sc into perpendicular and parallel
components following Eq. (23). The angle α enclosed by the direction of the spin current and
the direction of the spin polarization is also shown. At the angle θ0=62.2◦ the component of the
spin polarization perpendicular to the spin current vanishes and α=180◦. Taken from [29].

magnitude of the spin current measured along y and along z axes, when the electric field points
along x. For a general angle θ the components of the spin current with spin polarization parallel
to n̂ (Q‖) and spin polarization perpendicular to n̂ (Q⊥) are given by

Q‖ = n̂ ·Q · n̂ = −1
2

∆zy sin(2θ)Ex,

Q⊥ = (σyzx + ∆zy cos2 θ)Ex.
(23)

If ∆zy 6= 0, the spin polarization is perpendicular to n̂ only if n̂ is along the y or z-direction,
otherwise spin polarization and direction of spin current enclose the angle α = arctan(Q⊥/Q‖) 6=
90◦, as shown in Fig. 6(b). It follows from Eq. (23) that Q⊥ is zero at the angle

θ0 = arccos
√
−σyzx/∆zy (24)

if σzxy and σyzx differ in sign. At this angle θ0 the spin polarization and the spin current are
collinear. This is an interesting constellation, which cannot occur in cubic systems. An analogous
situation can also occur for the anomalous Hall effect, i.e. different sign of the AHC for two
different high-symmetry directions of the magnetization in the crystal, as we show in section 5.1.
In the latter case, there exists a direction of the magnetization in the crystal for which the Hall
current (spin current in SHE) and the magnetization (spin-polarization in SHE) are collinear.
Motivated by the rotational sense of the Hall current as the magnetization direction is rotated,
we call this effect the anti-ordinary Hall effect, see section 5.1.

The case of spin current in x-direction and electric field E = (0, E cos θ,E sin θ)T in the yz-
plane is simply related to the previous one by a minus sign: The components of the spin
current with spin polarization parallel and perpendicular to the electric field E are given by
Q‖ = 1

2∆zy sin(2θ)E and Q⊥ = −(σyzx + ∆zy cos2 θ)Ex, respectively. At the angle θ0, Eq. (24),
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the spin polarization and the electric field are collinear. Thus, one can achieve collinearity of spin
polarization and electric field, or collinearity of spin polarization and direction of spin current
if σzxy and σyzx differ in sign. For the anti-ordinary anomalous Hall effect this means that we
can find a direction of E such that the Hall current is collinear to the magnetization, while
transverse Hall current is not zero.

If the electric field is applied along the z-axis, the same magnitude of the spin current will be
measured in all directions perpendicular to the z-axis, since the z-axis exhibits 3-fold rotational
symmetry. The spin current in direction n̂ = (cos θ, sin θ, 0)T is in this case

n̂ ·Q = (σxyz f̂x sin θ − σyzxf̂y cos θ)Ez. (25)

Symmetry requires that σyzx = σxyz. Consequently, the magnitude of the spin current is indepen-
dent of θ and the spin polarization is perpendicular to both the electric field and n̂.

In the case of the hcp structure the conductivity vector and the spin current density, Eq. (20),
may be expressed in terms of the anisotropy as

σ(ŝ) = σxyz ŝ + (0, 0,∆zysz)T ,

Qŝ = σxyzE× ŝ + ∆zysz(Ey,−Ex, 0)T .
(26)

Hence, only two parameters, σxyz and ∆zy, suffice to describe the SHE in hcp nonmagnetic metals.
The fact that one needs only two parameters to reconstruct the exact analytical dependence of
the spin polarization on the direction in which the spin current is measured is a manifestation
of the geometrical anisotropy of the SHE. This is a major difference to the anomalous Hall effect
and spin relaxation, for which the conductivity vector and the EYP have to be recalculated anew
for each direction of the magnetization and SQA, since the EYP and the AHC for a general
direction of the SQA/magnetization cannot be related to the corresponding values for the high-
symmetry axes. For example, in case of the AHE, already four parameters are needed for an
approximate expansion of the conductivity of hcp crystal up to third order in the directional
cosines [17].

Next, we present in Fig. 7 the results of first principles calculations of the intrinsic SHC, Eq. (9),
for the hcp metals Sc, Ti, Zn, Y, Zr, Tc, Ru, Cd, La, Hf, Re and Os and for antiferromagnetic
Cr (see section 2 for computational details). In the case of Cr we neglected the spin-density
wave and considered the antiferromagnetic structure with two atoms in the unit cell and with the
magnetic moments parallel and antiparallel to the z-axis. Except for Cd all metals studied in this
work exhibit a large anisotropy of SHE, which we expect to be clearly visible in experiments.
Of particular interest are the hcp metals Sc, Ti and Ru, where the sign of the conductivity
changes as the spin polarization is rotated from the z-axis into the xy-plane. As discussed
before, collinearity of the spin polarization and the electric field (or the spin polarization and
the spin current) may be achieved if the electric field (the spin current) lies in the yz-plane
at the angle θ0, Eq. (24), from the y-axis. To illustrate this we plot in Fig. 6(c) the angle
α enclosed by the direction of the spin current and the direction of the spin polarization as
well as the SHCs associated with Q‖ and Q⊥ (see Eq. (23)) as a function of the angle θ for
Sc. The critical angles at which the perpendicular component of the spin polarization vanishes
are θ0=62.2◦, θ0=32.1◦, and θ0=19.1◦ for Sc, Ti, and Ru, respectively. Note that in case of
Ru we have the case of a colossal anisotropy of the SHE: the values of the two calculated
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conductivities differ by an order of magnitude. In the case of Cr the SHE is anisotropic as
the cubic symmetry is broken by the staggered magnetization: If the spin polarization of the
spin current is perpendicular to the staggered magnetization the SHC is larger by a factor
of 1.8 compared to the case of spin polarization parallel to the staggered magnetization. We
can thus claim that in antiferromagnets the direction of the local spins presents an additinal
channel for the SHE anisotropy. Such anisotropy is not anymore geometrical, however, due to
the dependence of the electronic structure on the direction of local magnetization, similarly to
the case of the AHE in ferromagnets.

