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Abstract

Electronic structure calculations have become an indispensable tool in many areas of

materials science and quantum chemistry. Even though the Kohn-Sham formulation of
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the density-functional theory (DFT) simplifies the many-body problem significantly, one

is still confronted with several numerical challenges. In this article we present the projector

augmented-wave (PAW) method as implemented in the GPAW program package‡ using an

uniform real-space grid representation of the electronic wave functions. Compared to more

traditional plane wave or localized basis set approaches, real-space grids offer several advan-

tages, most notably good computational scalability and systematic convergence properties.

Additionally, as localized orbitals provide a conveniently small basis, we have also imple-

mented the PAW method using atom-centered orbital basis sets. While DFT allows one to

study ground state properties, time-dependent density-functional theory (TDDFT) provides

access to the excited states. We have implemented the two common formulations of TDDFT,

namely the linear-response and the time propagation schemes. Electron transport calcula-

tions under finite-bias conditions can be performed with GPAW using non-equilibrium Green

functions and the localized basis set. In addition to the basic features of the real-space PAW

method, we also describe the implementation of selected exchange-correlation functionals,

parallelization schemes, ∆SCF-method, X-ray absorption spectra, and maximally localized

Wannier orbitals.

1 Introduction

Electronic structure calculations have become an indispensable tool for simulations of
condensed matter systems. Nowadays systems ranging from atoms and small molecules
to nanostructures with several hundreds of atoms are studied routinely with density-
functional theory (DFT) [1, 2].

In principle, only ground state properties such as total energies and equilibrium geometries
can be investigated with DFT. However, several interesting material properties like exci-
tation energies and optical spectra are related to the excited states of a system. These
excited-state properties can be studied with time-dependent density-functional theory
(TDDFT) [3].

Even though the DFT equations are much easier to solve than the full many-body
Schrödinger equation, several numerical approximations are usually made. The approxi-
mations can be related to the treatment of core electrons and the region near the atomic
nuclei (pseudopotential vs. all-electron methods) [4–8] or to the discretization of equa-
tions (plane-waves, localized orbitals, real-space grids, finite elements) [9–19]. In this
work, we present a real-space-based implementation of the projector augmented-wave
(PAW) method in the open source program package GPAW [20]. We note that there are
several software packages that currently implement the PAW method using a plane-wave
basis [21–23].

The PAW method [7,24] is formally an all-electron method which provides an exact trans-
formation between the smooth pseudo wave functions and the all-electron wave functions.
While in practical implementations the PAW method resembles pseudopotential meth-
ods, it addresses several shortcomings of norm-conserving or ultrasoft pseudopotentials.
The PAW method offers a reliable description over the whole periodic table with good

‡https://wiki.fysik.dtu.dk/gpaw
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transferability of PAW potentials. The pseudo wave functions in the PAW method are
typically smoother compared to norm-conserving pseudopotential methods so that the
wave functions can be represented with fewer degrees of freedom. The PAW approxima-
tion contains all the information about the nodal structure of wave functions near the
nuclei, and it is always possible to reconstruct the all-electron wave functions from the
pseudo wave functions.

In the solid state community, plane-wave basis sets [9, 22, 25, 26] are the most popular
choice for discretizing the density-functional equations while localized basis sets [11, 27]
have been more popular in quantum chemistry. A more recent approach is the use of
uniform real-space grids [13, 28–30]. Real-space methods provide several advantages over
plane waves. A plane-wave basis imposes periodic boundary conditions, while a real-
space grid can flexibly treat both free and periodic boundary conditions. The plane-wave
method relies heavily on fast Fourier transforms which are difficult to parallelize efficiently
due to the non-local nature of the operations. On the other hand, in real space it is possible
to work entirely with local and semi-local operations which enables efficient parallelization
with small communication overhead. The accuracy of a real-space representation can be
increased systematically by decreasing the grid spacing, similar to increasing the kinetic
energy cut-off in a plane wave calculation. This systematic improvement of accuracy is
also the main advantage of both real-space and plane-wave methods compared to localized
basis sets, where the accuracy of representation cannot be controlled as systematically.
However, as localized functions can provide a very compact basis set, we have implemented
also atom-centered basis functions for situations where the high accuracy of a real-space
grid is not needed. The atom-centered basis is especially convenient in the context of
electron transport calculations within the non-equilibrium Green function approach also
implemented in GPAW. To our knowledge, GPAW is the first publicly available package
to implement the PAW method with uniform real-space grids and atom-centered localized
orbitals.

