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1 Editorial

In this issue we have three reports on Psi-k/CECAM meetings, two job announcements, and a

number of abstracts of newly submitted or recently published papers.

The scientific highlight of this issue is by John F. Dobson and Timothy Gould (Griffith University,

Nathan, Australia) on ”Calculation of Dispersion Energies”.

For details on this Psi-k Newsletter please check the table of content.

The Uniform Resource Locator (URL) for the Psi-k webpage is:

http://www.psi-k.org.uk/

Please submit all material for the next newsletters to the email address below.

The email address for contacting us and for submitting contributions to the Psi-k newsletters is

function

psik-coord@stfc.ac.uk messages to the coordinators, editor & newsletter

Dzidka Szotek, Martin Lüders, Leon Petit and Walter Temmerman

e-mail: psik-coord@stfc.ac.uk
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2 Psi-k Activities

”Towards Atomistic Materials Design”

2.1 Reports on Workshops/Meetings/Schools supported by Psi-k

2.1.1 Report on Psi-k/CECAM/CCP9 Biennial Graduate School in

Electronic-Structure Methods

Oxford

10th-16th July 2011

Sponsors: CECAM, Psi-k, CCP9 (UK), ESF

Nicola Marzari (Oxford University)

Walter Temmerman (Daresbury Laboratory)

Jonathan Yates (Oxford University)

Web Page: http://mml.materials.ox.ac.uk/Support/GraduateSchool2011

Summary The Psi-k/CECAM/CCP9 Biennial Graduate School in Electronic-Structure Meth-

ods was held in Oxford from Sunday 10th July until Saturday 16th July 2011. This was a

combined theory and hands-on school, with morning sessions dedicated to lectures introducing

theory and application of electronic structure methods, and afternoon sessions providing hands-

on experience with the relevant codes on a high-performance compute cluster provided by the

Oxford Supercomputer Centre.

The first two days were dedicated to density functional theory within the planewave pseudopo-

tential formalism and its implementation in the PWSCF program. Lectures were given by

Stefano Baroni and Nicola Marzari, and the hand-on session run by Davide Ceresoli and Nicola

Bonini. A poster session was held on the Tuesday evening which proved a well attended and

much appreciated event. The following day was dedicated to linear scaling methods and was

run by the developers of the ONETEP code; Peter Haynes, Arash Mostofi and Chris Skylaris.

Thursday moved to LMTO taught by Martin Leuders, Leon Petit, Dzidka Szotek and Wal-

ter Temmerman. That evening the conference dinner was held at The Queen’s College with

pre-dinner drinks in the Provost’s Garden courtesy of the current Provost, Paul Madden, and

the dinner itself in the impressive 18th century Dining Hall. The final day of the school was

dedicated to Quantum Monte Carlo with morning lectures by Richard Needs and an afternoon

practical session on the Casino code run by Neil Drummond.
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The School proved very popular and was significantly over-subscribed. We were able to find

places for 38 students representing 13 different countries. The feedback was overwhelmingly

positive, and many constructive suggestions were provided: typically students wanted us to add

a particular topic - GW and Wannier functions were popular suggestions.

The school has run biennially for a number of years. From this year’s experience we feel there

is a clear need for this level of graduate training and we hope that there is support for such a

school in 2013.

Program

Monday 11th July

09:00-10:00 Density-functional Theory Stefano Baroni

10:00-11:00 Density-functional Theory Stefano Baroni

11:30-12:30 Density-functional Practice Nicola Marzari

14:00-17:30 Quantum Espresso Hands-on 1 Davide Ceresoli, Nicola Bonini

Tuesday 12th July

09:00-10:00 Density-functional Perturbation Theory Stefano Baroni

10:00-11:00 Time-dependent DFT Stefano Baroni

11:30-12:30 Density-functional Perturbation Theory Nicola Bonini

14:00-17:30 Quantum Espresso Hands-on 2 Nicola Bonini, Davide Ceresoli

Wednesday 13th July

09:00-09:40 Introduction to Linear Scaling Peter Haynes

09:40-10:20 The Onetep code Chris Skylaris

10:50-11:30 Applications of Linear Scaling Arash Mostofi

11:30-12:30 Materials Modelling in Oxford Jonathan Yates

14:00-17:30 Onetep Hands-on P. Haynes, A. Mostofi, C. Skylaris

Thursday 14th July

09:00-10:00 LMTO Martin Leuders

10:00-11:00 Wannier functions and Model Hamiltonians Jonathan Yates

11:30-12:30 LMTO 2 Leon Petit

14:00-17:30 LMTO Hands-on W. Temmerman, D. Szotek, M. Lueders, L. Petit

Friday 15th July

09:00-10:00 Quantum Monte Carlo Richard Needs

10:00-11:00 QMC 2 Richard Needs

11:30-12:30 The Casino Code Richard Needs
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14:00-17:30 Casino Hands-on Neil Drummond, Priyanka Seth

Organisers and lecturers

Stefano Baroni SISSA Italy

Nicola Bonini University of Oxford UK

Davide Ceresoli University of Oxford UK

Neil Drummond University of Lancaster UK

Peter Haynes Imperial College London UK

Martin Leuders Daresbury Laboratory UK

Nicola Marzari University of Oxford UK

Arash Mostofi Imperial College London UK

Richard Needs University of Cambridge UK

Leon Petit Daresbury Laboratory UK

Chris Skylaris University of Southampton UK

Dzidka Szotek Daresbury Laboratory UK

Walter Temmerman Daresbury Laboratory UK

Jonathan Yates University of Oxford UK

Participants

Philippe Aeberhard University of Oxford UK

Merid Legesse Belayneh University College Cork Ireland

Raffaello Bianco Universita Degli Studi di Trieste Italy

Frederic Blanc University of Cambridge UK

Pietro Bonfa Universita degli Studi di Pavia Italy

Peter Bryrne University of Durham UK

Pascal Bugnion University of Cambridge UK

Thomas Cathart Trinity College Dublin Ireland

Shin Liang Chin University of Cambridge UK

Nguyen Huu Chuong Universite Libre de Bruxelles Belgium

Riza Dervisoglu University of Cambridge UK

Marco di Gennaro Universite de Liege Belgium

Domenico di Sante University of L’Aquila Italy

Hongbiao Dong University of Leicester UK

Maofeng Dou Royal Institute of Technology Sweeden

Cyrus Dreyer University of California USA

Marina Rucsandra Filip University of Bucharest Romania

Sinead Griffin ETH Zurich Switzerland

Thomas Hollins University of Durham UK

Kiptiemo Kiprono Korir Politecnico di Torino Italy
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Greg Lever University of Cambridge UK

Jun Liu University of Leicester UK

Elisa Londero Chalmers University of Technology Sweden

Yasheng Maimaiti University College Cork Ireland

Sanghamitra Mukhopadhyay University of Oxford UK

Andrea Neroni CNR-IMRM Italy

Xueyong Pang Ruhr University Bochum Germany

Giovanni Pizzi Scuola Normale Italy

Samuel Ponce Universite Catholique de Louvain Belgium

Sankari Sampath ICAMS Germany

Alvaro Ruiz Serrano University of Southampton UK

Priyanka Seth University of Cambridge UK

Daniel Sethio University of Groningen Netherlands

Kim Han Seul Korea Advanced Institute of Science and Technology Korea

John Sharp University of Liverpool UK

Sathyanarayana Sowmya University of Vienna Austria

Natalie Tillack University of Oxford UK

Vincent van Hinsberg University of Oxford UK
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2.2 Report on Psi-k Workshop on KKR and Related Greens Function

Methods

Halle, Germany

July 8-10, 2011

Psi-k Network,

Max Planck Institute of Microstructure Physics and

Martin Luther University Halle-Wittenberg

Arthur Ernst, Wolfram Hergert, Ingrid Mertig

http://slab.physik.uni-halle.de/kkr workshop

Scientific Report

The importance of ab initio electronic structure simulations based on Density Functional Theory

is well-established in materials science, new approaches and theories are being continuously im-

plemented to study novel problems and materials. The Korringa-Kohn-Rostoker (KKR) method

is known to be a highly versatile tool to investigate, e.g., relativistic effects and electron correla-

tions, magnetic and chemical interactions, spectroscopic properties, as well as electric transport

in solids ranging from bulk to nanoparticles. This versatility of the KKR method mainly stems

from the Greens function formalism it employs.

Back to several decades, leading groups of the KKR method have organized annual or biannual

meetings with the aim to exchange experiences in developing computer codes and to discuss

scientific achievements and further progress that can be accessed in terms of this methodology.

As those groups are mostly located in Europe, Psi-k naturally provided a background to host

and support these meetings during the past decade. It was the very purpose of this workshop

to continue this tradition and, thus, to keep the KKR method in the forefront of ab initio based

computational materials science.

The workshop was intended to continue a regular series of meetings of the KKR research commu-

nity organized under support of Psi-k (Munich 2004, Bristol 2006, Canterbury 2008, Budapest

2009). A particular feature of the current workshop was that not only the KKR community was

presented but as well groups working with other Green function related methods. 73 participant

from seven European countries joined the workshop.

Related to recent advances achieved and novel challenges met by the KKR method, the workshop

was focused to developments and applications of relativistic electron theory and phenomena

driven by spin-orbit interaction:

• The calculation of magnetic anisotropies and magnetic interactions of relativistic origin

such as the Dzyaloshinskii-Moriya interaction.
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• Advances in understanding the spin and the anomalous Hall effect in terms of Boltzmann’s

transport equation or of the Kubo formalism.

• Developments with respect to topological phases to consider phenomena like the intrinsic

spin and the intrinsic anomalous Hall effect as well as orbital polarization.

• Ab initio vs. multiscale approaches to spin-dynamics to study finite temperature metallic

magnetism from simple metals to heterogeneous systems of technological interest.

• Magnetism on the atomic scale: clusters and nanoparticles of different shape deposited on

surfaces, beating the superparamagnetic limit for high density magnetic recording.

• Functional materials for spintronics: oxides, half-metals, multi- and nanoferroics.

• Excitations (magnons and phonons) based on the dynamic linear response theory. The

latter formalism is particularly well implementable with the KKR method. (viii) Ab initio

description of magnon and phonon assisted inelastic transport phenomena.

• First principles description of strongly correlated materials within the multiple-scattering

theory.

Beyond the above topics, other research fields commonly accessed by Green function methods

(e.g., to alloy theory) were presented during the workshop. In addition, a session was devoted

to discuss computational methods and problems with emphasis to recent developments of full-

potential KKR method and related Green function methods. Each presentation of the workshop

was followed by intensive discussions among the participants of the workshop. The general

scientific atmosphere of the discussions and the workshop in general was open and creative.
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Programme

Friday, 8th of July

Time Speaker Title

12:30-13:25 Coming together, Refreshments

13:25-13:30 Opening remarks

Magnetism

13:30-14:00 I1 J. Staunton Competing magnetic interactions in transition metal and

rare earth materials from ab-initio electronic structure

electronic structure theory

14:00-14:30 I2 L. Udvardi Finding a non-collinear magnetic groundstate

14:30-15:00 I3 B. Ujfalussy Exchange interactions on alloy surfaces

15:00-15:30 I4 V. Drchal Effective magnetic Hamiltonians

15:30-15:50 Coffee break

Superconductivity, Magnons

15:50-16:20 I5 H. Gross Ab-initio approach to superconductivity

16:20-16:50 I6 P. Buczek Magnon-elecron scattering in nanoscale transport

16:50-17:20 I7 L. Sandratskii Interface electronic complexes and Landau damping of

magnons in ultrathin magnets

17:20-17:30 Coffee Break

Nanostructures, Surfaces

17:30-18:00 I8 P. Zahn Transport properties of nanostructured thermoelectric

materials

18:00-18:30 I9 V. Stepanyuk Quantum confinement of electrons in atomic-scale

nanostructures

18:30-18:45 C1 O. Brovko Confined bulk-states as a long-range sensor for impurities

and a transfer channel for quantum information

18:45-19:00 Break

19:00-21:00 Postersession / Refreshments
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Saturday, 9th of July

Time Speaker Title

Rashba effect

08:30-09:00 I10 L. Szunyogh Generalized Bychkov-Rashba Hamiltonians

09:00-09:30 I11 J. Braun Actual trends in ARPES: Correlation, disorder

and Rashba physics

09:30-09:45 C2 F. Freimuth Spin-orbit mediated torque in Rashba systems

09:45-10:00 C3 O. Sipr Induced magnetic moments make MAE calculation

fun or nightmare

10:00-10:30 Coffee break

Anisotropies, topological insulators

10:30-11:00 I12 H. Ebert Fully relativistic calculations of the magnetic shape

anisotropy and of the Gilbert damping parameter

11:00-11:30 I13 I. Turek Tunneling anisotropic magnetoresistance in

Fe/GaAs/Ag(001)

11:30-12:00 I14 J. Henk Properties of the undoped and magnetically doped 3D

topological insulator Bi2Te3

12:00-12:15 C4 M. Garcia Ab initio study of the surface properties of a new ternary

Vergniory compound topological insulator

12:15-12:30 C5 H. Zhang Electrically tunable quantum anomalous Hall effect in 5d

transition-metal adatoms on graphene

12:30-13:30 Lunch break

Spin Hall effect, spin relaxation

13:30-14:00 I15 M. Gradhand The Berry curvature and the spin Hall effect

calculated with the KKR

14:00-14:30 I16 D. Ködderitzsch Spin and anomalous Hall effect in transition-metal alloys

14:30-15:00 I17 P. Mavropoulos Spin relaxation due to impurity scattering in

non-magnetic metallic systems

15:00-15:30 I18 D. Fedorov Elliott-Yafet spin relaxation mechanism within

the KKR method

15:30-16:00 Coffee break

Excitations

16:00-16:30 I19 Y. M0krousov Recent advances in ab initio theory of transverse

scattering-independent transport

16:30-17:00 I20 B. Gyorffy The Berry phase of Dirac electrons and spin-orbit

coupling

17:00-17:30 I21 S. Lounis Dynamical magnetic excitations of nanostructures

17:30-18:00 I22 Chr. Heiliger Spin transfer torques in magnetic tunnel junctions

19:30-23:00 Conference dinner
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Sunday, 10th of July