Generally, a simple analysis of the SHC and its anisotropy in terms of a simple model becomes
very difficult, since (i) the integrand in Eq. (9) varies very strongly as a function of k (see for
example Fig. 9) and the entire Brillouin zone has to be considered in the integration in order
to reproduce the SHC quantitatively correctly; (ii) for the anisotropy of the SHC not only the
anisotropy of the wavefunctions with respect to the SQA, discussed in the previous section,
has to be taken into account, but also the anisotropy of the velocity matrix elements has to be
necessarily accounted for. This makes it hardly possible to interpret the spin Hall conductivity in
terms of a small number of virtual interband transitions. Even the sign and order of magnitude
of the SHC are difficult to predict based on simple arguments.

One aspect we would like to remark on is the importance of transitions in Eq. (9) which are
driven by spin-flip SOI, and the difference between the AHE and SHE as far as the anisotropy
of the conducitivities is concerned. Let us consider a situation of two doubly-degenerate Bloch
states at a certain k-point, occupied ψn and unoccupied ψm. Let us also assume that these states
are well-separated in energy, i.e., the first-order perturbation theory as given by equation (16),
applies. In this case, consider the contribution to the spin Berry curvature Ωz

xy which comes
from the products of the type:

∼ 〈ψm|vxσpz |ψn〉〈ψn|vy|ψm〉 = 〈a↑m + b↓m|vxσpz |a↑n + b↓n〉〈a↑n + b↓n|vy|a↑m + b↓m〉, (27)

where the SQA is chosen along the z-axis, and a↑m = am| ↑〉, etc., according to the expansion (2).
If we neglect the relativistic correction to the velocity operator (as our ab initio calculations show
it is a very good approximation in most of the cases), the velocity operator does not couple states
of different spin and the spin mixing parameter enters with the terms of the order of bmbn, which
means that the spin-flip spin-orbit appears only in contributions to the spin Berry curvature
which are proportional to ξ2 and higher even powers of ξ (we remind that ξ is the SOC strength
in the system). It is clear that in this case the dominant contribution to the SHC comes from
∼ ξ spin-conserving transitions. We prove a similar result in the next section for the anomalous
Hall effect.

While in the largest part of the Brillouin zone the SHC originates mainly from the spin-
conserving SOC, in the vicinity of a degeneracy (or crossing) point, such as depicted in Fig. 8
(left, no SOC), both spin-flip and spin-conserving SOC can provide very large contributions
to the SHC. Generally speaking, depending on the orbital character of the states which cross,
the role of the spin-conserving and spin-flip SOC for the SHC around such points can be in-
terchanged by changing the SQA. Consider for example a situation from the previous section,
where the (doubly-degenerate) bands which cross have a dominant m and m′ orbital character,
|m −m′| 6= 1, and are well separated from other states, Fig. 8 (left column). In this case for
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Figure 7: For the hcp metals Sc, Ti, Zn, Y, Zr, Tc, Ru, Cd, La, Hf, Re and Os and for
antiferromagnetic Cr the spin Hall conductivities σxyz and σzxy are shown as light (red) and dark
(blue) bars, respectively. Taken from [29].

the SQA along z the degeneracy between the states is lifted by LS↑↑, and the states keep their
almost pure spin character. On the other hand, by pointing the SQA along x, the degeneracy
is lifted due to LS↑↓, and the states become strongly mixed in spin. Such anisotropy of the
wavefunctions will contribute to the anisotropy of the SHC, but what also has to be taken into
account is that while in the first case the vxσ

p
z and vy velocity operators have to be considered

in the expression above, in the second case they have to be replaced with vyσ
p
x and vz. One has

to realize that for a k-point away from high symmetry directions in the Brillouin zone and for
the bands which have mixed orbital character the mixture of LS↑↑ and LS↑↓ in the spin-orbit
Hamiltonian can be complicated and the Berry curvature can vary in a non-trivial fashion with
the SQA. Nevertheless, by looking at the situation depicted on the left of Fig. 8, it becomes
intuitively clear why the anisotropy of the SHE in paramagnets with structural inversion sym-
metry is geometric: upon rotation of the SQA the spin-conserving part of SOI is continuously
rotated into the spin-flip part, while the energy spectrum remains unchanged and the crystal
basically remains ”the same” system. Indeed, none of the gound state properties of such a
crystal are sensitive to the direction of the SQA, and it is the non-equilibrium nature of the
spin-relaxation and transport phenomena which makes them sensitive to it. The condition for
such a continuous transformation between LS↑↑ and LS↑↓ obviously lies in the availability of
both spin-up and spin-down states for each k-point and energy, i.e., the spin degeneracy.

In a ferromagnet, the spin degeneracy is lifted due to the presence of the magnetization. In this
case, since the spin-up and spin-down subspaces are separated in energy, the spin-conserving
SOC does not transform continuously into the spin-flip SOC at a given k-point and energy when
the magnetization is rotated, and two types of band crossings (or degeneracies) without SOC
should be considered: between bands of the same, and of the opposite spin, see Fig. 8. Depending
on the orbital character of the states, the degeneracy between them will be lifted in the first
case by LS↑↑ for one direction of the magnetization only (say, z), while in the second case it
will be lifted by LS↑↓ only for another (say, x), see Fig. 8. Simply speaking, since the position
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Figure 8: Left column: a band degeneracy due to bands of m and m′ orbital character, |m−m′| 6=
1, in a paramagnet with structural inversion symmetry without SOC, is lifted due to spin-
conserving SOC for SQA along z, and by spin-flip SOC for SQA along x. In a ferromagnet the
band degeneracies between the bands of the same spin character (middle column), and of the
opposite spin character (right column) have to be considered instead. Note that in this case the
energy shifts due to SOC depend strongly on the direction of the magnetization and the type
of the crosssing. The red (blue) color stands for spin-up (-down) character of the states, while
green color marks the states which are of essentially mixed spin character.

of the two types of degeneracies in energy and in the Brillouin zone, as well as their number,
is different in a ferromagnet, effectively, for the two different directions of the magnetization we
have two different systems with different energy spectrum and different eigenstates. In particular,
such asymmetry is the reason for the anisotropy of the orbital moments and total energy in
ferromagnets. Since the difference in, e.g., eigenspectrum for the two different magnetization
directions can be hardly reconstructed analytically due to the complexity of the Halmiltonian in
transition metals, this leads to a complicated behavior of the AHC as a function of the direction of
the magnetization in the crystal. The same holds true for the Elliott-Yafet parameter, considered
in the preceeding section, in which case the time-reversal symmetry in the system is effectively
broken by a certain spin direction of the injected electron, which is able to ”probe” the spin-
mixing parameter of the states.