In tandem with numerical approximations, physical approximations are needed in DFT
since the exact form of the exchange-correlation (XC) functional is unknown. The tra-
ditional local density and generalized gradient approximations have been surprisingly
successful, but due to well-known shortcomings, there are continuing efforts to go beyond
them. Some of the new developments in this field, such as meta-GGA and exact-exchange
based approximations are available in GPAW.

Time-dependent density-functional theory (TDDFT) can be realized in two different for-
malism. In the most general form, the time-dependent Kohn-Sham equations are inte-
grated over the time-domain [31]. In the linear-response regime it is also possible to obtain
excitation energies by solving a matrix equation in an electron-hole basis [32]. The real-
time propagation and the linear-response approaches are complementary. For example,
the linear-response scheme provides all the excitations in a single calculation, while the
real-time formalism provides the excitations corresponding to a given initial perturbation.
On the other hand, the real-time propagation scheme can address also non-linear effects.
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While the linear-response scheme is more efficient for small systems, the real-time prop-
agation approach scales more favorably with system size. Both the linear-response and
real-time forms are implemented in GPAW, to our knowledge for the first time within the
PAW method.

In addition to the standard total energy calculations, GPAW contains several more specific
features. For example, excitation energies can be estimated with the ∆SCF method [33]
as an alternative to the TDDFT approaches. X-ray absorption spectra and maximally
localized Wannier functions can also be calculated.

This article is organized as follows: First, the general features of the PAW method and the
implementation on a real-space grid are described in Sec. 2. In Sec. 3 we give an overview
of the different exchange-correlation functionals available, and in Sec. 4 we discuss a recent
method for error estimations within DFT. An overview of TDDFT is presented in Sec. 5,
and the localized basis set and its use in finite bias transport calculations are described
in Sec. 6. In Sec. 7 other features, such as ∆SCF, X-ray absorption spectra and Wannier
functions are described. The parallelization strategy and parallel scaling are presented in
Sec. 8. Finally, we provide a summary and an outlook in Sec. 9.

2 General overview

In this section, we present the main features of our PAW implementation. Some of the
details have been published earlier [34], so we provide here a general overview and discuss
in more detail only the parts where our approach has changed from the earlier publication.
The notation is similar to the one used in the original references [7]. We use Hartree atomic
units (~ = m = e = 4π

ǫ0
= 1) throughout the article. Generally, the equations are written

for the case of a spin-paired and finite system of electrons and the spin and k-point indices
are included when necessary.

2.1 Projector augmented-wave method

In the Kohn-Sham formulation of DFT, we work with single-particle all-electron wave
functions to describe core, semi-core and valence states. The PAW method is a linear
transformation between smooth valence (and semi-core) pseudo (PS) wave functions, ψ̃n

(n is the state index) and all-electron (AE) wave functions, ψn. The core states of the
atoms, φa,core

i , are fixed to the reference shape for the isolated atom. Here a is an atomic
index and i is a combination index for the principal, angular momentum, and magnetic
quantum numbers respectively (n, ℓ and m).

Given a smooth PS wave function, the corresponding AE wave function, which is orthog-
onal to the set of φa,core

i orbitals, can be obtained through a linear transformation

ψn(r) = T̂ ψ̃n(r). (1)

The transformation operator, T̂ , is given in terms of atom-centered AE partial waves,
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φa
i (r), the corresponding smooth partial waves, φ̃a

i (r), and projector functions, p̃a
i (r), as

T̂ = 1 +
∑

a

∑

i

(|φa
i 〉 − |φ̃a

i 〉)〈p̃a
i |, (2)

where atom a is at the position Ra. The defining properties of the atom-centered functions
are that AE partial waves and smooth PS partial waves are equal outside atom-centered
augmentation spheres of radii ra

c ,

φa
i (r) = φ̃a

i (r), |r− Ra| > ra
c (3)

and that the projector functions are localized inside the augmentation spheres and are
orthogonal to the PS partial waves

〈p̃a
i1
|φ̃a

i2
〉 = δi1i2 . (4)

In principle, an infinite number of atom-centered partial waves and projectors is required
for the PAW transformation to be exact. However, in practical calculations it is usually
enough to include one or two functions per angular momentum channel. The projectors
and partial waves are constructed from an AE calculation for a spherically symmetric
atom.