Time Speaker Title

Methods

08:30-09:00 I23 L. Vitos The EMTO method: Implementation and demonstration

09:00-09:30 I24 R. Zeller Projection potentials, Loyd’s formula and angular

momentum convergence of total energies in full-potential

KKR

09:30-10:00 I25 H. Akai Total energy calculation within EXX+RPA

10:00-10:30 I26 R. Hammerling The non-relativistic full potential single site problem

10:30-10:50 Coffee break

Order - Disorder - Electronic Structure

10:50-11:20 I27 M. Ogura First-principles calculation of structural transformation

11:20-11:50 I28 J. Kudrnovsky Quaternary Heusler alloys (Ni, Cu)2MnSn: Electronic,

magnetic, and transport properties

11:50-12:20 I29 C. Etz Ab initio study of strongly correlated materials

12:20-12:35 C6 A. Marmodoro A multi-sublattice extension of the non-local coherent

potential approximation

12:35-12:50 C7 S. Mankovsky Spin spirals in ordered and disordered solids

12:50-13:00 Closing remarks

13:00-14:00 Lunch

List of Participants

# surname given name institution

1 Aas Cecilia University of York

2 Achilles Steven Martin-Luther-Universität Halle-Wittenberg

3 Akai Hisazumi Osaka University

4 Bauer David Forschungszentrum Jülich

5 Blügel Stefan Forschungszentrum Jülich

6 Borek Stephan Martin-Luther-Universität Halle-Wittenberg

7 Borisov Vladislav Martin-Luther-Universität Halle-Wittenberg

8 Böttcher Danny Max-Planck-Institut für Mikrostrukturphysik

9 Braun Jürgen Ludwig-Maximilians-Universität München

10 Brovko Oleg Max-Planck-Institut für Mikrostrukturphysik

11 Buczek Pawel Max-Planck-Institut für Mikrostrukturphysik

12 Chadova Kristina Ludwig-Maximilians-Universität München

13 Czerner Michael Justus-Liebig-Universität Gieen

14 Deak Andras Budapest University of Technology and Economics

15 Dederichs Peter H. Forschungszentrum Jülich

16 dos Santos Dias Manuel University of Warwick

17 Drchal Vaclav Czech Academy of Sciences, Institute of Physics

continued on next page
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continued from previous page

18 Ebert Hubert Ludwig-Maximilians-Universität München

19 Ernst Arthur Max-Planck-Institut für Mikrostrukturphysik

20 Essenberger Frank Max-Planck-Institut für Mikrostrukturphysik

21 Etz Corina Uppsala University

22 Fedorov Dmitry Martin-Luther-Universität Halle-Wittenberg

23 Fischer Guntram Martin-Luther-Universität Halle-Wittenberg

24 Franz Christian Justus-Liebig-Universität Gieen

25 Freimuth Frank Forschungszentrum Jülich

26 Garcia Vergniory Maia Donostia International Physics Center

27 Geilhufe Matthias Martin-Luther-Universität Halle-Wittenberg

28 Gradhand Martin University of Bristol

29 Gross Eberhard Max-Planck-Institut für Mikrostrukturphysik

30 Gyorffy Balazs Bristol University

31 Hammerling Robert TU Wien, CMS

32 Henk Jürgen Max-Planck-Institut für Mikrostrukturphysik

33 Hergert Wolfram Martin-Luther-Universität Halle-Wittenberg

34 Herschbach Christian Martin-Luther-Universität Halle-Wittenberg

35 Hoffmann Martin Max-Planck-Institut für Mikrostrukturphysik

36 Hölzer Martin Max-Planck-Institut für Mikrostrukturphysik

37 Huerkamp Felix Westfälische Wilhelms-Universität Münster

38 Ignatiev Pavel Max-Planck-Institut für Mikrostrukturphysik

39 Ködderitzsch Diemo Ludwig-Maximilians-Universität München

40 Kordt Pascal Forschungszentrum Jülich

41 Kudrnovsky Josef Czech Academy of Sciences, Institute of Physics

42 Lounis Samir Forschungszentrum Jülich, Peter-Grünberg-Institut

43 Madjarova Galia University of Sofia

44 Mokrousov Yuriy Forschungszentrum Jülich,

Peter-Grünberg-Institut, Institute for Advanced Simulation

45 Mankovskyy Sergiy Ludwig-Maximilians-Universität München

46 Marmodoro Alberto University of Warwick

47 Mavropoulos Phivos Forschungszentrum Jülich, Institute for Advanced Simulation

48 Mertig Ingrid Martin-Luther-Universität Halle-Wittenberg

49 Nguyen Hoang Long Forschungszentrum Jülich

50 Offenberger Martin Ludwig-Maximilians-Universität München

51 Ogura Masako Osaka University

52 Ostanin Sergey Max-Planck-Institut für Mikrostrukturphysik

53 Rühl Andreas Justus-Liebig-Universität Gieen

54 Sandratskii Leonid Max-Planck-Institut für Mikrostrukturphysik

55 Simon Eszter Hungarian Academy of Sciences Budapest

continued on next page
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56 Sipr Ondrej Czech Academy of Sciences, Institute of Physics

57 Staunton Julie University of Warwick

58 Stepanyuk Valeri Max-Planck-Institut für Mikrostrukturphysik

59 Szunyogh Laszlo Budapest University of Technology and Economics

60 Tao Kun Max-Planck-Institut für Mikrostrukturphysik

61 Tauber Katarina Martin-Luther-Universität Halle-Wittenberg

62 Turek Ilja Czech Academy of Sciences, Institute of Physics

63 Udvardi Laszlo Budapest University of Technology and Economics

64 Ujfalussy Balazs HAS, Research Institute for Solid State Physics

65 Vitos Levente Royal Institute of Technology Stockholm

66 Wimmer Sebastian Ludwig-Maximilians-Universität München

67 Winter Hermann Karlsruher Institut für Technologie

68 Yavorsky Bogdan Martin-Luther-Universität Halle-Wittenberg

69 Zahn Peter Martin-Luther-Universität Halle-Wittenberg

70 Zeller Rudolf Forschungszentrum Jülich, IAS-3

71 Zhang Hongbin Forschungszentrum Jülich, Institute for Advanced Simulation

72 Zimmermann Bernd Forschungszentrum Jülich, Peter-Grünberg-Institut

73 Zubizarreta Xabier Donostia International Physics Center
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2.2.1 Report on the Psi-k/CECAM Event on Self-Interaction Correction: State

of the Art and New Directions

September 18, 2011 (evening) to September 21, 2011

Ramada Jarvis Hotel, Chester, UK

Organisers:

Martin Lueders, Leon Petit and Zdzislawa (Dzidka) Szotek (STFC Daresbury

Laboratory, UK)

Local administration:

Wendy Cotterill and Shirley Miller (STFC Daresbury Laboratory, UK)

Sponsored by

ESF/Charity Psi-k Network and CECAM Node at STFC Daresbury Laboratory

(UK)

Webpage

http:

//www.cse.scitech.ac.uk/cecam_at_daresbury/self-interaction_correction.shtml

Scientific report

This Psi-k/CECAM event on ”Self-Interaction Correction: state of the art and new directions”

took place on the thirtieth anniversary of John Perdew and Alex Zunger’s seminal paper on

correcting self-interaction error inherent in local density approximation to density functional

theory [Phys. Rev. B23, 5048 (1981)]. This paper had initiated a variety of new implementa-

tions, generalizations, and extensions of the proposed self-interaction correction (SIC) approach,

nominally giving rise to a new ”field”. It had also led to a plethora of applications in different

fields of physics and chemistry. Over the years, it had become apparent that different ”varieties”

of SIC had been developed nearly independently of each other, in particular in the field of quan-

tum chemistry and solid state physics, with the experiences/advances gained in one field barely
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noticed in the other areas. Thus the paramount goal of this event was to bring together, for the

first time, all the groups that had applied and worked on self-interaction correction, in order to

discuss and assess the state of the art of all the different flavours of SIC, share the experiences

and identify the most important and burning issues, unsolved problems, and perhaps find a

common direction for future developments.

The meeting took place in a beautiful city of Chester, the capital of the Cheshire county, U.K.

The city is unique in its rich history, and comfortably ranks alongside the cities of London, York,

Bath and Edinburgh. Chester was founded by the Romans over 2000 years ago, and much of

the Roman influence remains and Chester City Walls are the most complete in Britain. The

venue of the meeting, the Ramada Chester Hotel, is situated 2 miles away from the centre of

the city, in a quiet, green area. It provided nice and enjoyable atmosphere for the lectures and

lively discussions.

The event attracted over 40 participants from all over the world, with 11 from the U. K., the

country of the organizers of the meeting, seven from the USA, six from Germany, three each

from Denmark and Iceland, two from France, Italy, Ireland, Japan, and Switzerland, and one

from Brazil and Sweden. It was organized around 20 invited talks of 45 minutes (see the list

below), a poster session to allow participants to present and discuss their contributed papers,

and a two-hours long, concluding and summarizing, round table discussion.

Invited Speakers

Hisazumi Akai (Osaka University, Japan)

Björn Baumeier (MPI Mainz, Germany)

Klaus Capelle (Sao Paulo, Brazil)

Aron Cohen (Cambridge, UK)

Olle Eriksson (Uppsala University, Sweden)

Alessio Filippetti (Cagliari, Italy)

Nikitas Gidopoulos (STFC RAL, U.K.)

Peter Küepfel (Faculty of Science, VR-II, Univ. of Iceland)

Stephan Kuemmel (University of Bayreuth, Germany)

Nicola Marzari (University of Oxford, UK)

Mark R. Pederson (NRL,USA)

John P. Perdew (Tulane University, USA)

Adrienn Ruzsinszky (Tulane University, USA)

Stefano Sanvito (Trinity College Dublin, Ireland)

Thomas C. Schulthess (ETH Zurich, Switzerland)

Julie B. Staunton (Warwick University, UK)

Eric Suraud (University of Toulouse, France)

Axel Svane (Aarhus University, Denmark)

Takao Tsuneda (Yamanshi University, Japan)

Alex Zunger (Colorado University Boulder, USA)
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Moderator of Round Table Discussion:

George Malcolm Stocks (ORNL, USA)

Poster Session Presentations: Chair: Antonios Gonis (LLNL)

Markus Daene (Oak Ridge)

”Computationally Simple, Analytic, Closed Form Solution of the Self-Interaction Problem in

Kohn-Sham Density Functional Theory”

Guntram Fischer (Halle)

”Magnetic Properties of Polar ZnO Surfaces: Application of SIC”

Hildur Guδmundsdóttir (Reykjavik)

”Self-interaction correction within the PAW formalism: implementation and applications”

Dirk Hofmann (Bayreuth)

”Self-interaction correction in the time-dependent Kohn-Sham scheme”

Simon Klüpfel (Reykjavik)

”More complex than expected: The Self-interaction corrected ground state of atoms and molecules”

Martin Lueders (Daresbury)

”Flavours of SIC”

Keld Lundgaard (Lyngby)

”Exchange correlation functionals including non-local correlation and error estimation”

The meeting was officially opened on Monday morning by Walter Temmerman, representing

both the Psi-k ESF/Charity and the Daresbury node of CECAM, the institutions sponsoring

the event. The opening invited talk of the meeting was by John Perdew, presenting his thoughts

on SIC after 30 years. He discussed the dramatic successes and failures of the original Perdew

and Zunger (PZ) SIC formulation. He also proposed two variants of PZ-SIC thus providing use-

ful foundation for the rest of the meeting. Alex Zunger followed with his invited talk, addressing

issues of the violation of the linear behaviour of the total energy on occupation number by ap-

proximate DFT approaches and discussed a simple, self-interaction-free, fix that restores the

linearity. Mark Pederson presented a retrospective on computational challenges for wide-spread

use of self-interaction corrections, discussing the physical significance of localized and canonical

orbitals in applications of SIC to molecules and solids and the impact of full-scale implementation

in application-oriented fields. Nicola Marzari discussed electronic structure challenges, some of

which stem from the remnants of self-interaction, for trying to reach qualitative and quantitative
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accuracy and ability to perform quantum simulations under realistic conditions. He suggested

possible solutions for these challenges based on constrained DFT, extended Hubbard functionals,

or on imposing a generalization of Koopmans’ theorem. Klaus Capelle started from reviewing

connections between DFT and model Hamiltonians, highlighting the many possible benefits that

arise from using insights from DFT to study model Hamiltonians, and ideas arising from model

Hamiltonians to improve functionals for DFT. He considered orbital-dependent functionals, the

PZ-SIC, and compared results from six different levels of approximate implementation, ranging

from simple post-LDA strategies to a full OEP, to available exact results. Stephan Kuemmel

discussed the Kohn-Sham approach to the SIC using one global multiplicative potential and

studied the effects of orbital localization and the physical reliability of the thus obtained eigen-

values of organic semiconductor molecules. Peter Kluepfel presented results of self-consistent

calculations of PZ-SIC applied to GGA and LDA functionals for atoms, molecules and solids.

The use was made of an efficient method to minimize the energy with respect to the orbitals, in-

volving explicit unitary optimization. Olle Eriksson gave the last invited talk of Monday, briefly

outlining the Lundin-Eriksson approach to SIC, then full-potential LMTO implementation of

PZ-SIC and recent developments of DMFT.