Finally, we would like to make two remarks. The first one concerns the topology of the degen-
eracy points in the Brillouin zone. The type of degeneracy shown in the upper row of Fig. 8
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provides the so-called ”monopole” contribution to the Berry curvature [15], intensively discussed
in the literature, especially with respect to topological insulators [52]. Such degeneracies arise
at single (often high-symmetry) points in the Brillouin zone, as well as along so-called ”hot
loops” [30, 74]. Another important contribution to the Berry curvature can be also given by
transitions between the pairs of parallel bands degenerate along whole (often high-symmetry)
lines or even areas in the Brillouin zone − these are the so-called ”ladder transitions” [30]. In the
language of spin-relaxation, such transitions would occur at the spin-flip hot areas in the vicinity
of the Fermi surface. The conclusions of the discussion above hold true for both cases. Secondly,
it is important to underline that although, referring to the perturbation theory arguments, the
same matrix elements of SOI enter into the expressions for energy shifts, Hall conductitivities
and spin-mixing parameter, these expressions are fundamentally different. This means that,
for example, even though the band degeneracy in Fig. 8 would be lifted by the spin-conserving
SOC, it can happen that the major contribution to the Berry curvature is provided by the
spin-flip SOI, and the other way around. Concerning this issue, see also the discussion around
second-order perturbation theory expression for the AHC in section 5.2.

5 Anisotropy of intrinsic anomalous Hall effect in metallic fer-

romagnets

5.1 Anisotropic AHE in uniaxial ferromagnets: first principles studies

Experimentally, the − sometimes strong − anisotropy of the anomalous Hall effect in metals is
a rather well-known phenomenon: see, e.g., experimental data for bcc Fe [18], fcc Ni [19, 20],
hcp Gd [21], as well as FeCr2S4 [22], Yb14MnSb11 [23], Y2Fe17−xCox [24] and R2Fe17 (R = Y,
Tb, Gd) [25]. Theoretically, the first argumentation for a strongly anisotropic behavior of the
AHC in transition metals was provided by Roman et al. [17]. In that work it was argued that
the main reason for the observed anisotropy of the intrinsic AHC in uniaxial hcp cobalt, which
reaches as much as a factor of four between the conductivities for the magnetization in-plane and
out-of-plane (see Table 1), in agreement to experiment, lies in the irregular and spiky behavior
of the Berry curvature in the reciprocal space. The main conclusions and analysis presented in
the following three subsections holds true also for the case of the spin Hall effect.

Let us take a look at the distribution of the Berry curvature along the high symmetry lines
in the Brillouin zone for another uniaxial ferromagnet, L10 FePt (see Fig. 10(c) for a sketch
of the structure and definition of the crystallographic directions), presented in Fig. 9. The
characteristic spikes in the vicinity of points of near-degeneracy across the Fermi energy can
be seen, e.g., around the M -point or in the middle of the ΓZ-path. As we shall see in the
next section, similarly to the case of the Elliott-Yafet parameter, the large values of the Berry
curvature in the vicinity of such points can be inevitably related to the matrix elements of
the spin-orbit interaction between the occupied and unoccupied states, scaled by the energy
difference between them. As discussed for the case of the EYP and SHE, those matrix elements
are strongly anisotropic with respect to the SQA, or, direction of M, resulting in the remarkable
anisotropy of the Berry curvature in Fig. 9, both in magnitude (in the middle of the ΓZ-path)
and sign (close to M -point). When integrated over the whole Brillouin zone, the anisotropy of
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bcc Fe hcp Co FePd FePt CoPt NiPt

M‖[001] 767 477 135 818 −119 −1165
M‖[100] 100
M‖[110] 810 276 409 107 −914
M‖[111] 842

Table 1: Calculated from first principles anomalous Hall conductivity as a function of direction
of magnetization in the crystal. The data are taken from Ref. [33] for bcc Fe and hcp Co (similar
values for hcp Co were obtained in Ref. [17]), from Refs. [30, 75] for L10 FePt and FePd, and
from Ref. [32] for L10 CoPt and NiPt.

the Berry curvature leads to a factor-of-two reduction in the AHC in FePt as the magnetization is
changed from out-of-plane to in-plane (see Table 1). In general, in cubic crystals, the anisotropy
of the AHE with respect to the directional cosines of the magnetization appears in all odd
(owing to the anti-symmetricity of σ with respect to M) orders starting from the third, and
it is normally much weaker than that for the uniaxial crystals, for which the anisotropy is
present already in the first order [17], compare e.g. values for bcc Fe to the ones for the uniaxial
ferromagnets in Table 1.

When we compare the anisotropy of the AHE to the anisotropy of the Elliott-Yafet parameter
in metals, several things come to mind. Firstly, the anisotropy of the AHC is a more complex
quantity, which hinders analysis in terms of a simple line of arguments, as it can be done for
the anisotropy of the EYP. This is due to the fact that while for the emergence of the EYP only
spin-flip part of SOC plays a role and the transitions between the spin-degenerate bands can
be ignored, for the AHC both spin-conserving and spin-flip parts of SOI have to be taken into
account when transitions between occupied and unoccupied bands of various orbital and spin
character varying in the Brillouin zone have to be considered according to Eq. (7) for the AHC
(see also considerations at the end of section 4). We analyze this in more detail in the following
two sections. Secondly, in addition to the anisotropy of the SOI matrix elements, which leads
to the anisotropy of the wavefunctions and eigenenergies, similarly to the SHE also anisotropy
of the velocity matrix elements matters for the total value of the AHC anisotropy. Finally, the
Berry curvature is not confined to the Fermi surface, but has a finite spread in energy. While it
is already clear from Eq. (7), in order to further clarify this point we refer to the distribution of
the Berry curvature for L10 FePd alloy in Fig. 9. In this plot, the presence of wide regions in
k-space is evident for which the Berry curvature arises due to transitions between bands well-
separated in energy. Since in such regions the Berry curvature also displays a very anisotropic
behavior (see also Table 1) it seems reasonable to ask on whether there is a certain threshold in
energy beyond which the transitions between bands can be neglected for the anisotropy of the
AHC.