Inside the augmentation sphere of atom a, we can define one-center expansions of an AE
and PS state as [7]

ψa
n(r) =

∑

i

P a
inφ

a
i (r) (5)

and
ψ̃a

n(r) =
∑

i

P a
inφ̃

a
i (r), (6)

where the expansion coefficients are

P a
in = 〈p̃a

i |ψ̃n〉. (7)

For a complete set of partial waves, we have ψn = ψa
n and ψ̃n = ψ̃a

n for |r − Ra| < ra
c

which leads to
ψn = ψ̃n +

∑

a

(ψa
n − ψ̃a

n). (8)

Here, the term in the parenthesis is a correction inside the augmentation spheres only.

We define a PS electron density

ñ(r) =
∑

n

fn|ψ̃n(r)|2 +
∑

a

ña
c(r), (9)

where fn are occupation numbers between 0 and 2, and ña
c is a smooth PS core density

equal to the AE core density na
c outside the augmentation sphere. From the atomic density

matrix Da
i1i2

Da
i1i2 =

∑

n

〈ψ̃n|p̃a
i1〉fn〈p̃a

i2 |ψ̃n〉. (10)
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we define one-center expansions of the AE and PS densities,

na(r) =
∑

i1,i2

Da
i1i2φ

a
i1(r)φ

a
i2(r) + na

c (r), (11)

and
ña(r) =

∑

i1,i2

Da
i1i2φ̃

a
i1(r)φ̃

a
i2(r) + ña

c (r), (12)

respectively.

From ñ, na and ña, we can construct the AE density in terms of a smooth part and
atom-centered corrections

n(r) = ñ(r) +
∑

a

(na(r) − ña(r)). (13)

The PAW total energy expression has three contributions: kinetic, Coulomb and XC
energy, all of which are composed of a PS part and atomic corrections. For the kinetic
energy, we get

Ẽkin = −1

2

∑

n

fn

∫

drψ̃n(r)∇2ψ̃n(r), (14)

∆Ea
kin = −1

2
2

core
∑

i

∫

drφa
i (r)∇2φa

i (r)

−1

2

∑

i1i2

Da
i1i2

∫

dr
(

φa
i1
(r)∇2φa

i2
(r) − φ̃a

i1
(r)∇2φ̃a

i2
(r)

)

. (15)

Before we can write down the expression for the PAW Coulomb energy, we must define
one-center AE and PS charge densities

ρa(r) = na(r) − Zaδ(r− Ra), (16)

ρ̃a(r) = ña(r) +
∑

ℓm

Qa
ℓmĝ

a
ℓm(r), (17)

where Za is the atomic number of atom a, ĝa
ℓm(r) = ĝa

ℓ (|r − Ra|)Yℓm(r − Ra) is a shape
function localized inside the augmentation sphere fulfilling

∫

r2drrℓĝa
ℓ (r) = 1 and Qa

ℓm are
multipole moments that we choose as described below. We define a PS charge density as

ρ̃(r) = ñ(r) +
∑

a

∑

ℓm

Qa
ℓmĝ

a
ℓm(r), (18)

so that the AE charge density is ρ = ρ̃ +
∑

a(ρ
a − ρ̃a). By choosing Qa

ℓm so that ρa and
ρ̃a have the same multipole moments, augmentation spheres on different atoms will be
electrostatically decoupled and the Coulomb energy is simply

Ẽcoul =
1

2

∫

drdr′
ρ̃(r)ρ̃(r′)

|r− r′| , (19)

∆Ea
coul =

1

2

∫

drdr′
ρa(r)ρa(r′) − ρ̃a(r)ρ̃a(r′)

|r− r′| . (20)
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For local and semi-local XC-functionals, the contributions to the XC energy is

Ẽxc = Exc[ñ], (21)

∆Ea
xc = Exc[n

a] −Exc[ñ
a]. (22)

There is one extra term in the PAW total energy expression which does not have a physical
origin

Ẽzero =

∫

drñ(r)
∑

a

v̄a(r), (23)

∆Ea
zero = −

∫

drña(r)v̄a(r). (24)

The only restriction in the choice of the so called zero-potential (or local potential) v̄a

is that it must be zero outside the augmentation sphere of atom a. For a complete
set of partial waves and projectors, Ẽzero +

∑

a ∆Ea
zero is exactly zero, but for practical

calculations with a finite number of partial waves and projector functions, v̄a can be used
to improve the accuracy of a PAW calculation [35].