The poster session was very lively and enjoyed by all the participants. A few minutes long

oral introductions of the posters by their presenters were found very helpful in organizing one’s

viewing preferences. A special highlight of the evening was a cake presented to John Perdew and

Alex Zunger (see the photos below), with the first page of their seminal SIC paper imprinted on

the icing on the top of the cake. Since the CECAM Council had decided to fund the SIC meeting

not as a regular workshop, but as a celebration event, we came to conclusion that a cake, would

be a fitting tribute to the celebration. The cake was cut by Alex, with John’s assistance, and

as seen in the photograph below, both seem to have enjoyed the experience and, hopefully, the

cake as well. The cake was large enough, so everybody could eat a piece of it, and the lucky

ones could even get a taste of an equation or similar.
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Axel Svane gave the first talk of the Tuesday morning presenting results of many applications

to 4f and 5f electron solids, based on the PZ-SIC implementation within the LMTO-ASA

band structure method, discussing localization/delocalization phenomena and valency. Thomas

Schulthess presented early results from the PZ-SIC implementation in the full-potential LAPW

code and discussed the importance of spherical vs. non-spherical issues in comparison with

importance of the choice of the starting Wannier functions and energy minimization. Björn

Baumeier started the sequence of talks related to the so-called pseudo-SIC approach for crys-

talline systems. Allesio Filippetti continued in the similar spirit, however concentrating on the

applications to strongly correlated systems, outlining also the variational pseudo-SIC approach.

Then Hisazumi Akai presented some results from the pseudo-SIC implementation in the KKR

method, using the energy dependent functions, instead of projections on a fixed set of atomic

functions. He also talked about EXX+RPA approach. Julie Staunton gave the last talk of the

second day and described a combined approach of DLM with the so-called local SIC imple-

mentation in the KKR formalism. She presented results of its application to finite temperature

magnetism in heavy rare earth and transition metal oxides (TMO), showing the existance of a

well defined gap in the paramagnetic state of TMOs.

The late afternoon was spent on a few hours walk around the historic sights of the beautiful city

of Chester. The day was finished with a ”conference” dinner in The Ship Inn, overlooking the

river Dee. It was a nice and pleasant event.

The first talk of the last day of the meeting was given by Adrienn Ruzsinszky on the non-

empirical fully-nonlocal functionals for correlation, compatible with SI-free exact exchange. Her

talk was followed by Eric Suraund’s on time-dependent self-interaction free DFT. Takao Tsuneda

talked about regional SIC of long-range corrected DFT. Aron Cohen discussed many electron

self-interaction problem and the connection between self-interaction and strong correlation. Ste-

fano Sanvito discussed the impact of self-interaction error on electronic transport across nan-

odevices based on an atomic/pseudo-SIC approach. The last talk of the meeting was by Nikitas

Gidopoulos who discussed self-interaction free potentials from constrained density functional

approximations.

The meeting was concluded with a two-hours long round table discussion well introduced and

skillfully moderated by George Malcolm Stocks. The discussions were lively and useful, tackled

many important issues of SIC implementations, importance of complex orbitals, minimization

and transformation matrix optimizations, etc. There was also talk about establishing a SIC

Club or a formal framework for validation and verification of SIC results obtained with different

implementations. A follow-up meeting in a couple of years or so was also contemplated. All in

all, it was a very interesting meeting, praised by many and assessed as very beneficial by all the

participants.

Finally, the local administration of the meeting, the venue, food and all the services provided

by the Ramada staff were very highly appreciated.
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Programme

Sunday 18th September 2011

17:00 - 20:00 Arrival and Registration

Monday 19th September 2011

08:45 Walter Temmerman (Daresbury): CECAM Daresbury Node Director

and Vice-chair of Psi-k

Opening Remarks

Chair: Thomas Schulthess (Zurich)

09:00 John Perdew (Tulane)

"Rethinking the Perdew-Zunger Self-Interaction Correction,

after 30 Years"

09:45 Alex Zunger (Colorado)

"Predicting localization, delocalization and polaron behaviour

in insulators via restoration of the proper energy vs.

occupation (linear) dependence to DFT"

10:30 Coffee/Tea

11:00 M Pederson (Washington DC)

"Computational Challenges for Wide-Spread Use of Self-

Interaction-Corrections:A retrospective"

11:45 Nicola Marzari (Lausanne)

"Nothing works! Electronic-structure challenges in modelling

materials for energy applications" ("Three perspectives on

self-interaction - long-range charge transfer, short-range

hybridization, and photoemission levels")

12:30 Lunch

Chair: John Perdew (Tulane)

14:00 Klaus Capelle (Sao Paulo)

"Model Hamiltonians: A Theoretical Laboratory for DFT"
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14:45 Stephan Kuemmel (Bayreuth)

"Kohn-Sham Self-interaction correction - a route to

physically meaningful orbitals"

15:30 Coffee/Tea

16:00 Peter Klüpfel, Simon Klüpfel, Hildur Guδmundsdóttir and Hannes Jónsson (Reyk-

javik)

"Perdew-Zunger SIC and other orbital density dependent

functionals"

16:45 Olle Eriksson (Uppsala)

"Recent attempts of self-interaction"

18:30 Food and Posters: Chair: Antonios Gonis (LLNL)

Tuesday 20th September 2011

Chair: Olle Eriksson (Uppsala)

09:00 A Svane (Aarhus)

"Self-interaction corrections of solids in the LMTO formalism"

09:45 Thomas Schulthess (Zurich)

"Non-spherical self-interaction corrections implemented within

the all-electron LAPW method"

10:30 Coffee/Tea

11:00 Bjoern Baumeier (Mainz)

"Self-interaction corrected pseudopotentials for crystalline

systems"

11:45 Alessio Filippetti (Cagliari)

"A variational approach to the study of strong-correlated

oxides based on the self- interaction removal from local
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density functional"

12:30 Lunch

Chair: Nicola Marzari (Lausanne)

14:00 Hisazumi Akai (Osaka)

"A pseudo-SIC implementation in the KKR code and applications"

14:45 Julie Staunton (Warwick)

"Magnetic and electronic structure at finite temperatures

described ab-initio: disordered local moments and the

self-interaction correction"

16:00 Walk around Chester + Dinner of the Event

Wednesday 21st September 2011

Chair: Mark Pederson (Washington DC)

09:00 Adrienn Ruzsinszky (Tulane)

"Nonempirical Fully-Nonlocal Density Functional for Correlation,

Compatible with Self-Interaction Free Exact Exchange"

09:45 Eric Suraud (Toulouse)

"The Self Interaction Correction revisited"

10:30 Coffee/Tea

11:00 Takao Tsuneda (Yamanashi)

"Regional self-interaction corrections of long-range corrected DFT"

11:45 Aron Cohen (Cambridge)

"Connection between self interaction and strong correlation"

12:30 Lunch
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Chair: George Malcolm Stocks (Oak Ridge)

14:00 Stefano Sanvito (Dublin)

"The self-interaction error in electronic transport across nanodevices"

14:45 Nikitas Gidopoulos (Didcot)

"Constraining density functional approximations to yield self-interaction

free potentials"

15:30 Coffee/Tea + Round Table Discussion:

George Malcolm Stocks (ORNL) - Moderator

17:30 Closing Workshop

Participants

Prof Hisazumi Akai, Osaka University, Japan

Dr Bjoern Baumeier, Max Planck Institute for Polymer Research, Mainz, Germany

Dr Michael Brooks, STFC Daresbury Laboratory, UK

Prof Klaus Capelle, UFABC, Brazil

Prof Henry Chermett,e Univ. LYON 1, France

Dr Aron Cohen, University of Cambridge, UK

Dr Markus Daene, Oak Ridge National Laboratory, USA

Prof Olle Eriksson, Uppsala University, Sweden

Dr Arthur Ernst, MPI Halle, Germany

Dr Andrea Ferretti, CNR Istituto Nanoscienze, Modena, Italy

Dr Alessio Filippetti, CNR-IOM & University of Cagliari, Italy

Mr Guntram Fischer, Martin-Luther Universitt Halle, Germany

Mr Matthias Geilhufe, Martin-Luther Universitt Halle, Germany

Dr Nikitas Gidopoulos, ISIS, STFC Rutherford Appleton Laboratory, UK

Ms Hildur Guδmundsdóttir, Science Institute, University of Iceland

Prof Balazs Gyorffy, University of Bristol, UK

Mr Dirk Hofmann, University of Bayreuth, Germany

Ms Nina Kearsey, Imperial College London, UK

Dr Peter Klüpfel, Science Institute, University of Iceland

Mr Simon Klüpfel, Science Institute, University of Iceland

Prof Stephan Kuemmel, University of Bayreuth, Germany

Dr Martin Lueders, STFC Daresbury Laboratory, UK

Mr Keld Lundgaard, Technical University of Denmark

Prof Nicola Marzari, Theory and Simulations of Materials, EPFL,Switzerland

Dr Mark Pederson, Naval Research Laboratory, Washington DC, USA

Dr Chaitanya Das Pemmaraju, Trinity College Dublin, Ireland

Prof John P. Perdew, Tulane University, USA
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Dr Leon Petit, STFC Daresbury Laboratory, UK

Ms Effat Rashed, University of Bristol, UK

Dr Adrienn Ruzsinszky, Tulane University, USA

Prof Stefano Sanvito, Trinity College Dublin, Ireland

Prof Thomas Schulthess, ETH Zurich, Switzerland

Prof Julie Staunton, University of Warwick, UK

Dr George Malcolm Stocks, Oak Ridge National Laboratory, USA

Prof Axel Svane, Aarhus University, Denmark

Prof Zdzislawa (Dzidka) Szotek, STFC Daresbury Laboratory, UK

Prof Walter Temmerman, STFC Daresbury Laboratory, UK

Dr Stanko Tomić, University of Salford, UK

Prof Takao Tsuneda, University of Yamanashi, Japan

Mr Jess Wellendorff, Technical University of Denmark

Prof Alex Zunger, Colorado University Boulder, USA

25



3 General Job Announcements

Postdoc Position: First-Principles Simulations and Modeling of
Phonon Linewidths in Thermoelectric Materials at Oak Ridge

National Laboratory, USA

Project description:

The goal of this project is to gain knowledge about phonon linewidths (inverse of life-

times), and their systematic dependence on temperature, composition, or the underlying

electronic structure, to predict their impact on thermoelectric efficiency [1,2,3,4,5]. The

project involves collaboration between leading experimentalists, ab-initio theorists, and

computer scientists at ORNL. The research will involve performing detailed calculations

of phonon energies and linewidths (using first-principles as well as force-field methods),

and benchmarking against experimental measurements. The tasks will include writing

software to fit experimental data with parameterized models, and perform numerical op-

timization of phonon lifetimes. The software will be implemented on the high-performance

computers at ORNL (including hybrid architecture based on General Purpose Graphical

Processing Unit) to optimize our phonon dynamics models, and directly fit the experi-

mental datasets. The convolution of phonon simulations with the response function of

neutron scattering spectrometers at the Spallation Neutron Source will produce realistic

simulated datasets, directly comparable with experiments. The outcome of this research

will enable benchmarking microscopic theories of thermal conductivity, and develop more

efficient thermoelectric materials. This research will leverage the world-class computing

and neutron scattering resources of ORNL.

Qualifications:

Candidates with a recent Ph.D. in Physics, Materials Science, Chemistry, or related fields

will be considered. Expertise with first-principles simulations (density functional theory),

and in particular phonon simulations (with linear response or direct method), is a require-

ment for this position. Experience with molecular dynamics simulations, anharmonicity

calculations, many-body techniques, and numerical optimization will be helpful. Good

programming skills with modern computer languages (C++, Python) will be a strong ad-

vantage. Strong written and oral communication skills and the desire to work in a team

environment on scientifically challenging problems are required. The successful candidate

will conduct research at Oak Ridge National Laboratory, and will make use of computing

facilities at ORNL. Applicants cannot have received their Ph.D. more than five years prior

to the date of application and must complete all degree requirements before starting their
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appointment.

How to Apply:

Please contact Dr. Olivier Delaire (delaireoa@ornl.gov) for further information about

the position and the application process.

References:

1. O. Delaire, K. Marty , M. B. Stone, P. R. C. Kent, M. S. Lucas, D. L. Abernathy,

D. Mandrus, B. C. Sales, Proc. Natl. Acad. Sci. USA 108, 4725 (2011).

2. B. C. Sales, O. Delaire, M. A. McGuire, and A. F. May, Phys. Rev. B 83, 125209

(2011).

3. O. Delaire et al., Nature Materials, doi:10.1038/nmat3035 (2011).

4. O. Delaire, A. F. May, M. A. McGuire, W. D. Porter, M. S. Lucas, M. B. Stone, D.

L. Abernathy, and G. J. Snyder, Phys. Rev. B 80, 184302 (2009).

5. O. Delaire, M.S. Lucas, J.A. Muoz, M. Kresch, and B. Fultz, Phys. Rev. Lett. 101,

105504 (2008).

Additional information and application instructions can be found on:

https://www3.orau.gov/ORNL_TOppS/Posting/Details/188

(Position Reference Code: ORNL11-123-NSSD)
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Postdoctoral Position

Universidad de Oviedo, Oviedo, Spain

Radiation damage is known to lead to materials failure and thus is of critical importance

to the lifetime and safety within nuclear reactors. Its detrimental effects can be prevented

by appropriate advanced nanomaterials tailoring, inherent to which are composition and

structure modelling. Due to the multi-scale nature of the problem, experts in the fields of

materials simulation via ab initio, molecular dynamics and continuum modelling are build-

ing up ever-growing teams to contribute to the characterization and improvement of such

highly demanding materials. It is in this context where a THREE-YEAR POSTDOC-

TORAL RESEARCH FELLOW APPOINTMENT AT THE UNIVERSIDAD

DE OVIEDO (SPAIN) for a talented and motivated individual is offered. Expected

starting date: From October the 15th, 2011 (could also start at a later convened date).

The Universidad de Oviedo was established in 1608. It is a public institution, with more

than 1500 researchers and 250 research groups, devoted to higher education teaching and

research that fosters the social, economic and cultural development of the local com-

munity through the generation and diffusion of knowledge. Today, it has become the

main research centre of the Principado de Asturias, a Spanish autonomous region with a

population of over one million inhabitants located in the north-west of Spain. Nanotech-

nology related research is very active at UNIOVI, with more than 100 researchers and

the cooperation in the recently created Research Center on Nanomaterials and Nanotech-

nology (CINN). Both fabrication, characterization and modelling areas are present, the

latter through the scientific and technological modelling computing cluster and the new

supercomputing center which is being established this year.