In order to answer this question, following Roman et al. [17], we introduce the cumulative
anomalous Hall conductivity A(ω), which accumulates all transitions in Eq. (7) for which εnk−
εmk is larger than ~ω. In the limit of ω → 0 all transitions in Eq. (7) are accounted for,
and A(ω = 0) equals the full AHC. A closer inspection of the cumulative AHC presented as a
function of energy and magnetization direction in Fig. 12 (left) for FePt, CoPt and NiPt (the
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latter two also exhibit a very large anisotropy of the AHC, see Table 1), as well as for hcp Co in
Ref. [17], shows that the energetical distribution of transitions which provide the anisotropy of
the AHC is concentrated in a narrow 1 eV window around the Fermi energy. This is in contrast
to the distribution of A(ω) for each of the magnetization directions separately, which decays
slowly over a much larger energy scale of several eV. This means that for the anisotropy of the
AHC the interband transitions in the close vicinity of the Fermi level, which give very large
contributions to the AHC, are more important than for the values of the AHC themselves. In
principle, this is in agreement to the results for the EYP we obtained in Os, Fig. 5: there, the
contributions from the areas where the spin-mixing parameter (Berry curvature in the case of
the AHE) was enhanced, are dominant, while for the values of the EYP themselves the regions
with smaller spin-mixing parameter are more important, for each of the directions of the SQA,
see caption to Fig. 5.

Generally, the AHC, as well as its anisotropy, displays a strong dependence on the exact position
of band (near-) degeneracies with respect to the position of the Fermi energy. We therefore
expect a non-trivial behavior of the AHC anisotropy for a ferromagnet with a complex electronic
structure when the Fermi energy, or other parameters, such as the lattice constant or exchange
splitting, are smoothly varied. An example of this phenomenon can be seen in Fig. 10(a), in
which the AHC and its anisotropy are plotted as a function of the ”band filling” in L10 3dPt
alloys (see section 2 for details of the calculations). In this plot we observe that when going from
FePt to NiPt the AHC anisotropy undergoes a change in sign and large changes in magnitude.
With grey shaded area in Fig. 10(a) the region around the CoPt alloy is highlighted, where
both AHC for M‖[001] (σz) and M‖[110] (σx) change their sign. This sign change leads to the
occurrence of two key phenomena with respect to the anisotropic AHE. The first one − the
colossal anisotropy of the AHE − according to calculations in Fig. 10, occurs for FexCo1−xPt
alloy with x ≈ 0.1 and for CoxNi1−xPt alloy with x ≈ 0.85. For these two compounds one of the
conductivities crosses zero, which marks the complete disappearance of the intrinsic anomalous
Hall current JH for one of the magnetization directions in the crystal. This is reminiscent of
the situation for the spin Hall effect in Ru, see Fig. 7. In terms of the longitudinal transport
within the setup of e.g. anisotropic magnetoresistance (AMR) experiment [13], the occurrence of
the colossal anisotropy of the diagonal conductivity would results in a metal-insulator transition
in the crystal − in case of the colossal AHE anisotropy observed in 3dPt alloys all compounds
remain metallic for all magnetization directions, however, and retain their complicated electronic
structure around the Fermi energy.

For CoPt alloy the situation, depicted in Fig. 10(d-g), is completely different. Remarkably,
σ‖ turns to zero at θ0 = 70◦, which manifests the occurrence of the anti-ordinary Hall effect
in the crystal of CoPt, discussed already within the framework of the spin Hall effect in the
preceeding section. At this ”magic” angle, the magnitude of the anomalous Hall current JH
is almost twice larger than it is for M‖z, however, due to non-vanishing σ⊥ component of the
AHC vector, JH is aligned along the direction of the magnetization. By analyzing Fig. 10(d-g)
we observe that the rotational sense of the anomalous Hall current is opposite to that observed
in the ordinary Hall effect (OHE) of free electron gas. For OHE, Lorentz forces ∼ [H × v] are
acting on electrons with velocity v in the presence of magnetic field H. The resulted ordinary
Hall current of free electrons is always perpendicular to H irrespective of its direction, opposite
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Figure 10: Anomalous Hall conductivity of 3dPt alloys, (a), for M along [001] (σz, open circles)
and [110] (σx, open squares), and anisotropy, (b) (∆σtot = σz − σx, small open circles), with
respect to the band filling mimicked within the virtual crystal approximation. (c) Crystal
structure of L10 FePt alloy. Small (red) spheres stand for the Fe atoms, while large (blue)
spheres mark the Pt ions. The primitive unit cell used in the calculations is enclosed with thicker
lines. In the text, z stands for the [001] axis, while x stands for the [110] direction in the crystal.
(d) Anti-ordinary Hall effect in CoPt. Red circles (blue squares) denote the σ‖ (σ⊥) component
of AHC, as a function of the angle θ of the magnetization M with [001]-axis upon rotating it
into the [110] direction. (e)-(g) depict the relative orientation of the Hall current JH , AHC σ

and magnetization M in the situation of the anti-ordinary AHE. In (c)-(e) the magnetization
is confined to the (1̄10)-plane. We note, that due to symmetry considerations, the conductivity
vector stays together with the magnetization in the (1̄10)-plane. Taken from [32].

to the situation of the anti-ordinary anomalous Hall effect, observed in CoPt. Here, turning the
magnetization clockwise in the (1̄10)-plane results in an anti-clockwise rotation of JH , with its
value staying rather large all the time. On the other hand, in analogy to the spin Hall effect, for
the anti-ordinary Hall effect, it is possible to find a direction of the electric field E such that the
Hall current is perpendicular to E and M, which are, in turn, collinear to each other. Again,
such situation obviously cannot occur for the ordinary Hall effect of free electrons.

