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Abstract

The exchange-correlation functional is the key object in the understanding and appli-

cation of density functional theory (DFT). Development of approximations to the exact

functional is extremely challenging, as it aims to give a universal functional that works for

all densities. To shed light on this issue in any manner is of great importance, and exact

conditions offer a possible path forward. By considering the well established formal extension

of DFT to fractional occupations at zero-temperature, we formulate perspectives based on

fractional numbers of electrons and fractional spins that reveal some very stringent exact

conditions of the energy functional. What is possibly even more important is that currently

used approximations violate these exact conditions, leading to massive basic errors in very

simple molecules and trends in extended systems that explain systematic errors in the elec-

tron density, energy and their derivatives from DFT calculations. This is exemplified by

the delocalisation error and static correlation error. The further combination of these two

concepts leads to understanding of the band-gap and the derivative discontinuity in DFT,

sheds light on the calculation of strongly correlated systems, and calls for dramatically new

functional forms that have a discontinuous nature.

5.1 Introduction

The total energy in density functional theory (DFT) [1–8] is given by

E[ρ] =

N
∑

i

〈φi| −
1

2
∇2|φi〉 +

∫

ρ(r)vext(r)dr + J [ρ] + Exc[ρ] (1)

where the non-interacting reference system has N electrons in N orbitals, and electron density

ρ(r) =

N
∑

i

|φi(r)|
2. (2)
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When the orbitals are eigenstates of a local potential, the reference system is the original Kohn-

Sham system [9]. When the orbitals are eigenstates of a nonlocal potential, the reference system

is the generalised Kohn-Sham system [10]. The key to the success of DFT is that simple ap-

proximations for the exchange-correlation functional perform remarkably well for a wide range

of problems and are extremely accurate for large areas of chemistry and physics, particularly

for prediction of the structures and thermodynamic properties of molecules and solids. In par-

ticular, hybrid [11–13] and screened hybrid functionals [14, 15] have demonstrated significantly

improved performance for certain properties such as band structure and band gap prediction,

over the local density approximation (LDA) and the generalised gradient approximation (GGA).

On the other hand, the range-separated approach with different treatments for the long- and

short-range parts of electron-electron Coulomb interaction operator, originally formulated by

Savin [16] and early work by Gill [17], has lead to much improved property prediction for charge

transfer systems or optical responses by Hirao and coworkers [18, 19] and Handy and cowork-

ers [20]. It also motivated screened-Coulomb functionals with much improved description of band

structure of solids by Scuseria and coworkers [15], and functionals by the present authors [21].

Related development has also been made by Baer and Neuhauser [22], based on the generalised

adiabatic connection developed by Yang [23].

How do we move forward in the development of the exchange-correlation functional? Will

the inclusion of more and more parameters and complicated ingredients (e.g. exact exchange,

using range-separation, modelling the adiabatic connection [24–27], local hybrids [28–31], double

hybrids [32–34] or other uses of the unoccupied orbitals and eigenvalues [35–37] etc.) lead to

dramatically better functionals? Obviously the more flexible the form in functional space there

is the possibility for improvement, but unfortunately no systematic way forward is highlighted.

What we want to offer in this review is a perspective on DFT which allows us to understand

many of the failures of the above approximations and also offers a path for the development of

new and better exchange-correlation functionals. For this we consider a very simple extension

of DFT to fractional occupations.

5.2 A fractional perspective

Perdew, Parr, Levy and Balduz (PPLB) in a seminal paper in 1982 [38] extended density func-

tional theory to non-integer numbers of electrons by considering a zero temperature grand-

canonical ensemble. They found that for fractional numbers of electrons, N + δ (0 ≤ δ ≤ 1) the

exact density and exact energy are given by ensemble averages of the integers either side (N

and N + 1)

ρN+δ(r) = (1 − δ)ρN (r) + δρN+1(r) (3)

EN+δ = (1 − δ)EN + δEN+1 (4)

as is illustrated in Fig. 1. This is an extremely key result in DFT, both for understanding the

theory and also approximate functionals. It can be viewed as an exact condition that functionals

should satisfy.

A natural question is why should one care about the behaviour of functionals for fractional

charges, which are not physical objects. A good answer is illustrated by the pure state derivation
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Figure 1: Behaviour of the total energy with respect to the number of electrons. For a fractional

charge system, N + δ, the exact energy is a linear interpolation between the N and N + 1

systems.

of the PPLB result, Eq. (4) [39]. One starts from a pure state of a system and takes the system

to the limit of dissociation into identical subsystems. The subsystems have fractional charges

and the densities are in ensemble form. Since the energy functional should be size-extensive,

this forces the energy functional to be defined for fractional charges. In other words, in order

to satisfy the size extensivity requirement, the exact density functional must be defined for

ensemble densities with fractional charges. Furthermore, as will be shown, the conditions on the

behaviour of the functional for fractional charges are critically important, as their violation is

the cause of major failure of approximate functionals.