The appointed researcher will work in a young but enthusiastic environment, based in

Oviedo. The researchers involved in this particular work package participate in several

HPC (High Performance Computing) initiatives through the RES (Spanish Supercom-

puting Network) and HPC Europe. Close collaboration with the University of Burgos,

IMDEA-Materials (Madrid) and the Nuclear Fusion Institute (DENIM, Madrid) is envis-

aged. Permanent collaborations with international institutions, as Los Alamos National

Laboratory (USA), Lawrence Livermore National Laboratory (LLNL), Georgia Tech Lor-

raine University (Metz, France), University of Tartu (Estonia), University of Uppsala

(Sweden), or Paul Scherrer Institute (PSI, Switzerland), have been established.

Lines of research:

1. Multiscale modelling of advanced nano-structured materials for engineering applica-

tions under extreme environments.
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2. Advanced materials in next generation fission nuclear reactors and the new inertial

confinement and magnetic fusion initiatives. ESFRI - HiPER EU project and DEMO

international collaboration.

3. Integration in the very attractive scientific developments of ever-growing interna-

tional research community involved in fusion materials technology.

The research activity will concern atomistic mechanisms and materials properties at in-

terfaces of interest. The Post Doctoral fellow will help develop atomistic scale interfacial

models relevant to our multiscale modelling program by means of ab initio calculations

using commercially widespread packages, such as Wien2k and VASP, already available

within our group. Other first principles simulation packages (Abinit, SIESTA, Quantu-

mESPRESSO,...) could possibly be used at some stage to perform specific computations.

Previous experience with density-functional calculations based on plane waves and pseu-

dopotentials is requested. Experience in ab initio simulations on surfaces and a basic

knowledge on the foundations of density functional theory are highly recommended. Ex-

pertise in installation and running of computer codes in parallel environments is required.

The applicant should be able to work with Linux, have at least a basic scripting knowledge,

as well as be acquainted with Fortran and C programming languages. Expert handling

of visualization tools is a plus. Since the results obtained from the first principle calcu-

lations will be used as an input for molecular dynamics and lattice kinetic Monte Carlo

codes in order to analyse defect evolution at experimentally relevant time frames, famil-

iarity in the use of such techniques would be advantageous. The Post Doctoral fellow

will be working in a highly collaborative environment in close synergy with experimental-

ists from other institutions. Therefore, research performed at large facilities, such as an

X-ray synchrotron or neutron sources, will be highly appreciated. Both theoretical and

experimental background in fields related to nuclear materials science would also be of

great interest. Finally, the applicant should be able to fluently communicate in English.

Spanish basic knowledge would be helpful.

The interested candidates should submit (in PDF-format) their (1) curriculum vitae,

(2) publication list, and (3) one reprint of representative previous research. The inter-

ested candidate should also express his/her motivation in a covering letter, including the

prospected date of availability, and arrange confidential letters of recommendation to be

sent to the address below. Only complete applications will be processed. The selection

process will continue until a suitable candidate occupies this opening.

Contact: Prof. Roberto Iglesias Pastrana

Department of Physics

Faculty of Science

University of Oviedo

roberto@uniovi.es
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4 Abstracts

Symmetry reduction in multiband Hamiltonians for

semiconductor quantum dots: the role of interfaces and higher

energy bands

Stanko Tomić

Joule Physics Laboratory, School of Computing, Science and Engineering,

University of Salford,Salford M5 4WT, United Kingdom

Nenad Vukmirović

Scientific Computing Laboratory, Institute of Physics Belgrade,

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Abstract

The role of interfaces and higher bands on the electronic structure of embedded semicon-

ductor quantum dots (QDs) was investigated. The term in the multiband k·p Hamiltonian

that captures the effect of interface band mixing was derived starting from the microscopic

theory. It was shown, analytically and numerically, that, with such a term included, the right

symmetry of the QD system can be captured. It leads to splitting of otherwise degenerate

energy levels of the order of several meV. The inclusion of additional higher bands beyond

the ones from the standard eight-band model also leads to the reduction of symmetry from

an artificially high one to the true atomistic symmetry of the system, however their quan-

titative effect is weaker. These results prove that the multiband k·p Hamiltonians are fully

capable of describing the correct symmetry of a QD.

(Published as: Highlight in Journal of Applied Physics 110, 053710 (2011) )

Contact person: Stanko Tomić (s.tomic@salford.ac.uk)
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Modeling of the Cubic and Antiferrodistortive Phases of SrTiO3

with Screened Hybrid Density Functional Theory

Fedwa El-Mellouhi, Edward N. Brothers

Science Program, Texas A&M university at Qatar,

Texas A&M Engineering Building, Education City, Doha, Qatar

Melissa J. Lucero

Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA

Gustavo E. Scuseria

Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA

Department of Physics and Astronomy, Rice University,

Houston, Texas 77005-1892, USA

Chemistry Department, Faculty of Science, King Abdulaziz University,

Jeddah 21589, Saudi Arabia

Abstract

We have calculated the properties of SrTiO3 (STO) using a wide array of density func-

tionals ranging from standard semi-local functionals to modern range-separated hybrids,

combined with several basis sets of varying size and quality. We show how these combi-

nations’ predictive ability varies significantly, for both STO’s cubic and antiferrodistortive

(AFD) phases, with the greatest variation in functional and basis set efficacy seen in mod-

eling the AFD phase. The screened hybrid functionals we utilized predict the structural

properties of both phases in very good agreement with experiment, especially if used with

large (but still computationally tractable) basis sets. The most accurate results presented in

this study, namely those from HSE06/modified-def2-TZVP, stand as one of the most accu-

rate modeling of STO to date when compared to the literature; these results agree well with

experimental structural and electronic properties as well as providing insight into the band

structure alteration during the phase transition.

(Published in Physical Review B , vol. 84, issue 11, page 115122 )

Contact person: fadwa.el mellouhi@qatar.tamu.edu, ed.brothers@qatar.tamu.edu
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Thermal conductivity of Si nanostructures containing defects:

Methodology, isotope effects, and phonon trapping

T. M. Gibbons1, By. Kang1, and S. K. Estreicher1, and Ch. Carbogno2

1Texas Tech University, Lubbock, Texas 79409-1051, USA
2Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4–6, 14195 Berlin, Germany

Abstract

A first-principles method to calculate the thermal conductivity in nanostructures that

may contain defects or impurities is described in detail. The method mimics the so-called

laser-flash technique to measure thermal conductivities. It starts with first-principles density-

functional theory and involves the preparation of various regions of a supercell at slightly

different temperatures. The temperature fluctuations are minimized without using a ther-

mostat and, after averaging over random initial conditions, temperature changes as small as

5 K can be monitored (from 120 to 125 K). The changes to the phonon density of states and

the specific heat induced by several atomic percent of impurities are discussed. The ther-

mal conductivity of Si supercells is calculated as a function of the temperature and of the

impurity content. For most impurities, the drop in thermal conductivity is unremarkable.

However, there exist narrow ranges of impurity parameters (mass, bond strength, etc.) for

which substantial drops in the thermal conductivity are predicted. These drops are isotope

dependent and appear to be related to the vibrational lifetime of specific impurity-related

modes.

(Phys. Rev. B 84, 035317 (2011))

Contact person: Christian Carbogno (carbogno@fhi-berlin.mpg.de)
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Structural Analysis of Silica-Supported Molybdena Based on

X-ray Spectroscopy: Quantum Theory and Experiment

C. S. Guo1, K. Hermann1, M. Hävecker2,1,

J. P. Thielemann1, P. Kube1, L. J. Gregoriades3,

A. Trunschke1, J. Sauer3, and R. Schlögl1

1Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4–6, 14195 Berlin, Germany
2Helmholtz-Zentrum Berlin/BESSY II,

Albert-Einstein-Str. 15, 12489 Berlin, Germany
3 Humboldt-Universität zu Berlin,

Unter den Linden 6, 10099 Berlin, Germany

Abstract

Oxygen core excitations in different molecular molybdena–silica models are evaluated

using density-functional theory (DFT). These results can be compared with in situ X-ray

absorption fine structure (NEXAFS) measurements near the O K-edge of molybdena model

catalysts supported on SBA-15 silica, used for exploratory catalytic activity studies. The

comparison allows an analysis of structural details of the molybdena species. The silica sup-

port is found to contribute to the NEXAFS spectrum in an energy range well above that

of the molybdena units, allowing a clear separation between the corresponding contribu-

tions. Different types of oxygen species, O(1) in terminal M=O bonds, O(2) in interphase

Mo−O−Si bridges and in Mo−O−Mo linkages, as well as O(2) in terminal Mo−O−H groups

can be distinguished in the theoretical spectra of the molybdena species with molybdenum

in tetrahedral (dioxo species), pentahedral (monooxo species), and octahedral coordination.

The experimental NEXAFS spectra exhibit a pronounced double-peak structure in the O

1s to Mo 4–O 2p excitation range of 529–536 eV. Comparison with the present theoretical

data gives clear indications that dioxo molybdena species with tetrahedral MoO4 units can

explain the experimental spectrum. This does not fully exclude species with other Mo coor-

dination, like pentahedral. However, the latter are believed to exist in the present samples in

much smaller amounts. The experimental NEXAFS spectrum for the supported molybdena

species differs substantially from that for MoO3 bulk material with octahedral MoO6 units

where the observed asymmetric peak structure is also reproduced by the calculations.

(J. Phys. Chem. C 115, 15449 (2011).)

Contact person: Klaus Hermann (hermann@fhi-berlin.mpg.de)
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Impact of widely used approximations to the G0W0 method: An

all-electron perspective

Xin-Zheng Li1, Ricardo Gómez-Abal1, Hong Jiang1,

Claudia Ambrosch-Draxl2, and Matthias Scheffler1

1Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4–6, 14195 Berlin, Germany
2Chair of Atomistic Modelling and Design of Materials,

Montanuniversität Leoben, Franz-Josef-Strasse 18, A-8700, Austria

Abstract

Focussing on the fundamental band gaps in Si, diamond, BN, LiF, AlP, NaCl, CaSe, and

GaAs, and the semicore d-state binding energies in ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe,

and GaN, we analyze the well-known discrepancies between the pseudopotential (PP) and

all-electron (AE) G0W0 results. Approximations underlying PP-G0W0, i.e., the frozen-core,

the core-valence partitioning, and the use of pseudo-wavefunctions, are separately addressed.

The largest differences, of the order of eV, appear in the exchange part of the self-energy

and the exchange-correlation (xc) potential due to the core-valence partitioning. These

differences cancel each other and, in doing so, make the final core-valence partitioning effect

on the band gaps controllable when the semicore states are treated as valence states. This

cancellation, however, is incomplete for semicore d-state binding energies, due to the strong

interaction between these semicore states and the deeper core. The remaining error can be

reduced by treating the outermost two shells as valence shell. However, reliably describing

these many-body interactions at the G0W0 level and providing benchmark results requires

an all-electron approach.

(New J. Phys., submitted (2011).)
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Abstract

The development of new types of solar cells is driven by the need for clean and sustainable

energy. In this respect dye sensitized solar cells (DSC) are considered as a promising route

for departing from the traditional solid state cells. The physical insight provided by compu-

tational modeling may help develop improved DSCs. To this end it is important to obtain

an accurate description of the electronic structure, including the fundamental gaps and level

alignment at the dye-TiO2 interface. This requires a treatment beyond ground-state den-

sity functional theory (DFT). We present a many-body perturbation theory study, within

the G0W0 approximation, of two of the crystalline phases of dye-sensitized TiO2 clusters,

reported by Benedict and Coppens [J. Am. Chem. Soc. 132 (9), 2938 (2010)]. We obtain

geometries in good agreement with experiment by using DFT with the Tkatchenko-Scheffler

van der Waals correction. We demonstrate that even when DFT gives a good description

of the valence spectrum and a qualitatively correct picture of the electronic structure of the

dye-TiO2 interface, G0W0 calculations yield more valuable quantitative information regard-

ing the fundamental gaps and level alignment. In addition, we systematically investigate the

issues pertaining to G0W0 calculations, namely: (i) convergence with respect to the number

of basis functions, (ii) dependence on the mean field starting point, and (iii) the validity of the

assumption that the DFT wave-function is a good approximation to the quasi-particle wave-

function. We show how these issues are manifested for dye molecules and for dye-sensitized

TiO2 clusters.

(Phys. Rev. B, submitted (2011).)
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Abstract

We present a comparative assessment of the accuracy of two different approaches for eval-

uating dispersion interactions: inter-atomic pair-wise corrections and semi-empirical meta-

generalized-gradient-approximation (meta-GGA) based functionals. This is achieved by em-

ploying conventional (semi-)local and (screened-)hybrid functionals, as well as semi-empirical

hybrid and non-hybrid meta-GGA functionals of the M06 family, with and without inter-

atomic pair-wise Tkatchenko-Scheffler corrections. All those are tested against the bench-

mark S22 set of weakly bound systems, a representative larger molecular complex (dimer of

NiPc molecules), and a representative dispersively bound solid (hexagonal boron nitride).

For the S22 database, we also compare our results with those obtained from the pair-wise cor-

rection of Grimme (DFT-D3) and non-local Langreth-Lundqvist functionals (vdW-DF1 and

vdW-DF2). We find that the semi-empirical kinetic-energy-density dependence introduced in

the M06 functionals mimics the non-local correlation needed to describe dispersion. However,

long-range contributions are still missing. Pair-wise inter-atomic corrections, applied to con-

ventional semi-local or hybrid functionals, or to M06 functionals, provide for a satisfactory

level of accuracy irrespectively of the underlying functional. Specifically, screened-hybrid

functionals such as the Heyd-Scuseria-Ernzerhof (HSE) approach reduce self-interaction er-

rors in systems possessing both localized and delocalized orbitals, and can be applied to

both finite and extended systems. Therefore, they serve as a useful underlying functional for

dispersion corrections.