The final expression for the energy is

E = Ẽ +
∑

a

∆Ea (25)

= Ẽkin + Ẽcoul + Ẽxc + Ẽzero

+
∑

a

(∆Ea
kin + ∆Ea

coul + ∆Ea
xc + ∆Ea

zero). (26)

The smooth PS wave functions ψ̃n are orthonormal only with respect to the PAW overlap
operator Ŝ: 〈ψ̃n|Ŝ|ψ̃m〉 = δnm, where

Ŝ = T̂ †T̂ = 1 +
∑

a

∑

i1i2

|p̃a
i1
〉∆Sa

i1i2
〈p̃a

i2
|, (27)

∆Sa
i1i2

= 〈φa
i1
|φa

i2
〉 − 〈φ̃a

i1
|φ̃a

i2
〉. (28)

This leads to the generalized eigenproblem

Ĥψ̃n = ǫnŜψ̃n, (29)

where

Ĥ = −1

2
∇2 + ṽ +

∑

a

∑

i1i2

|p̃a
i1〉∆H

a
i1i2〈p̃

a
i2|, (30)

∆Ha
i1i2

=
∂∆Ea

∂Da
i1i2

+

∫

drṽcoul(r)
∂ρ̃(r)

∂Da
i1i2

, (31)

and the effective potential

ṽ =
δẼ

δñ
= ṽcoul + ṽxc +

∑

a

v̄a, (32)

where the Coulomb potential satisfies the Poisson equation ∇2ṽcoul = −4πρ̃ and ṽxc is the
XC potential.
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2.2 Atomic setups

For each type of atom, we construct an atomic setup consisting of the following quantities:
φa

i , φ̃
a
i , p̃

a
i , n

a
c , ñ

a
c , ĝℓm, v̄a and ra

c . From a reference calculation for the isolated neutral
spin-paired spherically symmetric atom, we calculate the required AE partial waves φa

i and
the core density na

c . We choose a cutoff radius ra
c for the augmentation sphere and a shape

for ĝℓm, which is usually a Gaussian. The smooth PS partial waves φ̃a
i and the smooth

PS core density ña
c are constructed by smooth continuation of φa

i and na
c , respectively,

inside the augmentation sphere. The projector functions p̃a
i are constructed as described

in Ref. [7] and v̄a is chosen so that the effective potential ṽ becomes as smooth as possible
or to produce good scattering of f -states [35]. For more details, see Ref. [34].

All the functions in an atomic setup are of the form of a radial function times spherical
harmonics and each radial function is tabulated on a radial grid. Since φa

i and na
c can

contain tightly bound localized electrons, the radial grid used has a higher grid density
close to r = 0 than further from the nucleus (we use ri = βi/(N − i) for i = 0, 1, ..., N).
All the functions comprising a setup need only be known for r < ra

c except for φ̃a
i and ña

c ,
which are used also for initialization of wave functions and density.

2.3 Uniform 3-d real-space grids

Uniform real-space grids provide a simple discretization for the Kohn-Sham and Poisson
equations. Physical quantities such as wave functions, densities, and potentials are repre-
sented by the values at the grid points. Derivatives are calculated using finite differences.
The accuracy of discretization is determined by the grid spacing and the finite difference
approximations used for the derivatives.

For a general unit cell with lattice vectors aα (α = 1, 2, 3) and Nα grid points along the
three directions, we define grid spacing vectors hα = aα/Nα. For an orthorhombic unit
cell, the Laplacian is discretized as:

∇2f(r) =

D
∑

α=1

N
∑

n=−N

bαc
N
n f(r + nhα) +O(h2N), (33)

where D = 3, bα = 1/h2
α and cNn are the N th order finite difference coefficients for the

second derivative expansion.