In Kohn-Sham theory, fractional charges can be treated in a very simple manner [40]. A ground

state system where the total number of electrons, N , is now allowed to be non-integer, and has

N =
∑

i

ni (5)

with occupation numbers

ni =











1, i < imax

δ, i = imax

0, i > imax

(6)

density

ρ(r) =
∑

i

ni|φi(r)|
2 (7)
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Figure 2: Energy versus number of electrons for the exact functional and the typical incorrect

convex performance of LDA or GGA.

and corresponding total energy

E[ρ] =
∑

i

ni〈φi| −
1

2
∇2|φi〉 +

∫

ρ(r)vext(r)dr + J [ρ] + Exc[ρ]. (8)

The behaviour of approximate exchange-correlation functionals for this extension to fractional

shows up a key failure, as illustrated in Fig. 2. Typical approximations such as LDA or GGA

often give good energies at integer number of electrons (especially for finite systems) but have

an incorrect convex behaviour for systems with fractional charges [41–44]. This is a very basic

error that affects some of the most simple aspects of practical calculations such as densities,

energies and derivatives.

5.2.1 Densities

Consider one of the ways to derive the exact behaviour of the total energy for fractional charges

(e.g. systems with non-integer electron number) using ensembles of stretched molecules [39].

Let us consider the simplest molecule, H+
2 , with two protons A and B and let us analyse three

possibilities (see Fig. 3): first the electron is on proton A, secondly the electron is on proton

B. From the point of view of the density these two look the same and unsurprisingly have the

same energy. Thirdly, a simple linear combination of the two pure states is considered, which

leads to half an electron on each proton. From the point of view of the wavefunction this is a

just a linear combination of two degenerate orthogonal wavefunctions that is also degenerate.
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Figure 3: Analysis of H+
2 at dissociation. The linear combination of pure states with integer

occupations (top two) gives rise to a system (bottom) with fractional charges (in this case half

an electron) on each proton, and density in an ensemble form.

Nevertheless, from the view of the density, we get a solution that looks very different to the two

previous cases and from first consideration it is not clear that it should be degenerate in energy.

However, the energy of two protons each with half an electron it is in fact degenerate with the

energy of one hydrogen atom, 2E[H1/2+] = E[H]. This illustrates the linearity condition in Eq.

(4), that the energy of H with half an electron is halfway in between H with zero electrons and

H with one electron.

One idea in the development of functionals is that the exact functional could be found by fitting

to every possible chemical species with an infinite number of parameters. So far, functionals have

been fitted to approximately a 1000 systems, which cover different areas of chemistry [45–47].

However the space of functionals is massive (much bigger than real space) with all possible

densities needed to fully validate approximate functionals. However, the extension to fractional

allows us to examine some densities that are very different from the usual ones considered in

functional development. We also know exact energies for these densities, as exemplified by the

PPLB equation, and very importantly we see massive failures for LDA and GGA.

5.2.2 Energy

The area of DFT is well established, with the foundational theorems proving that the exact

exchange-correlation functional exists, and the Kohn-Sham approach and its extensions provid-
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ing the framework for the implementation of approximate functionals. However, how accurate

an approximate functional is, that is how does any particular functional connect to the exact

formulation of DFT, is a difficult question to answer and to know a priori without testing on

certain applications. Here derivation and understanding of exact constraints plays a critical role,

especially the ones related to energetics. A very good example is given by the PPLB linearity

condition for fractional charges, which is a very stringent test for approximate functionals. While

most of the components of the commonly used functionals are not at all linear, e.g., J [ρ] and

ELDA
xc [ρ], somehow for density with fractional charges, the exact total energy functional has to

be depend linearly on the fractions. As in Zhang and Yang [48], consider the simple homogeneity

scaling of the density for between 0 and 1 electrons, ρq = qρ. It is very easy to see the scaling of

each of the pieces of the energy in Eq. 1: Ts[ρq] = qTs[ρ], Vne[ρq] = qVne[ρ] and J [ρq] = q2J [ρ].