(J. Chem. Theory Comput., submitted (2011).)
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Abstract

An efficient method is developed for the microscopic description of the frequency-dependent

polarizability of finite-gap molecules and solids. This is achieved by combining the TS-vdW

method [Phys. Rev. Lett. 102, 073005 (2009)] with the self-consistent screening equation

of classical electrodynamics. This leads to a seamless description of polarization and de-

polarization for the polarizability tensor of molecules and solids. The screened long-range

many-body van der Waals (vdW) energy is obtained from the solution of the Schrödinger

equation for a system of coupled oscillators. We show that the screening and the many-body

vdW energy play a significant role even for rather small molecules, becoming crucial for

an accurate treatment of conformational energies for bio-molecules, and binding of molecu-

lar crystals. The computational cost of the developed theory is negligible compared to the

underlying electronic structure calculation.

(Phys. Rev. Lett., submitted (2011).)
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Abstract

The first principles approaches, density functional theory (DFT) and quantum Monte

Carlo, have been used to examine the balance between van der Waals (vdW) forces and

hydrogen (H) bonding in ambient and high pressure phases of ice. At higher pressure, the

contribution to the lattice energy from vdW increases and that from H bonding decreases,

leading vdW to have a substantial effect on the transition pressures between the crystalline ice

phases. An important consequence, likely to be of relevance to molecular crystals in general,

is that transition pressures obtained from DFT functionals which neglect vdW forces are

greatly overestimated.

(Accepted by Physical Review Letters)
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Abstract

Resolving the atomic structure of the surface of ice particles within clouds, over the tem-

perature range encountered in the atmosphere and relevant to understanding heterogeneous

catalysis on ice, remains an experimental challenge. By using first-principles calculations,

we show that the surface of crystalline ice exhibits a remarkable variance in vacancy for-

mation energies, akin to an amorphous material. We find vacancy formation energies as

low as 0.10.2eV, which leads to a higher than expected vacancy concentration. Because a

vacancys reactivity correlates with its formation energy, ice particles may be more reactive

than previously thought. We also show that vacancies significantly reduce the formation

energy of neighbouring vacancies, thus facilitating pitting and contributing to pre-melting

and quasi-liquid layer formation. These surface properties arise from proton disorder and

the relaxation of geometric constraints, which suggests that other frustrated materials may

possess unusual surface characteristics.

(Published in Nature Materials )
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1 Introduction

”Dispersion forces” [1], [2] are generally understood in the solid-state physics community

to be that part of part of the non-covalent van der Waals (vdW) interaction that cannot be

attributed to any permanent electric mono-or multipoles. (In the chemistry community,

the whole of the non-chemically-bonded interaction is often termed the ”van der Waals”

(vdW) interaction, but in the the physics community this term is usually reserved for

the outer dispersion component as defined above. A useful categorization of the many

components of the total force is given in [3] from a perturbation theory standpoint).

The ubiquitous dispersion forces occur wherever polarizable electron clouds are present,

and are typically weaker than ionic and covalent bonding forces, but are of longer range

than the latter, decaying algebraically rather than exponentially with separation. They

are important in protein interactions, in rare-gas chemistry and in soft condensed matter

generally. They are especially important, for example, in the cohesion and self-assembly of

graphenic nanostructures including nanotubes and planar graphene-based systems, which

have attracted strong recent interest in the condensed matter community. Much work has

been done on the vdW interaction in the two extremes of (i) small molecules (via high-level

quantum chemical methods such as coupled cluster (CCSD(T)) [4] or Symmetry adapted

Perturbation theory (SAPT) [3]) and (ii) well-separated macroscopic objects (via Lifshitz

theory and its extensions, for example [5], [6], [2]). However the study of vdW interactions

between solids and nanostructures down to intimate contact, where dispersion competes

with other forces, is still an area of active research. The selective adhesion of graphene

to various metal substrates is an example of a delicate phenomenon where vdW forces

are important but where a successful fully quantitative theory seems still to be lacking.

This paper will outline the development of simple and more complex theories to account
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for these phenomena within the electromagnetically non-retarded regime, as defined in

the following paragraph. The website [ http://www.cecam.org/workshop-2-411.html ] of

a recent CECAM workshop will give the flavour of some relatively recent work in this

area.

vdW forces are a special case of the more general electromagnetically retarded interaction

between matter, an interaction that is properly treated by regarding both the matter and

the electromagnetic field as dynamical quantum systems. When the distance D between

the interacting bodies is sufficiently small, the light transit time τlight = D/c is small

compared to the response time τmatter of the charges in the matter, and then we can

neglect the retardation of the electromagnetic field. This is sometimes designated the

”vdW regime”, and here one can treat the electromagnetic field as a non-retarded scalar

classical Coulomb field, that serves merely to induce correlations between the charge

fluctuations within the interacting bodies. The emphasis is then focussed on the dynamics

of the interacting matter - the electronic many-body problem. This is the approach that

will mainly be pursued below.

It is worthwhile, however, to consider briefly the opposite limit where retardation is im-

portant, and here the dispersion-type forces are often termed Casimir forces [7]. In this

”Casimir regime” the response of the matter is often treated approximately via a spatially

local dielectric function ε(ω) confined within sharp spatial boundaries representing the

edges of the matter. The dispersion interaction is then often regarded as being due to

the separation-dependence of the zero-point and/or thermal energy of the normal electro-

magnetic field modes. These modes are calculated from the classical Maxwell equations

in the presence of chunks of matter characterized only by their macroscopic permittivity

ε(ω). The two viewpoints are united by the very successful Lifshitz theory [5], [6], applied

originally to the interaction between bulk samples with parallel planar faces, and quickly

extended to other geometries in various approximate ways [1], [8], [9]. In recent years

the Lifshitz type of approach has been applied, without approximation, to more general

geometries such as spheres, cylinders, thin plates etc, but always with the caveat that

the spatial scales must be long compared with the scale of the microscopic structure of

the matter, so that only the long-wavelength response of the matter to e.m. fields is

invoked [10], [11].

In fact the term ”Casimir effect” has recently come to have a wider meaning, covering the

dependence on geometry (shape, size or separation) of the total zero-point or thermal free

energy of any kind of field in confined geometry. Apart from the electromagnetic Casimir

forces described above, examples of this approach include (i) the effect of elastic wave

fluctuations on the thermodynamics behavior of finite and/or curved elastic membranes

(ii) the interaction between nuclei or nucleons in a Fermi sea of quarks, where the zero

point kinetic energy of the free quark field carries the basic effect. Some flavor of the

possibilities of this field-fluctuation approach can be obtained by visiting the website

of a recent Kavli Institute for Theoretical Physics workshop entitled ”Fluctuate 08”: [

http://www.kitp.ucsb.edu/directory/all/fluctuate08 ].
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For the remainder of the present paper we will work in the electromagnetically non-

retarded (non-Casimir) limit, which often means in practice that we can treat interacting

systems at separations from about a micron down to full overlap of electronic clouds.

2 Simple models of the vdW interaction between small systems

It is worthwhile to consider first a very simple picture of the vdW interaction between two

neutral spherical atoms at separation R >> b where b is an atomic size. (For more detail

see e.g. [12] , [13], [14] .) The Hartree field of a neutral spherical atom decays exponentially

with distance, and so the Hartree energy cannot explain the algebraic decay of the vdW

interaction.

2.1 Coupled-fluctuation picture

However the quantal zero-point motions of the electrons (or thermal motions where sig-

nificant) can cause a temporary fluctuating dipole moment d2 to arise on atom #2. The

nonretarded Coulomb interaction energy between this dipole, and another dipole of or-

der α1d2R
−3 that it induces on atom #1, has a nonzero average value that can be esti-

mated [12] , [13] as

E = − <
(

α1d2R
−3
) (

−R−3d2

)

>≈ −C6R
−6, C6 = K~ω0α1α2. (1)

Here α1 and α2 are the dipolar polarizabilities of the atoms and ω0 is a characteristic fre-

quency (level spacing) of an atom. The coefficient C6 for this geometry has been obtained

using a harmonic oscillator analogy to estimate < d2
2 > = Kα2~ω0 and this contains a

dimensionless constant K, that is not easily specifiable from the above qualitative argu-

ment.

2.2 Model based on the static correlation hole: failure of LDA/GGA at large

separations

The spontaneous dipole d2 invoked above would be implied if we had found an electron

at a position ~r ′ on one side of atom #2. The induced dipolar distortion on atom #1

then represents a very distant part of the correlation hole density n2(~r, ~r
′|) [15] due to

discovery of the electron at ~r ′. The shape of this hole is entirely determined by the shape

of atom #1, and is thus quite unlike the long-ranged part of the xc hole present in a

uniform electron gas of density n(~r). It is therefore unsurprising that the local density

approximation (LDA) misses the long-ranged tail of the vdW interaction. In fact, the

LDA and the GGAs can only obtain the vdW tail via the distortion of the density of each

atom. This distortion is predicted by these theories to decay exponentially with separation

of the two atoms, thus ruling out the correct algebraic decay of the energy. The situation

with GGA is less clear when the densities of the interacting fragments overlap. If the

principal attractive correlation energy contribution comes from electrons near the overlap
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region, then treating this region as part of a weakly nonuniform gas might be reasonable.

In keeping with this, various different GGAs can give qualitatively reasonable results for

vdW systems such as rare-gas dimers. The results are neither consistent nor reliable,

however [16], [17], [18], [19], though surprisingly good results near the energy minimum

are obtained [20], [21] with Hartree-Fock exchange plus the Wilson-Levy functional. Some

discussion is given in [12].

2.3 Model based on small distortions of the ground state density

Instead of considering the energy directly for two atoms separated by distance R , Feyn-

man [22] and Allen and Tozer [23] considered the small separation-dependent changes

δn(~r : R) in the groundstate density n(~r) of each atom, caused by the Coulomb interac-

tion V12 between atoms. The Coulomb field acting at the nucleus of each atom created by

δn(~r : R) as source, leads to a force which was identified as the vdW force, in the distant

limit. One can then obtain the correct result ~F = −∇R(−C6R
−6) in the widely-separated

limit, in agreement with (1). Such a result emerges, for example, if δn(~r; R) is calculated

from a many-electron wavefunction correct to second order in V12, involving a double

summation with two energy denominators. (The first-order wavefunction perturbation

makes zero contribution to δn(~r : R).) By contrast, looking at the total energy to second

order in V12 one already obtains the dispersion interaction with only a single summation

and one energy denominator, a substantially easier task of the same order as obtaining

the first-order perturbed wavefunction. From here on we restrict attention to approaches

based directly on the energy.

2.4 Coupled-plasmon model

Another simple way to obtain the R−6 interaction is to regard the coupled fluctuating

dipoles invoked above as forming a coupled plasmon mode of the two systems [13]. One

solves coupled equations for the time-dependent density distortions on the two systems,

leading to two normal modes (in- and out-of-phase plasmons) of free vibration of the

electrons. The R dependence of the sum of the zero-point plasmon energies
∑

i ~ωi/2

gives an energy of form −C6R
−6, in qualitative agreement with the coupled-fluctuation

approach described above for the case of two small separated systems (see, e.g., [24],

[1], [13]). A strength of the coupled-plasmon approach is that it is not perturbative,

and is equally valid for large or small systems, even for metallic cases where zero energy

denominators could render perturbation theory suspect. The coupled-plasmon theory

is linked to the correlation-hole approach by the fluctuation-dissipation theorem to be

discussed starting from Sect. 5 below.
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2.5 Perturbation theory picture assuming no overlap

The factor R−6 in (1) can be understood as arising from two actions of the dipolar field,

each proportional to R−3, suggesting that this simplest approach relates to second -order

perturbation theory in the inter-system Coulomb interaction . Indeed the application of

standard 2nd order Rayleigh-Schrodinger perturbation theory, regarding the electrons of

one system as distinguishable from those of the other and treating the inter-atom coulomb

potential V as a perturbation, yields the formula

E
(2)
AB = −

~

2π

∫ ∞

0

du

∫

d~r1d~r1
′d~r2d~r

′
2V (~r1 − ~r2)χA(~r1, ~r1

′, iu)V (~r2 − ~r1) χB(~r2, ~r2
′, iu)

(2)

where V is the bare electron-electron Coulomb potential and χA(~r1, ~r1
′, ω) exp(−iωt)

is the linear electron number density response at position ~r to an external potential

perturbation of form δV (~x) = δ(~x − ~r ′) exp(−iωt): see (e.g.) [25], or [26]. χA is usually

termed the electron density-density reponse of system A (or just the density response),

and the expression (2) is sometimes known as the ”(generalized) Casimir Polder formula”.

It is derived in a different fashion in Sect. 6.1 below.

By expanding the Coulomb potential in a multipole series around the centres of A and

B, one obtains to lowest order a result of the form (1) with

C6 =
~

2π

3
∑

jkℓm=1

∫ ∞

0

A
(A)
jk (iu)tjℓ(R̂)tkm(R̂)A

(B)
ℓm (iu)du, tjℓ(R̂) = R̂jR̂ℓ − 3δjℓ . (3)

(See e.g. [12]). Here ~R is the vector joining the centers of A and B, R̂ = ~R/
∣

∣

∣

~R
∣

∣

∣
and

A
(A)
jℓ =

∫

xjx
′
ℓχA(~x, ~x ′, iu)d~xd~x ′

is the is the dipolar polarizability tensor of species A. ~x is the position of an electron

relative to the center of A. For two isotropic systems A
(A)
jk = δjkA

(A) and similarly for

A
(B)
jk . This leads to the possibly more familiar expression

E(2) = −C6R
−6, C6 =

3~

π

∫ ∞

0

A(A)(iu)A(B)(iu)du . (4)

Using (3) or (4) one reduces the calculation of the asymptotic vdW interaction between

fragments to the calculation of the (imaginary) frequency-dependent dipolar polarizability

A of each fragment. This is a surprisingly demanding task. It can be done accurately

with high-level quantum chemical approaches, but even relatively sophisticated treatments

like RPA or ALDA obtain accuracies only of order 10-20% for small atoms and molecules,

where orbital self-interaction is an issue.