In the case of a non-orthorhombic unit cell, we extend the set of grid spacing vectors
with more nearest neighbor directions. The D coefficients bα are determined by the
conventional method of undetermined coefficients, inserting the six functions f(r) =

x2, y2, z2, xy, yz, zx in Eq. (33) and solving for bα at r = (0, 0, 0). The number of di-
rections needed to satisfy the six equations depends on the symmetry of the lattice: For
hexagonal or body centered cubic symmetry, D = 4 directions are needed, while D = 6

directions are used for a face centered cubic cell or a general unit cell without any symme-
try. This procedure allows for finite difference stencils with only 1 + 2DN points, which
is similar to the stencils defined by Natan et al. [36].
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It must be noted that the performance of a given stencil is to an extent structure-
dependent. For example, for calculations of individual molecules, where large gradients
are present, a more compact stencil may outperform a higher accurancy but less compact
one. However, good accuracy is typically obtained for a combination of a grid spacing of
h = 0.2 Å and a finite difference stencil with O(h6) error for the kinetic energy.

The PS electron density is evaluated on the same grid as the wave functions. It is then
interpolated to a finer grid with a grid spacing of h/2, where the XC energy and potential
are calculated. The fine grid is also used for constructing the PS charge density and for
solving the Poisson equation. The discretization of the Poisson equation is done with a
finite-difference stencil like Eq. (33) with an error of O(h6). For orthorhombic unit cells
a more compact Mehrstellen type stencil [16] can also be used for solving the Poisson
equation. The effective potential, Eq. (32), is then restricted to the coarse grid where it
can be applied to the wave functions.

Boundary conditions for the quantities represented on 3-d grids can be zero for an isolated
system or periodic for a periodic system (or any combination). When using k-point
sampling, a wave function can also have Bloch type boundary conditions

ψ̃nk(r + R) = ψ̃nk(r)eik·R, (34)

where R is any Bravais vector. For charged systems, the boundary condition for ṽcoul can
determined from a multipole expansion.

2.4 Localized functions and Fourier filtering

Special care is needed when dealing with integrals involving products of localized functions
centered on an atom and functions spanning the whole simulation cell. As an example,
consider the projection of a wave function onto a projector function p̃a

i (r) = p̃a
niℓi

(|r −
Ra|)Yℓimi

(r−Ra) centered on atom a. This integral is approximated by a sum over grid
points:

〈p̃a
i |ψ̃〉 =

∑

g

p̃a
i (rg)ψ̃(rg)∆v, (35)

where ∆v is the volume per grid point. In order to make the integration as accurate as
possible, it is important that the radial function p̃a

niℓi
(r) contains as few short-wavelength

components as possible. To achieve this, we Fourier filter our projector functions using
the mask-function technique [37]. Here, the radial function is divided by a mask function
that goes smoothly to zero at approximately twice the original cutoff radius. We use
m(r) = exp(−γr2). After a Fourier transform, the short wavelength components are
cut off by multiplying the spectrum by a smooth cutoff function. Transforming back to
real-space, the final result is obtained by multiplying by m(r), which will remove the
oscillating and decaying tail beyond the cutoff of the chosen mask function.

In the PAW formalism, there are four different types of localized functions that need to
be evaluated on the grid points: projector functions p̃a

i , the zero potential v̄a, the shape
functions ĝa

ℓm (for the compensation charges), and the PS core density ña
c ; we apply the
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mask function technique to p̃a
i and v̄a. The radial part of the shape functions are chosen

as rℓe−αara

and are therefore optimally smooth [38], and the PS core densities can always
be chosen very smooth.

2.5 Iterative solution of eigenproblem

The Hamiltonian and overlap operators appearing in the generalized eigenvalue problem
Eq. (29) are large sparse matrices in the real-space grid representation. Due to the
large size of the matrices, direct diagonalization schemes which scale O(N3) with the
matrix size are not tractable. On the other hand, sparsity of the matrices makes iterative
diagonalization schemes [9, 39] appealing due to their dominant O(N2) scaling.

We have implemented three different iterative eigensolvers which share some common in-
gredients: the residual minimization method-direct inversion in iterative subspace (RMM-
DIIS) [39, 40], the conjugate gradient method [9, 41], and Davidson’s method [39, 42]. A
basic concept in all the methods is the update of the eigenvectors ψ̃n with the residuals

Rn = (Ĥ − ǫnŜ)ψ̃n. (36)

The convergence of iterative methods can be accelerated with preconditioning, and we
calculate preconditioned residuals R̃n = P̂Rn, by solving approximately a Poisson equa-
tion

1

2
∇2R̃n = Rn (37)

with a multigrid method [16].