Also the exact behaviour of the total energy E[ρq] = qE[ρ] is known from the linear behaviour

of PPLB. In this very simple case, it is obtained that

Exc[ρq] = q(1 − q)J [ρ] + qExc[ρ]. (9)

This expression shows a key understanding of the errors of exchange-correlation functionals for

fractional charges. There are two main parts, a contribution that cancels the quadratic behaviour

of the Coulomb term, and a linear exchange-correlation term. For one electron systems, where

Exc[ρ] = −J [ρ], this equation could be simplified further into a scaling relation Exc[ρq] =

q2Exc[ρ]. These important scaling relationships are again violated by functional approximations

in the literature.

5.2.3 Derivatives

The E vs N curve and the DFT extension to fractional charges give very important understand-

ing that goes beyond the total energy. This perspective it is in fact key to understand other

important concepts, for example, the derivatives of the total energy at a given integer number

to the left (electron removal) and to the right (electron addition) give the ionisation energy and

election affinity respectively [38,49,50],

∂E

∂N

∣

∣

∣

∣

N−ǫ

= −I
∂E

∂N

∣

∣

∣

∣

N+ǫ

= −A. (10)

These are again exact conditions satisfied by the exact Exc. How these are evaluated with a

given functional form is an interesting question that again can give insight into the behaviour

of approximate functionals. This issue has lead to a great deal of controversy and debate in the

literature about the meaning of the eigenvalues and about the role of the derivative discontinuity

of the exchange-correlation functional [51–64]. However, this understanding becomes much

simpler when viewed from the fractional charge perspective, which can indeed give us a key to

some of the failures of currently used approximate functionals as well as guidance for future

developments.

From the E vs N picture (Fig. 1) it is clear that the derivatives to the left and the right (at

the integer) give I and A and, in principle, and should be obtained by one single calculation at

N . Functionals that are not straight lines in between the integers obviously do not give I and

A from their derivatives at N .
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5.3 Fractional perspective versus classical ensemble view

Let us go back to the consideration of the H+
2 molecule, stretched to the dissociation limit. Most

functional approximations lead to the solution of half an electron on each proton. However, it

is important to understand that spreading out the charge is not incorrect in this case, what it

is incorrect is just that the energetic favourability for that, e.g. the corresponding unphysical

drop in energy.

If the key question was what is the energy of a hydrogen atom with half an electron H
1

2
+, we

could just use the exact linearity result from PPLB and take the ensemble average of the energies

at 0 electrons and at 1 electron to get a very reasonable result with any functional. However,

this is not the question in real applications, where all we get to know is the electron density

distribution that, in this case, corresponds to an ensemble density. We are not so interested

in that particular fractionally charged system in itself, just in understanding deeper the exact

conditions related to this issue and the violation by functional approximations that can lead to

important failures in real applications. For this understanding, it is key what type of ensemble

is taken (for example the classical ensemble of energies versus an ensemble of densities in our

fractional perspective), and it is important to realise that the ensemble must be taken at the

level of the basic variable.

Obviously, for the exact functional, the ensemble sums of density and energy are simultaneously

true, as in Eqs. (3-4). To examine approximate functionals, we input the ensemble density

of Eq. (3) in the approximate functional. The ensemble density is normally represented in

terms of ensemble of densities from non-interacting reference systems of N and N + 1 electrons,

which is equivalent to the fractional occupations of one-electron orbitals, Eq. (7). Furthermore,

calculations are carried out self-consistently.

All our considerations are not only valid for DFT, but also for many-body methods [65, 66].

In the case of DFT, the basic variable is the noninteracting one particle density matrix, where

one uses directly fractional occupations Eq. (6), and in case of many-body methods such as

RPA it would be the single particle Green function. Taking ensembles at different levels lead to

very different ensemble extensions and help answer very different questions. For understanding

failures of methods, the fractional extension performed at the level of the basic variable is

key [66].

5.4 Fractional charges and delocalisation error

We have seen how fractional charges emerge in the stretched limit of physical systems. It is very

important to understand how considering these systems with fractional charges, which could

appear to be quite ficticious, affect real systems in applications. Obviously, it is of key impor-

tance to considering frontier orbitals or eigenvalues, analysing band gaps etc. However, the real

importance arises in trying to see even more basic problems with density functional approxima-

tions. This is clearly illustrated by realising how an incorrect description of fractional charges is

deeply related to a more general and fundamental inconsistency of functional approximations,

the delocalisation error.