If the multipole expansion of the Coulomb potential in the Casimir-Polder formula (2) is

taken to higher order, additional terms of form C8R
−8, and higher powers, are added to
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the leading −C6R
−6 term. There are also mixed induction-dispersion terms in general.

A good and very detailed enumeration of the possible terms is given in [3].

2.6 vdW and higher-order perturbation theory

For non-overlapping electronic systems one can go further within perturbation theory

with respect to the inter-system Coulomb interactions Vij . In third order one finds an

interaction between three separated systems, which cannot be expressed as the pairwise

sum of R−6 terms such as (1). At large separations for spherical systems the leading

(dipolar) contribution to this third-order term has the Axilrod-Teller form EvdW, (3) ≈

C9R
−3
12 R−3

23 R−3
13 , (see e.g. [27]) where C9 contains some angular dependence. There are

also corrections to the pair interaction (2) from perturbation orders beyond 2 [3].

2.7 Perturbation theory including overlap: Symmetry Adapted Perturbation

Theory

When the electron clouds of two systems 1 and 2 are allowed to overlap, the electrons

in 1 and 2 can no longer be treated as indistinguishable, and Eq (2) is inapplicable.

A perturbative approach in this case requires Symmetry Adapted Perturbation Theory

(SAPT) [3]. In SAPT the antisymmetry of the many-electron wavefunction is imposed

upon perturbation theory via a projection operator technique. This approach has been

developed to a very high level of sophistication (including judicious use of Time Depen-

dent Density Functional Theory to ease parts of the calculation) [28]. SAPT probably

represents the current state of the art for the van der Waals interaction between pairs

of molecules up to medium size. So far it seems not to be feasible for solids and large

nanostructures, so it will not be considered further here.

3 The simplest models for vdW energetics of larger systems

3.1 Simple pairwise addition of C6R
−6 for well-separated macroscopic bodies

The simplest approach to the vdW interaction between many-atom systems, including

solids, is to add energy contributions of form −C6(ij)R
−6
ij between each pair (i, j) of atoms.

There is a large early literature of calculations of this kind for macroscopic solids with an

empirical C6 value. Often one replaces sums over atoms by continous integration using

volume elements that may each contain many atoms. In this way one easily obtains

analytic dependence on the separation D for macroscopic objects of each well-defined

shape (thick slab, thin slab, sphere, cylinder etc). [1], [13], [8]. See also the right-hand

column of Figure 1 below, for a few specific cases.

45



3.2 Pairwise addition with empirical short-range repulsion

If the interacting bodies can come into close contact, the attractive −C6R
−6 interation

must be attenuated (damped, saturated) at short range and replaced by a Pauli repulsion

term. In empirical pairwise theories the short-ranged part is often of form +C12R
−12

(Lennard-Jones potential) or +B exp(−CR). Since the polarizability A (see (3)) of an

atom in a molecule or solid is usually quite different from that of the isolated atom,

all coefficients C6, C12 or B are often determined empirically. Two examples are the

”universal graphitic potentials” [29], [30]. Such models have been used extensively to

model interactions between carbon nanotubes, graphene sheets, bucky balls etc: see (e.g.)

[31]. Similar terms are included in force fields (e.g. CHARMM) used for biochemical

modelling.

3.3 Pairwise addition as a dispersion energy correction to LDA

Perhaps because of the availability of high-level quantum chemical methods, the simple

pairwise approach seems to have been pursued much later for finite molecular systems

than for other appplication areas. Wu and Yang [32] introduced a pair interaction of form
∑

ij f ij
d (Rij)C

(ij)
6 R−6

ij to be added to the Local Density Functional (LDA) energy, which

of course already contains the Pauli repulsion. The coefficients C6 were optimized by

fitting a set of accurate molecular energies. They turned out to be surprisingly, though

not perfectly, transferrable. This general approach is now often called ”DFT+D” or

DFT-D” and has been furthered by Grimme and others [33], [34]. In the last approach,

transferability is improved by counting the number of effective bonds in which an atom

participates, then using this to modify the atomic C6 coefficients. Another approach [35]

starts from accurate quantum chemical data for the vdW C6 coefficients of free atom

pairs. The vdW interaction is then modified to account for Pauli compression effects of

nearby atoms on the atomic polarizabilities, using the effective volume of each atom in

its molecular environment, according to a standard molecular space partitioning scheme.

4 Effects beyond pairwise additivity

As already indicated in Sect 2.5 above, perturbation theory naturally produces triplet

and higher contributions to the dispersion energy, beyond pairwise interaction of atoms

or spatial elements. For small weakly polarizable systems such as rare gas atoms, these

terms are relatively small but can be significant, along with R−8 and higher terms, at

shorter range as in rare gas crystals [36].

Stronger effects, not describable by a small number of triplet and higher perturbation

terms, have been discovered in polarizable, highly anisotropic systems. Kim et al [37]

studied chains of non-contacting polarizable SiO spheres in various geometric arrange-

ments. They obtained the vdW interaction from the zero-point energy of coupled plas-

mons within a polarizable point-dipole model similar to that in [13] and found major

46



discrepancies compared with pair-summation. These discrepancies were not significantly

improved by adding just triplet terms. Martyna et al. have applied a somewhat related

model of coupled oscillators to solid xenon [38]. The multiple-coupled dipole approach

has been popular in the past [13] and can be used [39] to derive the nonretarded Lifshitz

interaction - see Sect 6.1 below.

Other formalisms have yielded equally large discrepancies for semiconducting linear hy-

drogen chains [40], [41]. The beyond-pairwise effects can be understood in terms of the

screening of the coulomb interaction that couples fluctuations on two atoms, due to po-

larization of the electon clouds on other atoms . The non-additive effects are strong when

the systems are very anisotropic (e.g. chains or thin films) and highly polarizable. An

extreme case of a polarizable system is a metal, especialy in low dimensions (wires, sheets,

graphene) where internal coulomb screening is less effective. For such cases it has been

shown [42], [43], [44] that one can even obtain an exponent p in the asymptotic vdW

power law E ≈ −CD−p that differs from that predicted by
∑

C6 R−6 theories. (See

Figure 1 below).

5 The adiabatic connection - fluctuation dissipation (ACFD)

approach to groundstate correlation energy

While coupled point polarizable dipole models are sensible and exhibit the required non-

pairwise–additive vdW behavior, in general one needs a more general approach that allows

for overlap and a detailed description of metals. This leads one to seek more fundamental

approaches. The electronic Diffusion Monte Carlo (DMC) approach has been applied to

a few simple nanostructures [45] [46], but it is very hard to ensure convergence of DMC

in such systems, because of the need for a very big sample cell in order to capture long-

ranged vdW correlations. In what follows we therefore concentrate mainly on approaches

to the electronic correlation energy based on the Adiabatic Connection Formula and the

Fluctuation Dissipation Theorem (ACDF approach) of which the simplest example is the

(direct) Random Phase Approximation (dRPA) correlation energy to be described in the

next Section.

The vdW energy is part of the electronic correlation energy in the groundstate of the

total many-electron system. An exact formal expression for this groundstate correlation

energy is the ACFD formula

Ec = −
1

2

∫ ∞

0

du

∫ 1

0

dλ

∫ ∞

0

~

π
du

∫

d~rd~r ′V (~r, ~r′) (χλ(~r, ~r
′, iu) − χ0(~r, ~r

′, iu)) . (5)

Here we have defined a ”λ-system” in which the bare inter-electron coulomb interaction

V (~r, ~r ′) ≡ e2 |~r − ~r ′|−1 has been replaced by λV (~r, ~r ′) while a λ-dependent static external

potential is applied in order to keep the groundstate density constant at the true (λ = 1)

value while λ is varied. χλ is the electronic density response of the λ-system, defined in

general such that the linearized density perturbation of the λ-system under an external
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potential δV ext(~r) exp(−iωt) is

δn(~r, t) = exp (−iωt)

∫

χλ(~r, ~r
′, ω)δV ext(~r ′)d~r ′ .

In (5) the integration over imaginary frequency u implements the Fluctuation–Dissipation

theorem [47], [48], [14]: as such it constructs the correlated groundstate pair density

n2λ(~r, ~r
′) using the density response as input. The expression (5) is thus of the form

of an electrostatic energy, except for the λ integration, which implements the Adiabatic

Connection formula [49], [15]. The λ integration is based on the Feynman-Hellman theo-

rem, and physically it re-introduces the zero-point kinetic energy of correlation, otherwise

missed in an electrostatic energy type of integral. A particularly clear explanation of the

Adiabatic Connnection is given in Gunnarsson and Lundqvist [15] starting from their Eq

(28), with their ”g” representing our ”λ”. A complete pedagogic derivation of (5) in the

present context, including a first principles derivation of the appropriate version of the

FD theorem, is given in [14].

Expressions based on (5) can be obtained for the exchange-correlation energy

Exc = −
1

2

∫ ∞

0

du

∫ 1

0

dλ

[
∫ ∞

0

~

π
duχλ(~r, ~r

′, iu) + n(~r)δ(~r − ~r ′)

]

and the exact exchange energy

Ex = −
1

2

∫ ∞

0

du

∫ 1

0

dλ

[
∫ ∞

0

~

π
duχ0(~r, ~r

′, iu) + n(~r)δ(~r − ~r ′)

]

The latter reproduces the ”DFT exact exchange”, namely the Hartree-Fock expression

for the exchange energy, but with Kohn-Sham orbitals in place of Hartree-Fock orbitals.

An explicit constructive proof of this statement is given in [14].

6 The (direct) RPA for the correlation energy

Eq (5) is a purely formal expression giving the correlation energy in terms of the response

function χ, and it is not immediately clear how sophisticated an approximation to χ is

required in order to obtain useful accuracy in Ec. In fact it turns out that no explicit

correlation physics is needed in χλ in order to obtain a non-zero correlation energy from

(5). Indeed a very simple time-dependent Hartree approximation for χλ, namely

χdRPA
λ = χ0 + χ0λV χdRPA

λ , (6)

produces the well-known Random Phase approximation for the correlation energy, first

introduced long ago for the special case of the homogeneous electron gas. The correlation

energy includes the mutual energy of coupled fluctuations of the density about the ground-

state, fluctuations whose average value in the groundstate is zero so that they cannot con-

tribute any extra energy in the static Hartree approximation. However when an explicit
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density disturbance (with non-zero ensemble average) is introduced by a time-dependent

external field, this can interact with disturbances elsewhere even at the (time-dependent)

Hartree level. The Fluctuation Dissipation Theorem relates such interactions in the non-

equilibrium driven system to the interactions between spontaneous fluctuations around

the non-driven groundstate.

For the dRPA case the λ integration in (5) can be carried out analytically using the

following formal operator identity in (~r, ~r ′) space: ∂λ ln(1−λχ0V ) = (1 − λχ0V )−1 χ0V =

χdRPA
λ V in which products are to be interpreted as spatial convolutions:

EdRPA
c = −

1

2

∫ ∞

0

~

π
du

∫

d~r [ln(1 − V χ0) + (V χ0)]~r~r (7)

= −
~

2π

∫ ∞

0

duTr [ln(1 − V χ0) + (V χ0)] (8)

= −
~

2π

∫ ∞

0

duTr
[

ln(1 − V 1/2χ0V
1/2) +

(

V 1/2χ0V
1/2
)]

(9)

where the properties of the trace operation have been used in the last line to introduce a

hermitian operator V 1/2χ0V
1/2 which is convenient especially when diagonalization meth-

ods are used to evaluate the correlation energy.

While the dRPA correlation energy was calculated for the homogeneous electron gas many

decades ago (see e.g. [50]), its practical evaluation in more complex systems including

periodic systems is often numerically costly, and has only been carried out quite recently

[51], [52], [53], [54], [55], [56], [57], [58], [59]. When used as a post-functional starting

from PBE orbitals, it has proved to give a very good description of the lattice constants

and elastic constants of many crystals [58] including most of the van der Waals bound

rare gas crystals [60] (except He where self-interaction issues are arguably dominant - see

the next Section). Atomization energies in the dRPA are good but slightly worse than

those from a groundstate PBE calculation, which again may be related to self-interaction

issues. Some methods have also been given to increase the numerical effiiciency of dRPA

and exact exchange calculations in solids [57].

For finite molecular systems the correlation energy in the dRPA and the related RPAx

(see below) have been implemented in an efficient way, via methods and codes originally

designed for molecular time-dependent Hartree-Fock calculations (see [55] and references

therein) . On the formal side Furche [55] proved that

EdRPA
c =

~

2

∑

n

(

Ωn − ΩD
n

)

where Ωn is an eigenfrequency of the RPA equation (6) and ΩD
n is the same quantity

to linear order in the Coulomb coupling strength λ. In fact the notion of using the

separation-dependent part of the sum of zero point energies ~Ω/2 of collective modes

to obtain vdW energies is quite an old one ( [1], [13]). For the macroscopic collective-

mode-only models used in these old calculations one can show that this is correct (see

e.g. [61]), but the Furche result is more general. For some discussion of the sum of zero
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point energies see also Sec. 5 of [61] where it is pointed out that the asymptotic vdW

interaction of undoped graphene planes is dominated by single-particle-type modes so

that the older collective mode zero-point energy model is not sufficient.

Within formal perturbation theory, the dRPA is represented in Feynman energy diagrams

by a sum of rings of open bubbles (where each open bubble represents χ0). The dRPA

and many other variants of the RPA idea can also be expressed as doubles ring diagrams

in the Coupled Cluster approach.

6.1 Lifshitz-like vdW energy formula for non-overlapping systems, and its

relation to RPA

The Lifshitz theory [5], [6] was the mainstay of macroscopic vdW calculations for many

years. One can use a modified form of the ACFD to derive a slight generalization of the

macroscopic Lifshitz formula [62] that renders it suitable for noncontacting nanosystems

as well as the thick parallel slabs for which it was originally intended.