A subspace diagonalization is always performed before the iteration steps. The RMM-
DIIS method does not conserve the orthonormality of eigenvectors, and thus explicit
orthonormalization is done after each RMM-DIIS step. A good initial guess for the wave
functions is especially important for the robustness of the RMM-DIIS algorithm. We
take the initial guess from an atomic orbital basis calculation, the details of which are
described in section 6.

2.6 Density mixing

During the self-consistency cycles both wave functions and the density are updated iter-
atively. New PS density ñ(r) and atomic density matrices Da

i1i2 are calculated from the
wave functions, Eqs. (9-10) and mixed with the old densities using Pulay’s method [39,43].

Pulay’s method requires a good metric M̂ for measuring the change from input to output
density 〈∆ñ|M̂ |∆ñ〉, where ∆ñ = ñout − ñin, in order to determine the optimal linear
combination of old output densities. It is important that M̂ puts more weight on long
wavelength changes as these can introduce charge sloshing in systems with many states
at the Fermi level. Ref. [39], for example, uses the metric

M̂ =
∑

q

fq |q〉 〈q| , with fq =
q2 + q2

1

q2
, (38)
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where q1 ∼ 1 and |q〉 is a plane wave with wave vector q. Expressed on a real-space grid
where |R〉 is a grid point at R, we have

M̂ =
∑

RR′

MRR′ |R〉 〈R′| , with MRR′ =
∑

q

fqe
iq·(R′−R). (39)

We would like to calculate scalar products from the density on the real space grid, but
the non-locality of Eq. (39) makes this intractable. We therefore seek a more local metric
M̂ , which can be represented as a finite difference operator

M̂ =
∑

R

N
∑

i=0

∑

v∈Vi

ci |R〉 〈R + v| , (40)

where Vi is the set of vectors pointing to the ith nearest neighbors of a grid point. We
enforce M̂ to be semi-local by including only up to Nth nearest neighbors. In reciprocal
space M̂ has matrix elements

f̃q =
〈

q|M̂ |q′
〉

=
∑

i

ci
∑

v∈Vi

eiq·vδq,q′. (41)

The coefficients ci should be determined so that Eq. (41) mimics the behavior of fq in
Eq. (38). This means that f̃q should decay monotonically from a weight factor w > 1

at q = 0 to 1 for the largest wave vectors at the zone boundary in reciprocal space:
f̃

(3)
(π/h,qy,qz) = 1 for |qy| ≤ π/h and |qz| ≤ π/h. For an orthorhombic grid with grid spacing
h, including up to 3rd nearest neighbors, we can fulfill these boundary conditions with
the coefficients

c0 =
w + 7

8
, c1 =

w − 1

16
, c2 =

w − 1

32
, c3 =

w − 1

64
. (42)

We find the metric to improve convergence significantly when there are many states near
the Fermi level. A value of w = 100 seems to be a good choice.

3 Exchange-correlation functionals in GPAW

The exact form of the exchange-correlation (XC) functional in the DFT is not known.
Thus, it has to be approximated, which constitutes the fundamental physical approxima-
tion in practical calculations. GPAW provides several forms of XC functionals ranging
from the basic local density (LDA) and generalized gradient (GGA) approximations to
the more exotic hybrid functionals; a van der Waals density functional and the Hubbard-
corrected DFT+U are also available. For the basic functionals GPAW uses libxc [44]
which is an open source library of popular XC functionals: LDA, GGA, and meta-GGA.
The exchange and correlation parts of libxc can be freely combined. In the following we
describe the more advanced functionals implemented in GPAW.
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3.1 Meta-GGA

Meta-GGAs use the kinetic-energy density in addition to densities and density gradients
in standard GGAs so that more of the known properties of the exact XC functional can
be fulfilled [45]. The kinetic energy density is defined as

τ(r) =
1

2

∑

n

fn|∇ψn(r)|2. (43)

The MGGAs currently implemented in GPAW [46–48] depend on the reduced (dimen-
sionless) quantities τ/τHEG and τ/τvW, where

τHEG =
3

10
(6π2)2/3n5/3 (44)

is the kinetic energy density of the homogeneous electron gas (HEG), and

τvW =
|∇n|2

8n
(45)

is the von Weizsäcker (vW) kinetic-energy density.