Fig. 4 explains the nature of the delocalisation error [6]. Consider a molecule and an energy
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Figure 4: Illustration of the delocalisation error. We plot energy versus number of electrons

curves for the addition of up to one electron to a single monomer unit, an infinitely separated

dimer, an infinfitely separated trimer and infinitely expanded solid.

functional that has the correct behaviour at the integers N and N + 1. The key question is

why does it matter that it has incorrect convex behaviour at fractional numbers of electrons

in between the integers (as is the typical behaviour for LDA or GGA). Obviously, there is no

difference for any calculation on that molecule at integers (the neutral or the negative ion).

However, if we now take two of these molecules infinitely separated and consider the neutral and

negative ion of that supermolecule, a convex functional will give an incorrect energetic preference

for putting half an electron on each monomer. With three molecules the lowest energy would

be a third on each with an even lower energy and so on, such that the more molecules separated

by infinity the more the functional spreads out the electron and the lower and more unphysical

the energy will be (see Fig. 4). In the infinite limit, it is easy to see that this is clearly a

wrong solution, as all the possible fractional situations should be degenerate with the electron

affinity of the single molecule. However, it is obtained that a convex functional such as LDA

in this prototypical case gives a large energetic preference to delocalise the added electron, and

also this delocalisation error grows with the size of the system. This argument applies in the

infinite limit, but it carries over into non-infinitely separated systems, as it is just showing up

the tendency of approximate functionals to spread out charges and the energetic preference for

a delocalised density over a localised density. This is a basic problem in DFT, as the electron

density distribution should be dictated by the physics of the system, more than intrinsic errors

of the functional approximations.
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Figure 5: Pictures of diamond and graphite with surfaces of densities corresponding to non-

covalent interactions (low density and reduced gradient, see Ref. [67]), represented in green

and purple. However, a very interesting question is if approximate functionals that suffer from

delocalisation error can predict the sensitive energy differences between the delocalised densities

(not pictured) in the aromatic rings of graphite and the cage type localised density of diamond.

Even further, it is not clear if they will be able to correctly predict the phase transistion from

one to other or they will exhibit quantitative errors, as seen for the isomerisation energies of

small molecules.

a b

This systematic preference for delocalised densities also effects many other properties. For ex-

ample with energetics, it carries over to several aspects of organic chemistry. Usually, functional

approximations have quite a good performance for many of the energetic differences in organic

chemistry, with functionals often designed to reproduce the atomisation energies or heats of

formations of small organic molecules [68,69]. One first set of problems have been seen with the

prediction of barrier heights of simple chemical reactions, where LDA and GGA give a consistent

large under-prediction of the barrier heights [70–72]. There has also been many groups trying

to understand some energetic differences for which most functional approximations fail [73–77].

In fact one of the first major problems for DFT was seen in the isomerisation energy of C20 [78],

with the incorrect ordering of the ring, bowl and cage isomers.

Many other energetic differences can be seen to have an incorrect overstabilisation of delocalised

aromatic densities versus the energetics of less delocalised densities [79–81], also related to Fig.

5. Interestingly, the opposite has also been seen in the product of Diels Alder reactions [82].

Here functionals such as BLYP and B3LYP give an incorrect energetic destabilisation of the

Diels Alder products. If we analyse a very simple case such as the addition of a ring and C=C

double bond to give a small cage [2,2,2] bicyclooctane, BLYP incorrectly underpredicts the heat

of formation of the Diels-Alder product by around 20 kcal/mol. This is quite unusual for an

organic molecule with just normal C-C bonds, especially to underpredict. One possible answer

is that if BLYP has an energetic stabilisation for delocalised densities, then the opposite may be

true, such that for a more localised density BLYP may suffer from an energetic destabilisation.

This lead us to think that maybe the cage Diels-Alder product had a piece of density that is
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more ‘localised’ than normal. This argument fitted with the energetics and lead us to look for

these pieces of density, which were actually seen in the real space and have been developed into

a way to reveal the non-covalent interactions [67]. Whether this delocalisation error argument

gives the complete picture is not fully clear, as other GGA functionals such as PBE have a

slightly improved performance [83], though still an error of 10 kcal/mol for these systems (even

though there convexity for the E vs N curve is very similar). In any case, this analysis in terms

of delocalisation error seems to be a useful indication of the power of the E vs N curve and the

in depth understanding of the functionals and their results in calculations. There are obviously

many other errors that in part have an element of the delocalisation error as their basis.

Overall we believe that the understanding of fractional electrons, once it has been translated

into the language of delocalisation, can be very useful to rationalise many of the systematic

errors of functionals for many different properties which otherwise seem unconnected. This is

key to the further development of functionals free from a bias to artificially localise or delocalise

the electrons that improve on properties related to delocalisation error.