Consider 2 separated systems ”1” and ”2” separated by a variable distance D and with

Coulomb interaction split into inter- and intra system interactions

V11 + V22 + µ(U12 + U21) ≡ V11 + V22 + µV12

We assume no overlap so the systms lie in separated regions ”S1” and ”S2” of space.

Then U12(~r1 ,~r2) = e2 |~r1 − ~r2| when both ~r1 ∈ S1 and ~r2 ∈ S2 but U12 is zero otherwise.

Similarly for U21 while V11, V22 only connect points inside the same system, Then V12 ≡

U12 + U21 = 0 if ~r1 and ~r2 lie in the same subsystem.

We start from two systems with no intersystem interaction (µ = 0), but with full Coulomb

interactions inside each subsystem. The energy in this situation is the same as for D → ∞.

That is

E(D → ∞) = E(D, µ = 0)

Then the D-dependent part of the energy is

Ecross ≡ E(D, µ = 1) − E(D → ∞) = E(D, µ = 1) − E(D, µ = 0)

=

∫ 1

0

dE(D, µ)

dµ
dµ =

1

2

∫

ρ(D, µ, r, ~r′)V12(~r, ~r
′)d~rd~r′

where ρ(D, µ, r, ~r′) is the electronic pair distribution for slabs at distance D and interaction

V11 + V22 + µV12 : the Feynman-Hellmann theorem was used in the last step.

By the Fluctuation Dissipation theorem this is related to the density response function

dE(D, µ)

dµ
=

1

2

∫
[

−
~

π

∫ ∞

0

χ(D, µ,~r, ~r′, ω = iu)du − n0(~r)δ(~r − ~r ′) + n0(~r)n0(~r
′)

]

V12(~r, ~r
′)d~rd~r′

where χ is the density-density response of the fully interacting system. The direct Hartree

cross energy (the last term) is not part of the vdW energy, and so will be ignored (see

also [63]). The self-term with the delta function gives zero when folded with V12. Thus
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the cross energy is entirely due to correlation (because the in-principle-included exchange

part is zero in this non-overlapped regime) and is given by

Ecross(D) = −
~

2π

∫ ∞

0

du

∫ 1

0

dµ

∫ ∞

0

χ(D, µ,~r, ~r′, ω = iu)V12(~r, ~r
′)d~rd~r ′

= −
~

2π

∫ ∞

0

du

∫ 1

0

dµ

∫ ∞

0

(χ12(D, µ,~r, ~r′, ω = iu)V12(~r, ~r
′) + [1 ⇆ 2]) d~rd~r ′

where χ12 (unlike χ012) is NOT zero because of the coulomb interaction between the

slabs. We now make the RPA assumption for the interaction between the slabs. This is

the essential Lifshitz approximation - see the ring diagrams in [6]. Then χ21 = δn2/δV1

can be found from the linear mean field equations in the presence of time dependent

external potentials δV1, δV2 acting separately on the two systems. This gives

χ21 =
(

1 − µ2χ22V21χ11V12

)−1
µχ22V21χ11

and similarly for χ12. Then the vdW interaction is

Ecross(D) = −
~

2π

∫ ∞

0

du

∫ 1

0

dµ

∫ ∞

0

χ12(D, µ,~r, ~r′, ω = iu)V12(~r, ~r
′)d~rd~r ′ + {12 → 21}

= −
~

2π

∫ ∞

0

du

∫

d~r

∫ 1

0

dµ
d

dµ
ln
(

1 − µ2χ11V12χ22V21

)

~r~r

=
~

2π

∫ ∞

0

duTr ln (1 − χ11V12χ22V21) (10)

where in general the ”ln” is an operator log over the (~r, ~r′) space. Also, χ11 and χ22 are

for D → ∞ - i.e. for the isolated subsystems but with full-strength e-e-interactions within

each subsystem. Using the operator idensity Tr ln Ô = ln DetÔ one can see that (10) is

related to the interaction in the general Casimir scattering theory, Eq (5.16) of [10].

(10) is also valid within the dRPA. A more direct proof of (10) from the full RPA-

adiabatic connection formalism, switching on all interactions together, can be constructed

by diagrammatic means: a version for a specific case is given in ref. [62]. We will show

presently that Eq (10) reduces to the non-retarded Lifshitz formula [5] for macroscopic

slab systems. (See Eq (12) below). In general, because (10) is closely related to the

Lifshitz approach, we expect that it will lead to the same asymptotic vdW power laws as

Lifshitz in the electromagnetically nonretarded limit.

To obtain the nonretarded Lifshitz result we note that, from charge conservation and from

insensivity to a spatially uniform applied potential [64], the ”direct” responses χ̄11 and

χ̄22 can be written in terms of a (generally nonlocal) polarizability α = (ε − 1) /4π,

χ̄11 =

3
∑

µν=1

∂2

∂rµ∂r′ν
α11µν(~r, ~r

′, ω) . (11)

For insulators (and for 3D metals with a finite plasma frequency ωP (q → 0)), a remans

finite as both q → 0 and ω → 0. For two thick slabs of matter in vacuo with paral-

lel surfaces separated by D, the standard non-retarded limit of the Lifshitz formula is

51



reproduced from (10) by approximatiing α11 and α2,2 via a macroscopic local dielectric

functions ε1, ε2:,

α11µν = δ(~r − ~r ′)
ε1(ω) − 1

4π
θ(~r)δµµ

and similarly for α22. Here θ restricts ~r and ~r ′ to lie within the slabs and ε(ω) is a local

spatially constant dielectric function of each slab. After some algebra for fields varying

as exp(i~q||~r) parallel to the slab surfaces, we obtain χii from χ̄ii via the screening relation

χ = χ̄ + χ̄V χ, and we then reduce (10) to

Ecross =
~

32π2D2

∫ ∞

0

du

∫ ∞

0

dxx2

(

ε1(iu) + 1

ε1(iu) − 1

ε2(iu) + 1

ε2(iu) − 1
ex − 1

)−1

, x = 2q||D (12)

which upon differentiation yields the nonretarded Lifshitz force result given in Eq 3.1

of [5].

An expansion of the logarithm in (10) to lowest order in V12 also reproduces the generalized

Casimir Polder formula (2), so (10) can also be regarded as is a generalization of (2).

At the RPA level, higher terms in the expansion of the logarithm in (8) produce vdW

interactions between theree or more centres (Axilrod-Teller and higher terms) [65]. One

might think the perturbative form (2) always becomes asymptotic to (10) at sufficently

large separation between two subsystems so that the perturbation V12 is ”small”. This

is not in fact the case when the interacting systems have an infinitely large area as in

sheets or slabs. The reason is that as D → ∞ the interaction is dominated by excitations

with a small wavenumber q|| = O(D−1) → 0 parallel to the surface, and the coulomb

interaction between such excitations goes as exp(−q||D)q−1
|| which is never small since

q||D = O(1). For thick parallel plates this can give a discrepancy of up to around 20%

between the Lifshitz result (10) and the generalized Casimir-Polder formula (2), a point

already noticed by Lifshitz [5]. A discussion of this discrepancy for other geometries is

given in Sec. 4 of [61].

In (10) no approximation has yet been made for the internally-interacting responses χ11,

χ22 of the isolated fragments. If these are approximated with the dRPA then (10) gives

a useful form of the dRPA correlation energy, suitable for nonoverlapping systems.

6.2 Unusual asymptotic vdW power laws from dRPA

The dRPA correlation energy can sometimes be evaluated analytically for widely-separated

nanostructures (D → ∞) because then only the long-wavelength (q ≈ D−1 → 0) limit

of the response χ0 is needed. This long-wavelength form can be taken as χ0(~q, ω =

iu) ≈ −n0q
2/mu2 for metals, −n0q

2m−1(u2 + ω2
0)

−1 for insulators and (see [66], [67],

[63]) χ0(q||, ω = iu) = 1
4
~
−1q2

||(u
2 + v2

0q
2
||)

−1/2 for graphene. When these bare responses

are applied to the dRPA for non-overlapping structures distant D, one can show [42],

[43], [68], [69], [59], [70] that the asymptotic form of the vdW interaction is sometimes

qualitatively different in dRPA from the predictions of pairwise additive theories where

E =
∑

ij C6ijR
−6
ij . In particular the exponent p in the form EvdW = −CD−p can be

different as summarized in Fig. 1.
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System Present Theory [ref.] Conv. Theory (
∑

D−6)

D

Metallic EvdW ∝ D−2 EvdW ∝ D−2

EvdW ∝ D− 5

2 EvdW ∝ D−4

EvdW ∝ D−4 EvdW ∝ D−4

π-conjugate

EvdW ∝ D−3 EvdW ∝ D−4

EvdW ∝ D−2(log D
D0

)−
3

2 EvdW ∝ D−5

EvdW ∝ D−5 EvdW ∝ D−5

Figure 1: Asymptotic vdW energy formulae for thick and thin slabs, and for parallel wires,

pictured in the left column. Red indicates an insulator, blue a conductor, purple a semimetal

(graphene). Right column: Predicted energy from pairwise additive theories. Middle column:

Predicted energy from RPA [43]. For further cases of unusual powers see Refs. [44], [69], [70].
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This can occur when all of the following are satisfied: (i) each system is macroscopic in at

least one dimension so that electron density fluctuations of arebitrarily long wavelength

(q → 0) are possible; (ii) each system is small in at least one other space dimension, so

that intra-system Coulomb screening of the charge fluctuations is incomplete; and (iii)

the systems have a zero homo-lumo gap, as in 2D or 1D metals or graphene. The un-

usual power laws arise from the coupling of long-wavelength excitations that involve the

coherent motions of electrons on many atoms, quite different from the pairwise physics.

Significant differences in vdW interaction have also been predicted between metals and

semiconductors in the non-asymptotic limit [71]. When condition (iii) is not satisfied but

the gap is small, as in highly polarizable systems, then the asymptotic power exponent p

in the form EvdW = −CD−p will not be anomalous, but nevertheless non-pairwise addi-

tivity makes the coefficient C differ strongly from the prediction of
∑

C6R
−6 theory. The

unusual power exponents p predicted by dRPA (Fig. 1, second column) have been verified

by electron Diffusion Monte Carlo calculations [46] for the case of parallel linear conduc-

tors. In the case of planar conductors these DMC calculations only partly confirmed the

analytic dRPA result [68], but in this case there is a possibility that the simulation cell did

not have a large enough area to capture the very long-wavelength fluctuations/correlations

involved in the large-D vdW interaction. For the case of graphite a full numerical dRPA

calculation of the layer binding energy E(D) has recently been performed [59]. This cal-

culation was able to confirm the presence of the predicted anomalous D−3 contribution

at the largest D values (≈ 3 nm) where the numerics were still feasible, but also showed

that the D−3 contribution from the gapless electronic πz → π∗
z transitions was still essen-

tially negligible at this separation, compared with the much larger vdW energy from the

gapped transitions involving ”majority” Bloch bands other than the πz bands. A similar

consideration applies to observation of the anomalous asymptotic −CD−2(ln D)−3/2 en-

ergy predicted [42], [43] for parallel metallic carbon nanotubes (though the unusual energy

contribution may be more dominant for nanowires made of metallic atoms). Nevertheless

at suffciently large separation D the anomalous metallic term will dominate, and it will

be interesting to see whether sensitive modern force detection techniques such as atomic

Force Microscopy are able to measure these anolamous forces directly. In terms of gen-

eral modelling of solids and nanostructures, however, the wrong magnitude of the vdW

interaction at short to intermediate distances because of non-pairwise-additivity effects is

probably more important than the power law at asymptotic separations.

7 Diseases of dRPA

Despite the good success of the dRPA for many solids, with inclusion of vdW effects

as just described, this theory has some very serious shortcomings in general, and it is

important to use it only in circumstances where these are not significant or where they

can be easily corrected.
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7.1 Over-correlation by dRPA

Firstly, the depth of the short-ranged part of the electronic correlation hole is seriously

over-estimated in dRPA, resulting in overestimation of the magnitude of the absolute

correlation energy. This was apparent already in early work on the homogeneous electron

gas. Fortunately, one is most often interested in energy differences ∆Ec = Ec(
{

~Rj

}

) −

Ec(
{

~R′
j

}

) between different arrangements of the same set of nuclei, with positions ~Rj in

one configuration and ~Rj
′ in the other configuration. Here the incorrect short-ranged

part of the hole is much less important as it is likely to be very similar in the two nuclear

configurations and hence largely cancels in ∆Ec, provided that the nuclei are not moved

too close to one another. Indeed Perdew and co-workers [72] noted that dRPA tends

to overestimate |Ec| per electron by a constant amount, so that ”isoelectronic” energy

differences (those with Nelectrons held constant) are relatively well described. Since the

short-ranged hole is described much better in LDA/GGA, Perdew and collaborators also

proposed in the same paper a theory correcting the RPA correlation energy for short-

ranged effects by using LDA data

ERPA+
c = EdRPA

c +

∫

(

εhom
c (n(~r)) − εhom,dRPA

c (n(~r))
)

n(~r)d~r .

Here εc(n) is the correlation energy per electron in the homogeneous electron gas of density

n. More sophisticated versions termed ”RPA+” based on gradient functionals were also

derived [73]. Note that all of the sucessful dRPA calculations for solids by Harl et al., [58]

were for isoelectronoic energy differences.