In the region of 3dPt alloys in the vicinity of L10 CoPt the anisotropy of the AHE manifests
itself in crucial ways suggesting new functionalities of the AHE-based devices. In this region,
large changes in the magnitude of the anomalous Hall current as well as relative orientation of
the Hall current with respect to the magnetization can be easily achieved by simple reorientation
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of the sample’s magnetization. While the former could be used in order to e.g. tune the relative
magnitudes of the extrinsic and intrinsic anomalous Hall signal [40, 75], among most straight-
forward applications of the latter could be a realization of the planar Hall effect (PHE) [13, 76]
which is related to the Hall effect in ferromagnetic materials with electric field, magnetization
and the Hall current sharing same sample plane. So far, it is believed that in most of the cases
the PHE originates from anisotropic magnetoresistance in metallic ferromagnets, although a
PHE mechanism stemming from the anomalous Hall effect due to non-collinearity of the mag-
netization in semiconductor-based materials has been also suggested [77]. Within the scope of
the anti-ordinary Hall effect, described in this work, it would be possible to observe the PHE
coming solely from the anisotropic nature of the collinear ferromagnetic materials.

5.2 Perturbation theory treatment: FePt

In this section we present the perturbation treatment of the intrinsic AHC given by the linear
response Kubo formula Eq. (7). According to first order non-degenerate perturbation theory,
the perturbed wavefunction ψσm originating from the unperturbed wave function ψσm,0 with spin
σ upon including the spin-orbit interaction is given by

|ψσm〉 =
∣∣ψσm,0〉+

σ′′′∑
p 6=m

〈
ψσ

′′′
p,0

∣∣∣ ξL · S ∣∣∣ψσm,0〉
εm,0 − εp,0 |ψσ′′′

p,0 〉 , (28)

where εm,0 and εp,0 denote the unperturbed eigenenergies, and k-point indices have been omitted
for simplicity. Compared to Eq. (16), here we consider the complete SOC Hamiltonian, and not
only its spin-flip part. Following Eq. (7), in order to obtain an expression for σz, the key is to
evaluate the imaginary part of the following product:

1

(ε(1)
n − ε(1)

m )2

〈
ψσ

′
n

∣∣∣ vx ∣∣∣ψσm〉〈ψσm ∣∣∣ vy ∣∣∣ψσ′
n

〉
. (29)

In this expression vy and vz operators have to be considered instead of vx and vy, respectively, if
σx is to be evaluated. The energies ε(1)

n and ε(1)
m stand for the first-order perturbed eigenvalues.

Substituting Eq. (28) into Eq. (29), we can sort out the terms which appear at different orders
with respect to the SOI strength ξ. The purpose of this is the general analysis of simplified
expressions, and discussion of the orders with respect to ξ and their energy scales, which remain
valid also when the (degenerate) perturbation theory is applied rigorously in higher orders. In
the following we assume that the velocity operator does not contain the relativistic correction
due to spin-orbit coupling, which we generally find to be a very good approximation.

A typical first-order in ξ contribution to Eq. (29) involves a sum over additional transitions via
auxiliary states ψσ

′′
l,0 , and looks like:

ξ

(ε(1)
n − ε(1)

m )2

〈
ψσ

′
n,0

∣∣∣ vx ∣∣∣ψσm,0〉 σ′′∑
l 6=n

〈
ψσ

′′
l,0

∣∣∣L · S ∣∣∣ψσ′
n,0

〉
εn,0 − εl,0

〈
ψσm,0

∣∣∣ vy ∣∣∣ψσ′′
l,0

〉
, (30)

while the second-order contribution to the product of the matrix elements of the velocity oper-
ators involves already two sums of additional transitions via auxiliary states ψσ

′′′
p,0 and ψσ

′′
l,0 , and
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consists of terms with the following structure:

ξ2

(ε(1)
n − ε(1)

m )2

σ′′′∑
p6=m

〈
ψσ

′′′
p,0

∣∣∣L · S ∣∣∣ψσm,0〉
εm,0 − εp,0

〈
ψσ

′
n,0

∣∣∣ vx ∣∣∣ψσ′′′
p,0

〉 σ′′∑
l 6=n

〈
ψσ

′′
l,0

∣∣∣L · S ∣∣∣ψσ′
n,0

〉
εn,0 − εl,0

〈
ψσm,0

∣∣∣ vy ∣∣∣ψσ′′
l,0

〉
.

(31)
For the first order terms, Eq. (30), the initial state ψσm,0 and final state ψσ

′
n,0 must have the

same spin, since the velocity operator does not act on the spin part of the wavefunction (if we
neglect the relativistic correction to the velocity operator). This means that the state ψσ

′′
l,0 has

to be of the same spin as states n and m. This can happen only due to the spin-conserving
part of the spin-orbit interaction LS�, as was also found by Cooper [78], meaning that only
spin-conserving SOI contributes to the AHC in the first order with respect to ξ. Thus, within
the non-degenerate perturbation theory, we would expect the largest contribution to the AHC
from the spin-conserving part of the spin-orbit interaction. It should be kept in mind, however,
that in materials containing heavy atoms the SOI cannot be treated as a small perturbation.
Moreover, as follows from our previous discussion, the important role for the AHC of near
degeneracies across the Fermi level cannot be denied, for which the above arguments, based on
non-degenerate perturbation theory, do not apply (see also discussion at the end of section 4).