5.5 Fractional spins and static-correlation error

There is another set of well known problems in DFT that can be explained, in a related manner

to the fractional charge case, by introducing the concept of fractional spins [7]. Again it can be

started by considering a simple problem of degeneracies [84, 85]. For stretched H2 [29, 86–88],

see Fig. 6, there are two symmetry broken degenerate wavefunctions, one with an α (spin-up)

electron on A and a β (spin-down) electron on B, the second with a β electron on A and an α

electron on B. These two are orthogonal and clearly degenerate, both having very similar looking

densities. However, the linear combination of these two gives a system that looks very different,

two protons each with half an α electron and half a β electron. From the consideration of the

wavefunctions that give the densities, it is obviously degenerate. This means that a hydrogen

atom with half an α and half a β electron has the same energy as the usual hydrogen atom with

one α electron. Again, fractional spin systems are derived by considering pure spin states at

dissociation.

More generally the argument above can be formulated as the constancy condition for the exact

energy functional, such that systems with any fractional occupation of degenerate spin states

should have an energy equal to the integer-spin states as derived in [7, 39],

E

[

g
∑

i=1

Ciρi

]

= E [ρi] = E(N). (11)

Approximate functionals have a massive error for these fractional-spin states, giving rise to

massive energy overestimations, that explain the errors observed at molecular dissociation. In

the typical example of the restricted stretching of H2, the overestimation of the energy of the

fractional spin hydrogen atom exactly matches the error seen at dissociation. In general, the

violation of the constancy condition for fractional spins gives to the static correlation error of

approximate functionals that is seen throughout applications (e.g. dissociation of molecules,

transition metal calculations, etc...)

In quantum chemistry the problems related to static correlation are often thought of as multi-
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Figure 6: Analysis of H2 at dissociation. The linear combination of states with integer spin

occupations (top two) gives rise to a system (bottom) with fractional spins (in this case half an

α electron and half a β electron) on each proton, and density in an ensemble form.

determinantal, where the wavefunction needed cannot be well described by a single determinant

[89–91]. However, from the point of view of the density this view does not help much, instead all

that is needed are functionals that obey the constancy condition. This again moves the challenge

from finding the wavefunction for a particular system to finding better universal exchange-

correlation functionals. Again we are testing on a much broader set of densities for which the

exact constraints are known. However, this issue poses many open questions. For example, the

half β and half α hydrogen atom at the limit of stretched H2 offers a particular challenge for

functionals, especially local ones, as it needs a global view that is able to tell the difference

between it and a Helium atom.

All functionals in the literature fail to describe these fractional spin systems, which should

be degenerate with the corresponding pure spin states. In this case though the energy is too

high, as opposite to the fractional charge case. In the infinite limit, it is possible to obtain

the correct energy by breaking the spin symmetry, however it is known (from experiment or

full CI calculations) that H2 has zero spin-density everywhere at any finite distance. The use

of symmetry-breaking can be thought of as avoiding the errors of approximate functionals by

looking at a state that is slightly incorrect (except in the limiting case). It will often give

reasonable numbers for calculated experimental quantities, but should probably not give perfect

agreement with experiment in all cases. In fact, this incorrect preference for symmetry breaking

in the simple prototypical example of H2 may explain other related issues, as many of the
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difficulties in calculation of magnetism in the solid state. It is expected that functionals would

generally like to localise the spins and, for example, would have an energetic preference for

an antiferromagnetic state over a closed shell diamagnetic one. The errors of the functionals

augment as the proportion of exact exchange is increased in the functional, with Hartree-Fock

giving a much larger error than LDA or GGA, and with hybrid functionals in between.

5.6 Unified conditions for fractional charges and fractional spins

The fractional charge and fractional spin perspectives are extremely important and explain a

large number of problems of calculations with approximate functionals. When they are thought

of separately, they can be tackled differently with hope of building better functionals. However

we feel that the true understanding of the importance of fractional occupations comes when the

two are considered at the same time and further extended [8].

We have considered separately H2 and H+
2 , especially in the limit of infinite separation. In

these cases, hydrogen atoms with fractional occupation numbers are obtained; in the fractional

charge case nα = δ and nβ = 0, and in the fractional spin case nα = δ, nβ = (1 − δ). These

are two specific cases of fractional occupations that give rise to two very different perspectives

on problems with functionals. Let us now consider the behaviour of all possible occupations for

the hydrogen atom, H[nα, nβ], with nα ≤ 1 and nβ ≤ 1, i.e the hydrogen atom with up to two

electrons going from H+ to H−.
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Figure 7: Flat-plane exact condition for the energy functional. It is a generalisation of the

straight-line condition for fractional charges combined with the constancy condition for fractional

spins. It is shown for the hydrogen atom with fractional occupations nα and nβ.