A different approach to the short-ranged diseases of dRPA is that of range separation,

originally introduced by Savin and Stoll for molecular problems [74], [75]. This involves

splitting the bare Coulomb interaction into short ranged and long ranged parts, with

different many-body treatments applied to the two parts - e.g. dRPA for the long ranged

part and LDA for the short ranged part. This has been tried recently as a correction to

the dRPA with some success [76], but the approach probably deserves wider application

for RPA as it also lessens the computational load associated with reproduction of the

coulomb cusp in the pair function

7.2 Spurious electron self-interaction and dRPA

In a one-electron electron system the bare density response χ0 is the exact response, and

the correlation energy should be zero. However the time-dependent Hartree equation

(6) contains a non-zero self-interaction term, the second mean-field term on the right

side, which correponds in this case to an electron avoidiing itself. As a result the dRPA

contains an incorrect self-correlation energy for a one-electron system. Bacause of the r−1

dependence of the Coulomb energy, this can be a very serious error for orbitals that are

highly localized (having small radius r), as in the He atom for example. Partly as a result

of this, dRPA starting from LDA or GGA orbitals gives an extremely bad account of the
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binding energy curve of small dimers [77], [78]. Some improvement can be obtained by

using starting orbitals and/or KS potential that incorporate groundstate self-interaction

correction, since the correponding effective potential includes the correct −e2/r tail and

reduces the polarizability of the outer orbitals compared with the incorrect high values

obtained from the LDA potential. The problem of singles contributions, related to a

non-self-consistent choice of starting orbitals, is also a significant issue [79].

The best-justified method to correct the self-interaction in dRPA is to go to higher mem-

bers of the RPA class of theories. For example the ”RPAx” energy comes from replacing

(6) by the antisymmetrized Hartree Fock version of the mean field, and this entails the re-

sponse of the 1-electron density matrix rather than just the density. This is implemented

in a number of molecular packages, and it does improve the binding energy curves of small

dimers where self interaction correction (SIC) is an issue [77], [76] . RPAx does have some

problems and instabilities of its own, however, and is computatinally demanding in solids.

Another systematic way to improve dRPA is to add, to the dRPA ring energy diagrams,

a sum of higher terms in the form of the Second Order Screened Exchange (SOSEX)

diagram [80]. This exactly cancels the one-electron self-correlation term in the dRPA.

It also makes a significant further improvement to the already good dRPA results for

the energetics of solids [80] and gives excellent lattice spacings. Unfortunately it adds

significantly to the already large computational cost of dRPA energy calculations for

solids.

Another possible improvement to dRPA is the use of the Inhomogeneous Singwi-Tosi-

Land-Sjolander (ISTLS) correlation theory [81], [82], [83], which not only cures the one-

electron self-interaction problem but may improve the ”many-electron self interaction”

properties disciussed by Perdew and coworkers [84]and byYang and coworkers [78], related

to the need for a linear dependence on any fractional orbital occupation numbers. Of couse

ISTLS is also computationally very costly.

The success of the dRPA energetics for crystals with diffuse outer orbitals such as the

π-clouds of graphene systems [59], or crystals of the larger rare-gas atoms [60], reflects

the unimportance of orbital self-interaction for such diffuse orbitals. Significantly, the

bonding of the He crystal with its tightly bound atomic orbitals was described much less

well by dRPA than the higher rare-gas crystals [60].

8 Approximations to microscopic energy expressions for vdW

energetics

A number of approaches have been proposed to obtain efficient vdW energy functionals

by approximating microscopic energy expressions. Racpewicz and Ashcroft [27] and An-

dersson, Langreth and Lundqvist [85] postulated a nonlocal density based approximation

for well-separated pairs of systems via indirect arguments. Dobson and Dinte [64] showed

that this expression could be derived directly from the generalized Casimir Polder pertur-
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bation theory (Eq (2) above) , via a local conserving density-based approximation to the

density response χ. More complex theories have recently been proposed with this type of

approach as a starting point [86], [87].

It is also possible to approximate non-perturbative ACFD energy expressions using only

the groundstate electron density n(~r) as input. An early attempt in this direction was the

functional of Dobson and Wang [88]. This approximated χ0 by the double space gradient

of a density-based approiximation to the polarizabillity, followed by RPA screening with-

out further appoximation. This approach reproduced the RPA cohesion energy of a pair

of metal slabs right down to contact with overlap of electron clouds. Unfortunately the

functional is not very efficient numerically and needs explicit cutoffs to describe insulators,

and so far it has not been pursued further.

8.1 vdW-DF

By far the best-known functional of the ”approximated ACFD” type is the ”vdW-DF”

of Dion et al [89], [90], [91]. A complete self-contained derivation of this functional seems

to be lacking in the literature, but an attempt will be made here to list some features

of the reasoning. The starting point is the exact ACFD, Eq (5). From this starting

point the vdW-DF provides a nonlocal correction Enl
c to the LDA correlation energy of a

nonuniform system . The method is not limited to the RPA, but it is approximate, and

five distinct approximations/assumptions appear to have been made in obtaining it:

Approximation (i) The method notes that the quantity ε(~r, ~r ′, ω) defined in electrody-

namics is equal to the screening function 1 − χ̄ ∗ V for the special case of the uniform

gas. Here χ̄ denotes the ”direct” response function relating the electron density to the

total classical electrodynamic potential. The ACFD then assumes that plugging ε into

the ACFD, instead of the exact χλ = (1 − χ̄λ ∗ V )−1 χ̄λ, results in the LDA correlation

energy. The nonlocal correction to the LDA would then be given by

Enl
c =

1

2

∫

dλ

λ

∫ ∞

0

~

π
duTr

[

(1 − χ̄λ ∗ λV )−1 χ̄lVλ − ε−1
λ (ελ − 1)

]

where the dependence on (~r, ~r ′, ω = iu) is suppressed for brevity, products are space

convolutions and the Trace operation is TrF =
∫

F (~r, ~r)d~r. The subtracted term is not

exactly the LDA, so this amounts to the first approximation.

Approximation (ii) The ”full potential approximation”, explicitly introduced in vdW-DF,

assumes that the λ integration in the ACFD can be done analytically to give an operator

logarithm:

Enl
c =

~

2π

∫ ∞

0

duTr ln
[

ε−1(1 − χ̄λ ∗ λV )
]

(13)

This is exactly true in the dRPA where χ̄λ = χ0 independent of λ, but it constitutes an

approximation in other formalisms.

Approximation (iii) Since χ̄ = ∇(ε−1)∇/4π exactly in general (see e.g. [64]), the nonlocal

correlation energy correction (13) can be expressed in terms of ε alone. The logarithm

57



in (13) represents the solution of the time-dependent Hartree-coulomb screening problem.

In vdW-DF, this screening problem is solved approximately by expanding the logarithm

to second order in the quantity (ε−1 − 1), termed ”S” in [89], (but not exactly equal to

to the dynamic structure factor despite the similarity to a common notation). This gives

Enl
c =

~

4π

∫ ∞

0

Tr



S2 −

(

~∇S.~∇V

4πe2

)2


 du . (14)

Here once again all products represent convolutions in position space.

Approximation (iv) Finally a modified plasmon pole type of approximation is made for S

and substituted into (14), yielding after some algebra a functional of form

Enl
c =

∫

n(~r)n(~r′) φ(~r, n(~r),∇n(~r) : ~r ′, n(~r ′),∇n(~r ′)) d~rd~r′ (15)

where φ ∼ |~r − ~r ′|−6 as |~r − ~r ′| → ∞. The dependence on gradients is built into the

modification to the simple plasmon pole approximation, and the physics of this is based

on many years of success by Langreth and co-workers with the development of gradient

density functionals.

Approximation (v) In order to implement the functional in practice, it must be combined

with a suitable approximation for the exchange energy E0
x. Tests on a number of systems

showed that neither LDA exchange nor exact DFT exchange produced results of useful

accuracy. However it was found that the revPBE exchange functional was suitable, and

some physical reasons were advanced for this choice. This is very crucial to the behavior

of the functional for vdW-bound systems near to their equiilibrium binding separation

D0.

8.2 Features of vdW-DF

The vdW-DF turns out to be a numerically efficient approach with some very good gen-

eral features. It has the −
∑

C6R
−6 form at for well separated systems and hence never

fails to produce a vdW interaction where required. A very strong feature is the natural

saturation of the function φ at short distances (see Eq (15) above), without the need

for any empirical input, in contrast to more empirical pairwise summation approaches.

vdW-DF gives sensible results for a wide range of van der Waals bonded systems from

rare gas dimers to solids and surfaces, often giving good vdW energies but sometimes

significantly over-estimating D0 [92], [93], [94]. Significant improvements have recently

been made in its numerical implementation (e.g. [95], [96] and its speed is now quite

competitive with more empirical pairwise-additive theories. Attention has also been fo-

cussed on improving the generalized plasmon pole approximation (”approximation (iv)”

described above). Vydrov and van Voorhis [97], [98] took a frankly empirical approach

and modified approximation (iv) so as to improve the predicted C6 for atom dimers. The

original authors [99] also suggested improvements to aspects (iv) and (v). Overall the

method is robust and continues to be used for a variety of systems [100].
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There are however a number of further aspects (approximations (i)-(iii) listed above) that

could probably be improved. For example, as a result of approximating the logarithm as

in Approximation (iii) above, the theory ends up having a pairwise additive form, with
∑

ij CijR
−6 behavior at large separations (compare Sect 4 above). This

∑

ij CijR
−6 long-

ranged behavior means that the asymptotic vdW interaction for metallic systems will have

the same exponent as for insulators in any geometry, contrary to known properties of thin

metal or graphene sheets or metallic wires: see Sect 6.2 above. While the unusual behavior

of such low-dimensional zero-gap systems at large distances is interesting, the force there is

small and this alone would not constitute a serious disadvantage of the theory for practical

binding calculations [59]. However the same pairwise property means that one might need

to be careful about this functional for polarizable, highly anisotropic systems even in the

non-asymptotic region of electron cloud overlap (see for example [37], [71], [41]). One

should probably not be surprised that the theory appears not give a satisfactory account

of the selective binding of graphene to specific metal surfaces [94], for example.

8.3 New directions for ACFD-based vdW functionals

It is tempting to try to go beyond the dRPA by using the ACFD (Eq (5)) but replacing

the time dependent Hartree equation (6) of dRPA by the exact equation of linear Time

Dependent Density Functional Theory (TDDFT) [101]:

χλ = χ0 + χ0 (λV + fxcλ)χλ . (16)

If the usual Adiabatic Local Density Approximation (ALDA) is used for the dynamic

exchange-correlation kernel fxc, the ACFD energy from (16) is typically not improved

over dRPA, because the ACFD energy samples all frequencies, not just low frequencies

for which the ALDA is suited. Instead of this dRPA+ALDA approach, an ACFD energy

formalism has been tried, with use of an ”energy optimized” local exchange correlation

kernel fxc designed to improve the short ranged hole properties, and fitted to the xc energy

of the homogeneous gas [102], [103]. This approach improved the energy over RPA for

jellium spheres [104] and in fact it did better than the RPA+ approach described above

in Sec 7.1. Other than this it has received little testing. The xc kernel fxc[n](~r, ~r ′) used

in these theories was local or semi-local in r and ~r ′ and had a similarly local functional

dependence on the groundstate density n(~r ′′). However it has become clear that any

beyond-dRPA theory of van der Waals interactions requires fxc to have a highly nonlocal

functional dependence on n(~r′′) A limited discussion of this is given in [14], and work is

proceeding on a possible implementation of this idea.

Even the simplest of the full many-body theories, the dRPA, is very costly numerically.

For example a recent implementation [59] of dRPA for the binding energy curve E(D)

of graphite as a function of the layer spacing D using an efficient periodic code was near

the limit of present numerical capabilities despite the small size (4 atoms) of the unit

cell of graphite. This was partly because of the need to sample k space finely near the

59



Dirac points in the Brillouin zone - see e.g. [63]. dRPA-based modelling of technologically

interesting graphenic nanostructures, such as graphene bound on various metals, would

seem to be presently out of reach because large crystal unit cells are required. Pair-

wise additive theories including vdW-DF are not a priori reliable because of the highly

anisotropic, highly polarizable nature of the systems involved. (see Sect 4). Thus a highly

non-additive nonlocal but numerically efficient theory is required. One current approach

to this problem is to keep a full solution of the time dependent Hartree screening problem

(Eq (6)), corresponding to retention of the full logarithm in (8) or (13), without use of a

second order expansion, thus avoiding restriction to pairwise additive physics. Instead

one approximates the independent-electron response function χ0(~r, ~r
′, iu). A very recent

development [105] is the use of the new Continuum Mechanics (CM) formalism of Tokatly,

Vignale and co-workers [106] , [107] to calculate χ0. CM is a hydrodynamic-style theory

with the remarkable property that it gives the exact response χ0 of one-electron and two

electron systems at all frequencies, and for general many-electron systems at high frequen-

cies. It satisfies the f-sum rule and various other exact constraints such as the Harmonic

Potential Theorem [108]. Ref [105] develops this approach into a general-geometry non-

pairwise theory that has good vdW properties both for insulators and for a simple metal

test model. Work is proceeding on formal properties of the CM-based correlation theory,

and on its numerical implementation for realistic geometries.

9 Summary

Macroscopic (Lifshitz) and few-atom (quantum chemical) approaches to dispersion forces

have long been available. In recent years here has been much progress in the first-principles

microscopic description of dispersion forces in solids and larger nanostructures, right down

to microscopic contact separations. Modellers can now choose from a variety of computa-

tionally tractable semi-empirical pairwise-additive theories of these phenomena, as well as

the pairwise additive vdW-DF theory. These are adequate for medium-accuracy calcula-

tions in the electromagnetically non-retarded limit, with the possible exception of systems

that are simultaneously highly anisotropic and highly polarizable. An improvement for

such cases can be obtained with models evaluating the zero point energy of self-consistent

dynamical collective polarization modes, in arrays of localized polarizable dipoles. For

a full decription of such cases however, including a detailed account of low-dimensional,

low-gap systems one probably needs the computationally expensive full many body ap-

proaches, which are now available in packages such as VASP and ABINIT. These start

with the simplest direct Random Phase Approximation (dRPA). Recent additions such

as RPAx and dRPA+SOSEX can improve numbers but are even more costly. Currently

these approaches are not feasible for large nanostructures in realistic, technologically in-

teresting geometries. Work is continuing to remedy this situation.
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