On the other hand, the spin-flip processes contribute only in second- and higher-order terms. We
have also come to this conclusion for the spin Hall effect in paramagnets, following a somewhat
different argumentation. Analysing the terms second-order in ξ which come from the first-order
perturbed wavefunctions, we find four types of contributions to the AHC, analogous to the one,
given by expression (31). All four terms include two summations over auxiliary states ψσ

′′′
p,0

and ψσ
′′
l,0 , and include two products of the matrix elements of the SOI and components of the

velocity operator. Assuming for simplicity that the occupied state ψσ
′
n,0 has σ′ = ↑, the four

types of contributions can be related (omitting the energy denominators for simplicity) to the
products of the velocity and SOI matrix elements arranged in the way, presented in Fig. 11. In
this figure, the diagram on the left stands for the product of 〈ψ↑n,0|vx|ψ↑m,0〉, 〈ψ↑m,0|LS↑↓|ψ↓l,0〉,
〈ψ↓l,0|vy|ψ↓p,0〉 and 〈ψ↓p,0|LS↑↓|ψ↑n,0〉, while the diagram on the right side stands for the product of
〈ψ↑n,0|vx|ψ↑p,0〉, 〈ψ↑p,0|LS↑↓|ψ↓m,0〉, 〈ψ↓m,0|vy|ψ↓l,0〉 and 〈ψ↓l,0|LS↑↓|ψ↑n,0〉. The other two contributions
to the second order AHC come from the diagrams in Fig. 11, in which the vx and vy operators
are interchanged, while all directions of the arrows are reversed.

As it is evident from Fig. 11, all diagrams contributing to the second-order AHC include the
matrix elements of the spin-non-conserving part of the spin-orbit interaction. Interestingly, al-
though a single act of LS↑↓ on a wavefunction is to flip its spin, in addition to the contribution
to the AHC from the occupied n and unoccupied m states of different spin character (right
diagram), there can also be a non-vanishing contribution from the second-order transition be-
tween the n and m states of the same spin. Finally, in addition to the contributions to the
second-order AHC depicted in Fig. 11, one could in principle consider a situation when all the
n, p, l,m-states have the same spin character and the SOI matrix elements are coming from its
spin-conserving part. Assuming the elements of the velocity operator (at a given k-point) to
be real, however, it is easy to see then that the product of the SOI matrix elements would give
a real number, since the LS�-operator is purely complex, and thus the imaginary part of the
second-order AHC contribution would vanish in this case. As confirmed by our first principles
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Figure 11: Diagrams depict the second-order in SOI strength ξ contributions to the AHC upon
expanding the wavefunctions according to the first-order non-degenerate perturbation theory,
see Eq. (31). The solid (dashed) lines stand for the matrix elements of the velocity operator
(LS↑↓-operator) between the bra- and ket-states, marked with indeces next to the dots, with
the direction of the lines from the bra- to the ket-state. The horisontal thin lines separate the
↑-states from the ↓-states.

calculations, this assumption is valid.

By calculating the spin-orbit matrix elements in the basis of states unperturbed by SOI as
described in section 2, we applied the non-degenerate first-order perturbation theory in the
wavefunctions with respect to SOC and computed the corresponding orders of contributions to
the AHC in FePt. The results of these calculations are shown in Table 2 for M‖x and M‖z.
Here, we considered separately the spin-conserving and spin-flip parts of our first principles
Hamiltonian, converged the system, and applied the first order non-degenerate perturbation
theory in wavefunctions, as described above. If we keep only LS� spin-orbit in our calculations,
we arrive at the value of the AHC which we denote as σ�, while keeping exclusively the LS↑↓

SOC leads to the value of the conductivity σ↑↓. If σ� and σ↑↓ are analogously calculated non-
perturbatively from first principles, see right column of Table 2, then, as our calculations show

σ ≈ σ� + σ↑↓, (32)

where σ stands for the total AHC calculated with the complete SOC Hamiltonian. Moreover,
if the first order perturbation theory in wavefunctions is applied to evaluate the corresponding
conductivities, the above decomposition is exact. To obtain the perturbation theory values in
Table 2 we used a tolerance parameter ∆ of 50 meV: that is, when for a considered unperturbed
state |m〉 the difference in energy |εm,0 − εp,0| was less than ∆ in Eq. (28), the projection on
state |p〉 was considered to be zero and the corresponding term in Eq. (28) was neglected.

Overall, by inspecting Table 2 we can conclude that the agreement of the perturbation theory
results with first-principles results presented in Table 1 and Table 2 for FePt is reasonable. The
major contribution to σ� comes in the first order with respect to ξ and constitutes around
550 S/cm for both magnetization directions, while within the next contributing order these
values are corrected by at most 30%. Thus, up to considered orders, the σ� calculated from the
perturbation theory agrees qualitatively with the correspoding values computed from the Berry
curvature, and also displays a small anisotropy of the AHC when the magnetization direction
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1st order 2nd order 3rd order 4th order Σ First principles

σ�
z 581 0 84 0 665 577
σ↑↓z 0 84 0 −34 50 133
σ�
x 557 0 184 0 741 585
σ↑↓x 0 −238 0 −106 −344 −184

Table 2: Decomposition of the AHC of FePt into contributions of different orders and their
sum (Σ) based on a perturbative treatment of the spin-orbit interaction, in comparison to first-
principles non-perturbative values. All values are in S/cm. See main text for details.

is varied, in agreement with the non-perturbative calculations. As far as the spin-flip AHC is
concerned, the perturbation theory predicts its much smaller values as compared to the spin-
conserving AHC. Moreover, as we can see from Table 2, the sign of σ↑↓ is positive for M‖z and
negative for M‖x, and the flip-AHC anisotropy reaches a large value of around 400 S/cm, as
compared to the first-principles value of 320 S/cm. All of these observations are in agreement to
the results for σ↑↓ calculated from the non-perturbative Berry curvature. A reasonable agreement
of perturbation theory values with the first principles ones is certainly coincidencial for FePt,
in which the AHC seems not to be dominated by transitions between the bands separated by
less than 50 meV in energy. Nevertheless, while within our approach the singular contributions
to the Berry curvature (arising from (near) degeneracies between the states), which can play an
important role for the AHC, are not taken into account, certain general features of the spin-flip
and spin-conserving AHC apparent from this analysis are universal, as discussed in the next
section.