The exact behaviour, derived in [8], is shown in Fig. 7 and is a generalisation of the PPLB result
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Figure 8: Testing different methods for the flat-plane conditions. All functional approximations

in the literature as well as more sophisticated methods such as the random phase approximation

(RPA) dramatically fail, missing the key discontinuty at integer number of electrons.

explicitly considering spin as well, as given by the constancy condition. The generalisation can

be considered from the appropriate ensemble of the corner points from H[0,0], H[1,0], H[0,1]

and H[1,1]. This ‘flat-plane’ behaviour may not be too surprising but the importance really

comes from the consideration of currently used approximate functionals. Fig. 8 shows the

behaviour of several representative exchange-correlation functionals, and all of them exhibit a

striking qualitative failure to correctly describe the discontinuous behaviour of the exact energy.

In practical terms this means that none of these methods (and extensions: mixing together,

including range separation etc.) are able to describe H[12 , 0] and H[12 , 1
2 ] at the same time or,

in terms of simple molecules, are unable to correctly describe the limit of stretched H+
2 and

stretched H2 at the same time, or more generally, they cannot be both free from delocalisation

error and static correlation error at the same time. Simple ideas will not work in this case, as an

example, including more exact exchange in a functional decreases the delocalisation error but

increases the static correlation error. Thus, the flat-plane condition clearly indicates that to get

the energetics correct some sort of discontinuous behaviour, far from currently used forms, is

needed in functionals.
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5.7 Derivatives and the fundamental gap

From the consideration of the E vs N curve, there are two key expressions for the fundamental

gap (I − A), one from the difference of the energies at the integer points

Einteger
gap = [E(N − 1) − E(N)] − [E(N) − E(N + 1)] (12)

and a second one from the initial derivatives at N to the left and the right

Ederiv
gap =

∂E

∂N

∣

∣

∣

∣

N−δ

−
∂E

∂N

∣

∣

∣

∣

N+δ

. (13)

These two are equal for the exact functional due to the straight line behaviour in between the

integers. However, interesting questions arise for approximate functionals:

1. How are the derivatives evaluated?

2. Is the functional a straight line in between the integers?

3. How are these derivatives connected to the Kohn-Sham eigenvalues?

4. What about the derivative discontinuity and Mott insulators?

To understand the derivatives we decide to differentiate with respect to the number of electrons,

given the orbitals at N . This formally gives a derivation from potential functional theory

[92,93] that contrast with the classical way of Perdew-Levy [49] and Sham-Schlüter [50], where

functional derivatives are taken with respect to the density. We feel this offers a useful way to

understand and compute the derivatives related to the band-gap in DFT.

5.7.1 Evaluating the derivatives

We need to take the derivatives ∂E
∂N

∣

∣

N±ǫ
for different functional approximations. If we consider

the derivatives in {φi, ni} space rather than the more conventional {ρ,N} space, then they can

be expressed slightly differently. The derivatives for energy expressions that have a smooth

dependence on the density matrix are expressed in this space as [5]

∂E

∂N

∣

∣

∣

∣

N−ǫ

=

(

∂E

∂nhomo

)

φi

and
∂E

∂N

∣

∣

∣

∣

N+ǫ

=

(

∂E

∂nlumo

)

φi

. (14)

Let us first consider the derivatives of the density taken in this manner where the orbitals are

fixed
∂ρ(r)

∂N

∣

∣

∣

∣

N±ǫ

=

{

φhomo(r)φ
∗

homo(r) for N − ǫ

φlumo(r)φ
∗

lumo(r) for N + ǫ.
(15)

This equation says that the density is discontinuous on passing through the integer and any

term in calculating the derivatives that depends on the density will also have a discontinuity.

For example, the derivative of the the fractional expression for the total energy, Eq. (8), using

ELDA
x = −cD

∫

ρ4/3(r)dr for Exc[ρ], it is given by

∂ELDA

∂N

∣

∣

∣

∣

N−ǫ

= 〈φhomo| −
1

2
∇2 + vext(r) + vJ(r) −

4

3
cDρ1/3(r)|φhomo〉, (16)
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and a very similar expression is obtained for ∂ELDA

∂N

∣

∣

∣

N+ǫ
just with φhomo replaced with φlumo. If

we replace now Exc[ρ] by an orbital functional such as exact exchange, then the derivative to

the left is given by

∂EHF

∂N

∣

∣

∣

∣

N−ǫ

= 〈φhomo| −
1

2
∇2 + vext(r) + vJ(r) −

∑

j

∫

φj(r)φj(r
′)

|r− r′|
dr′P

rr
′ |φhomo〉, (17)

and again the derivative to the right just given by replacing φhomo by φlumo.

The gaps for both functionals can be expressed as [5]

Egap = 〈φlumo|Heff |φlumo〉 − 〈φhomo|Heff |φhomo〉 (18)

where Heffφi = ∂E[ρ]
∂φi(r)

. For functionals of the density this is just the difference of the Kohn-Sham

eigenvalues. For orbital functionals it is also the difference of the eigenvalues in a calculation

which minimises the energy. In this case, not a pure Kohn-Sham type equation is solved because

of the presence of orbital exchange type terms, and technically it is called generalised Kohn-

Sham approach [10] or the Hartree-Fock Kohn-Sham method [2] . However, this is standard

for most functionals of this type (e.g. a normal Hartree-Fock or B3LYP calculation). If a

local potential is used for these type of functionals, as in an optimised effective potential (OEP)

calculation [94–96], the Kohn-Sham eigenvalues obtained will not be the derivative of the energy

because 〈φf |Hs|φf〉 6= 〈φf |Heff |φf〉.

For the exact exchange correlation functional

Egap = 〈φlumo|Heff |φlumo〉 − 〈φhomo|Heff |φhomo〉 + Dxc (19)

where Dxc covers any discontinuity beyond that of just changing orbitals, beyond smooth func-

tionals [8].

5.7.2 Convexity, delocalisation error and the gap

Functionals such as LDA and GGA have a large amount of convex behaviour for finite systems.

This gives a clear picture of the failure for their prediction of band-gaps from derivatives at N [6].

They clearly do not satisfy the linearity condition of the exact functional [38], and therefore the

initial derivatives do not point to the integer points and henceforth do not give I and A. These

derivatives for LDA and GGA are just the Kohn-Sham eigenvalues as Heff = Hs in this case.

The MCY3 functional was developed to minimise the delocalisation error in small systems [21].

For some atoms and molecules it was shown that it gives a good straight line behaviour and

henceforth its derivatives [5] are accurate approximations to I and A.

The question of the non-linearity in the E vs N curve is maybe less directly key for larger

systems, for which, as previously discussed in Fig. 4, the delocalisation error of functionals such

as LDA or GGA means that an added electron will spread out too much and have much more

linear behaviour. In Fig. 4, as the number of units increases the E vs N curve for a functional

with delocalisation error gets straighter and straighter. There is therefore less disagreement

between the Ederiv
gap and E

integer
gap . In an ideal infinitely expanded solid a straight line is obtained

with the wrong integer value at N +1, and therefore even though Ederiv
gap = E

integer
gap they are both
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wrong. This explains the failure of LDA and GGA for the gap of semiconductors. Although

MCY3 improves upon LDA for the gap of molecules, it does not help in solids because it uses

long-range exact exchange. This ingredient is, however, key for fixing atoms and molecules but

unfortunately massively overpredicts the gaps of most solids. Methods that are successful for

the gap of solids are based on screening (e.g. GW [97]) which somehow removes the long-range

part of exchange. The understanding from molecules can help in solids but, of course, differ-

ent challenges for the exchange-correlation functional emerge when considering such different

densities. There remains a critical challenge to develop functionals which can reliably predict,

through the energy derivative with respect to the number of electrons, the energy gaps across the

scales from atoms, molecules to bulks. Such a functional would be able to provide an accurate

description of the electronic structure at interfaces, such as the alignment of the energy levels,

and the amount and direction of charge transfer.

5.7.3 Kohn-Sham gaps and experimental band-gaps

Consider the exact Kohn-Sham expression for the derivative gap, as it is given by [49,50]

Ederiv
gap =

(

δTs

δρ(r)

∣

∣

∣

∣

N−δ

−
δTs

δρ(r)

∣

∣

∣

∣

N+δ

)

+

(

δExc

δρ(r)

∣

∣

∣

∣

N−δ

−
δExc

δρ(r)

∣

∣

∣

∣

N+δ

)

(20)

= ǫKS
lumo − ǫKS

homo + ∆xc (21)

This equation could be understood to state that even for an exact Kohn-Sham calculation giving

the exact Kohn-Sham gap there is a missing derivative discontinuity term. In this understand-

ing, a Kohn-Sham calculation with any approximate functional, up to and including the exact

functional, does not give the experimental gap from its eigenvalues, an additional term is needed.