5.3 Spin-flip and spin-conserving transitions

As discussed in the previous section, and confirmed by explicit calculations within the first order
non-degenerate perturbation theory, the spin-conserving part of SOI contributes in the first and
higher odd orders with respect to the spin-orbit strength, while the spin-non-conserving part of
SOI leads to non-vanishing AHC in second and higher even orders. Such oddness and evenness
of σ� and σ↑↓ with respect to ξ can be also demonstrated in higher orders of (degenerate)
perturbation theory, although we do not provide explicit expressions here. As follows from
our calculations, this remains true even when the anomalous Hall conductivity is treated non-
perturbatively within the first principles methods, outlined in section 2. Here, we present explicit
calcualtions of the σ� and σ↑↓ in L10 FePt and NiPt as a function of the spin-orbit strength in
the system, ξ. The results of the calculations, in which the SOC strength was scaled uniformly
on 3d and Pt atoms with respect to the unscaled values ξ0, are presented in Fig. 13. Indeed,
from this plot we observe that, within the accuracy of the calculations, in NiPt the conductivity
σ�(ξ) = −σ�(−ξ), while in FePt σ↑↓(ξ) = σ↑↓(−ξ), allowing thus for an expansion of σ�(ξ)
(σ↑↓(ξ)) in odd (even) powers of ξ. Note also that for larger values of ξ the behavior of σ� and
σ↑↓ is manifestly different from linear and quadratic, respectively, marking thus the importance
of higher order terms.

In the latter Fig. 13, by zooming into the region of very small ξ, we observe that the behavior of
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σtot σ� σ↑↓ Fetot Fe� Fe↑↓ Pttot Pt� Pt↑↓

M‖[001] 818 577 133 14 18 −27 848 541 282
M‖[100] 409 585 −184 210 254 −38 65 426 −361

Table 3: AHC in FePt for two magnetization directions, resolved into spin-flip and spin-
conserving contributions from the SOI on each atomic species (left part), compared to the
corresponding total values (right part). All values are in S/cm. Taken from [30].

σ� in NiPt (not shown) and of σ↑↓ in FePt (inset of Fig. 13) is clearly dominated by the linear
and quadratic in ξ terms, respectively. In general, the fact that the spin-conserving transitions
appear already in the first order with respect to ξ, while the spin-flip transitions in second and
higher, has two essential consequences. Firstly, it means that the energetic spread of the spin-flip
conductivity will be much narrower than that of the spin-conserving AHC, due to the higher
power of the energy denominator in Eq. (31) of the order of (εn − εm)4, as compared to that
of the order of (εn − εm)3 in Eq. (30). This can be clearly seen in Fig. 12 (right), in which the
cumulative AHC for FePt, CoPt and NiPt is decomposed, analogously to the total AHC, into
spin-conserving and spin-flip contributions:

A(ω) ≈ A�(ω) +A↑↓(ω). (33)

Noticably, while A�(ω) decays on the scale of the bandwidth of several eV, the spin-flip cumu-
lative AHC is localized in a much narrower energy region of the order of 1 eV. It is important to
mention that the anisotropy of the total AHC can present a competition between the anisotropy
of the spin-conserving and spin-flip parts, depending on the exact details of the electronic struc-
ture, see for example Fig. 12 (right) and Fig. 10(b) − we refer here also to the discussion at the
end of section 4.

Remarkably, the energetic scale of the spin-flip transitions in Fig. 12 roughly corresponds to
the energy scale of the spin-orbit interaction of Pt atoms. This observation brings us to the
second conclusion that we can make out from the perturbation theory analysis: the contribution
of spin-conserving transitions to the AHC is normally dominant over the spin-flip transitions
(this can be clearly seen in Fig. 12), since the latter appear only starting from the second order
in SOC strength. Correspondingly, in order to promote the spin-flip contribution to the AHC,
the spin-orbit strength in the material has to be enhanced. Let us consider this point in detail,
and prove that the spin-flip processes in FePt are induced mostly by the strong SOI on the Pt
atoms [30]. To do this, we selectively turn off the SOI on each atomic species inside the crystal.
The atom-resolved spin-orbit Hamiltonian reads

HSO = ξFeLFe · S + ξPtLPt · S, (34)

where Lµ is the orbital angular momentum operator associated with atomic species µ (Fe or
Pt), and ξµ is the spin-orbit coupling strength averaged over valence d-orbitals. In FePt we find
ξ0Fe = 0.06 eV and ξ0Pt = 0.54 eV, where ξ0µ denotes the value calculated from first-principles.

Let us recalculate now the AHC after setting to zero either ξFe or ξPt in Eq. (34), and then
further decompose the conductivity into the spin-flip and spin-conserving parts. The results
are presented in Table 3. Although such a decomposition is not exact, it reproduces the total
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values rather well. Namely, the sum of the total conductivities driven by SOI on Fe (Fetot in
Table 3) and on Pt (Pttot in Table 3) is in reasonable agreement to the values of σtot for both
magnetization directions. Moreover, the decomposition of the total atom-resolved AHCs into
spin-conserving and spin-flip parts is almost exact, as can be seen from Table 3. Consider first
the AHC driven by ξFe. For both magnetization directions the spin-flip contribution is very
small, while the spin-conserving part is small along [001] but large along [100]. As for the AHC
induced by ξPt, the spin-conserving part is large but fairly isotropic, while the spin-flip part is
highly anisotropic, changing from a large positive value along [001] to a large negative value
along [100]. This confirms that the large and strongly anisotropic σ↑↓ is governed by the SOI
inside the Pt atoms.

Let us confirm the conclusion we draw from the perturbation theory description via nonpertur-
bative calculations where we tune by hand the SOI strength ξPt on the Pt atoms. The results
for the total and spin-flip AHC are shown in Fig. 14 as a function of ξPt/ξ

0
Pt. It can be seen

that for ξPt less than ξ0Pt/2, the absolute value of the spin-flip AHC does not exceed a modest
value of 50 S/cm. In this regime σtot

z and σtot
x are dominated by spin-conserving processes.