This perspective, while correct, does not give information on how to understand and view the

all important functional derivative discontinuity. To address this, it is appropriate to formulate

the following question: given an explicit form for Exc, what is the prediction of the gap? We

can take these derivatives as above, giving

Ederiv
gap =

∂E

∂N

∣

∣

∣

∣

N−δ

−
∂E

∂N

∣

∣

∣

∣

N+δ

(22)

= 〈φlumo|Heff |φlumo〉 − 〈φhomo|Heff |φhomo〉 + Dxc (23)

For a functional such as LDA/GGA this gives just the difference of the Kohn-Sham eigenvalues,

for an orbital functional such as Hartree-Fock this is not the difference of Kohn-Sham eigenvalues,

it is the difference of generalised Kohn-Sham eigenvalues. The Dxc part just comes from the

derivatives of the energy expression, however for any smooth functional of the orbitals or density

Dxc = 0. For derivatives of non-smooth functionals (e.g. Ref [8]) Dxc 6= 0. Just to clarify, if we

have the exact exchange-correlation functional the experimental gap does just come from taking

the difference of the derivative to the left and the right. To get agreement with experiment we

just need better approximate exchange-correlation functionals, with the correct discontinuous

behaviour. It is important to understand that the derivative discontinuity is a question about

the exchange-correlation functional not something beyond it.

39



5.7.4 Derivative discontinuity and Mott insulators

Mott Insulators are systems with a large experimental gap but from band structure calculations

they look metallic (i.e they can have an odd number of electrons per unit cell or, in the language

of molecules, a degenerate HOMO and LUMO). A simple example of a Mott insulator in the

solid state is a transition metal oxide such as NiO. However, to better understand this issue from

a DFT perspective, we can consider much simpler systems, either the infinitely stretched limit

of H2 or even more simply H[12 , 1
2 ] [8]. If we first consider the case of infinitely stretched closed

shell H2, the usual gap as considered above comes from changing the orbital from the φhomo

to φlumo, however in this system both orbitals (σg and σu) are degenerate in energy and even

have the same density. This means that any term that has a smooth dependence on the density

(e.g. J [ρ]) or even any term that has a smooth dependence on the orbitals, such as Eexact
x [φi]

or Ts[φi], will not contribute to the gap. For example the Ts term contribution to the gap

〈φlumo| −
1

2
∇2|φlumo〉 − 〈φhomo| −

1

2
∇2|φhomo〉 = 0 (24)

vanishes in this case due to the nature of the HOMO and LUMO. However the infinitely stretched

system is just composed of two H atoms and therefore should have the same gap as a normal H

atom, where the ionisation energy is 13.61 eV and the electron affinity is 0.75 eV, with a very

large gap of 12.85 eV. All this gap must come from the exchange-correlation term.

Therefore for Mott insulators, all the contribution to the gap comes from the derivative dis-

continuity of the exchange correlation functional, with no contribution from the (generalised)

Kohn-Sham eigenvalues:

Egap =
∂Exc

∂N

∣

∣

∣

∣

N−δ

−
∂Exc

∂N

∣

∣

∣

∣

N+δ

. (25)

For the gaps to be non-zero for Mott insulators, Exc cannot be a continuous functional of either

the density or the non-interacting density matrix [8].

5.8 Conclusions

Fractional charges and fractional spins, along with the corresponding exact constraints that

characterise them, offer a unique view of density functional theory. Density functional approx-

imations work well for systems with integer number of electrons (and character) but fail badly

in systems that could be described as fractional. This failure can be easily seen from studying

very simple systems, even those having one electron, leading to an intriguing and simple to

understand view of the problems of functionals and the difficult paths to correct them. Radi-

cally new discontinuous behaviour is needed in the functional form to be able describe both H+
2

and H2 in their infinite limits or, more generally, to be free from delocalisation error and static

correlation error at the same time. This discontinuous behaviour goes beyond that of orbital

functionals and helps explain some key challenges of DFT in the literature, such as calculating

band-gaps. The area of strong correlation is also related to this basic failure of current used

exchange-correlation functionals to describe simultaneously fractional charges and spins. The

hydrogen atom, although extremely simple and trivial to solve in quantum mechanics, highlights

many key problems of DFT: delocalisation error, static correlation error, strong correlation and

the derivative discontinuity.
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