Moreover, we note that while the decrease in σtot
z is almost perfectly linear, σtot

x stays fairly
constant over a wide region of ξPt values. This can be understood from the fact that for M‖x
the spin-conserving and spin-flip contributions arising from Pt largely cancel one another (see
Table 3), so that the total AHC is mostly driven by the SOI on the Fe atoms. In contrast,
for M‖z it is the SOI on the Pt atoms which dictates the AHC. The artificial tuning of ξPt

performed above describes rather well what happens if the Pt atoms are replaced with Pd, to
form the isoelectronic FePd alloy [75]. This can be seen by comparing the values of σtot and
σ↑↓ of 135 (276) and 24 (62) S/cm for M‖[001] (M‖[100]), respectively, in FePd with the values
taken from the shaded area in Fig. 14, where ξPt ≈ ξ0Pd = 0.19 eV. In particular, the sign of the
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AHC anisotropy in FePd, which is opposite from that in FePt, is correctly reproduced by the
scaled calculations on FePt.

6 Outlook

In this review, we briefly outlined the recent progress in understanding and predicting the
anisotropy of the spin relaxation and intrinsic anomalous and spin Hall effect in metals from first
principles. In case of the spin-relaxation this anisotropy is the consequence of the anisotropy in
the wavefunctions upon changing the spin-quantization axis in the crystal, which can be probed
via a non-equilibrium process such as an injection of an electron with a certain direction of spin
polarization into a material which exhibits the anisotropy of the Elliott-Yafet coefficient. In case
of the spin Hall effect, in addition to the anisotropy of the wavefunctions with respect to the
SQA, the anisotropy of the velocity matrix elements comes into play in non-cubic crystals, which
leads to an anisotropic correlation between the direction of an applied electric field, direction
of the spin current and its spin polarization. For ferromagnets exhibiting the anomalous Hall
effect, in addition, eigenvalues and wavefunctions display a very non-trivial dependence on the
direction of magnetization in the crystal, which results in a complicated relation between the
orientation of magnetization and direction of the Hall current, as well as its magnitude. The
anisotropy of the spin relaxation and Hall currents in perfect crystals can be so strong that it can
reach colossal values. For spin and anomalous Hall effects, the magnitude of the Hall current can
be even completely suppressed via a suitable choice of the direction of the electric field and/or
magnetization. Such strong anisotropy should manifest itself clearly in an experiment, and one
of the purposes of the current review is to stimulate further experimental studies with the aim
of extending the functionalities of future spintronic devices.

The phenomena considered in this work stem from the electronic structure of perfect idealized
solids. In an experiment, especially at finite temperatures, one inevitably faces imperfections in
the crystalline order due to impurities or disorder, phonons, magnons etc. For the Hall effects,
disorder in the system serves as a source of additional channels for the Hall signal due to so-called
skew- and side-jump scattering [79–82]. In the perturbation theory picture, any sort of effects
due to impurity scattering should involve the matrix elements of the scattering potential with the
Bloch states of the perfect crystal. And while already the Bloch wavefunctions in the solid, as we
discussed, might display an anisotropy with respect to the SQA, also the complicated structure
of the impurity potential, especially if it is spin-polarized, should exhibit strong anisotropy as
well given an internal spin-orbit interaction and anisotropic crystal field. Recently, assuming
a disorder due to point-like delta-correlated defects which do not have any internal structure
of the potential, strong anisotropy of the side-jump contribution to the anomalous Hall effect
in ferromagnets has been demonstrated from first principles [33] (c.f. Fig. 15). In this case
the calculated anisotropy is a consequence of the anisotropic electronic structure of the perfect
crystal, and the question of the anisotropy of transverse transport due to microscopic details
of the impurity potential, which can be treated with high accuracy from ab initio, still remains
open and serves as a fruitful subject for future studies.

Finally, we would like to remark, that following the same philosophy as outlined above, anisotropy
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Figure 15: Angle-resolved side-jump conductivity in units of S/cm as a function of direction in
the Brillouin zone for fcc Ni for two different magnetization directions. Taken from [33].

of the transverse transport should be also large and experimentally observable for other effects
driven by spin-orbit interaction, such as anomalous Nernst effect in ferromagnets [83, 84] and
spin Nerst effect in paramagnets [85,86]. On the other hand, in compounds which exhibit non-
collinear magnetic order, the interplay of magnetism and spin-orbit interaction becomes very
complex, since the non-collinearity of the local spins can effectively play the role of the spin-flip
part of the spin-orbit interaction, and the magnetic ground state itself can be very sensitive to
the matrix elements of the spin-orbit interaction. In such a situation, strong anisotropy of the
transverse effects observed in this type of systems, such as magnon Hall effect [87] and topolog-
ical Hall effect [88–90], is guaranteed. We are aware only of a single work in this direction [91],
while the phenomena mentioned above still remain largely unexplored.
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[4] R. Karplus and J. M. Luttinger, “Hall effect in ferromagnetics,” Phys. Rev., vol. 95,
pp. 1154–1160, Sep 1954.

53



[5] M. Dyakonov and V. Perel, “Current-induced spin orientation of electrons in semiconduc-
tors,” Physics Letters A, vol. 35, no. 6, pp. 459 – 460, 1971.

[6] D.-S. Wang, R. Wu, and A. J. Freeman, “First-principles theory of surface magnetocrys-
talline anisotropy and the diatomic-pair model,” Phys. Rev. B, vol. 47, pp. 14932–14947,
Jun 1993.

[7] G. van der Laan, “Microscopic origin of magnetocrystalline anisotropy in transition metal
thin films,” J. Phys.: Condens. Matter, vol. 10, p. 3239, Apr 1998.

[8] P. Bruno, “Tight-binding approach to the orbital magnetic moment and magnetocrys-
talline anisotropy of transition-metal monolayers,” Phys. Rev. B, vol. 39, pp. 865–868, Jan
1989.

[9] T. McGuire and R. Potter, “Anisotropic magnetoresistance in ferromagnetic 3d alloys,”
Magnetics, IEEE Transactions on, vol. 11, pp. 1018 – 1038, jul 1975.

[10] M. Bode, S. Heinze, A. Kubetzka, O. Pietzsch, X. Nie, G. Bihlmayer, S. Blügel, and
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