Just like the AE density, Eq. (13), the kinetic energy density can be written as τ =

τ̃ +
∑

a(τ
a − τ̃a), where the smooth part is

τ̃(r) =
1

2

∑

n

fn|∇ψ̃n(r)|2 +
∑

a

τ̃a
c (r), (46)

and the atom-centered parts are

τa(r) =
1

2

∑

i1i2

Da
i1i2

∇φi1(r) · ∇φi2(r) + τa
c (r), (47)

τ̃a(r) =
1

2

∑

i1i2

Da
i1i2∇φ̃i1(r) · ∇φ̃i2(r) + τ̃a

c (r). (48)

The AE and PS core kinetic energy densities τa
c (r) and τ̃a

c (r) are simple radial functions
that are calculated during atomic setup generation.

Currently, GPAW enables calculation of non-self-consistent TPSS [46], revTPSS [48] and
M06-L [47] energies. The use of PBE orbitals in a non-self-consistent calculations of
atomization energies and bond lengths for small molecules has been determined to be ac-
curate [49]. In Fig. 1 the GPAW atomization energies errors, with respect to experiments,
are reported both for the PBE and MGGA functionals. The TPSS mean absolute error
with respect to experimental values obtained with GPAW is 0.13 eV, and this is consistent
with the value of 0.14 eV of Ref. [49]. All MGGA functionals employed improve over the
PBE atomization energies whose mean absolute error is 0.33 eV.

3.2 Exact exchange

GPAW offers access to the Fock exchange energy (exact exchange), as well as fractional
inclusion of the Fock operator in the hybrid XC functionals. The exact-exchange (EXX)
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Figure 1: PBE, TPSS, revTPSS and M06-L non-self-consistent atomization energies errors, with

respect to experiments, calculated with GPAW for small molecules, in eV. The MGGA GPAW

values are obtained from PBE orbitals at experimental geometries. Experimental values are as

in Ref. [49].

functional was implemented within the PAW method in a plane-wave basis [50], but to
the authors’ knowledge this is the first implementation in a real-space PAW method. As
the PAW related expressions are independent of the basis, we refer to Ref. [50] for their
derivation, and sketch only the main features here.

The EXX energy functional is given by

Exx = −1

2

∑

ijσ

fiσfjσK
C
ijσ,ijσ, (49)

where i and j are the state indices, and σ is the spin index. The Coulomb matrix KC is
defined as

KC
ijσ1,klσ2

= (nijσ1
|nklσ2

) :=

∫

drdr′

|r − r′|n
∗
ijσ1

(r)nklσ2
(r′), (50)

where the orbital pair density is nijσ(r) = ψ∗
iσ(r)ψjσ(r).

When i, j both refer to valence states, the pair density can be partitioned into a smooth
part and atom-centered corrections, similar to the AE density in Eq. (13), as

nijσ = ñijσ +
∑

a

(na
ijσ − ña

ijσ). (51)

Due to the non-local nature of the Coulomb kernel 1/|r− r′|, direct insertion of Eq. (51)
into Eq. (50) leads to cross terms between different augmentation spheres. The same
problem appeared already in the evaluation of the PAW Coulomb energy, and it can be
solved similarly by introducing compensation charges (from now on we drop the spin
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indices for brevity)
Z̃a

ij(r) =
∑

ℓm

Qa
ℓm,ij ĝ

a
ℓm(r), (52)

which are chosen to electrostatically decouple the smooth compensated pair densities

ρ̃ij = ñij +
∑

a

Z̃a
ij . (53)

The Coulomb matrix now has a simple partitioning in terms of a smooth part and local
corrections,

KC
ij,kl = (ρ̃ij |ρ̃kl) +

∑

a

∆KC,a
ij,kl. (54)

We refer to Ref. [51] for the exact form of the correction term ∆KC,a
ij,kl, which is also

used to evaluate Eq. (20). We note that the Coulomb matrix KC
ij,kl appears also in the

linear-response TDDFT (see Sec. 5) and in the GW method [52].

The formally exact partitioning in Eq. (54) retains all information about the nodal struc-
ture of the AE wave functions in the core region, which is important due to the non-local
probing of the Coulomb operator. In standard pseudopotential schemes this information
is lost, leading to an uncontrolled approximation to KC

ij,kl.

As a technical issue, we note that integration over the the Coulomb kernel 1/|r−r′| is done
by solving the associated Poisson equation ∇2ṽij = −4πρ̃ij , for the Coulomb potential.
However, the compensated pair densities ρ̃ii have a non-zero total charge, which leads to
an integrable singularity in periodic systems. For periodic systems, the problem is solved
by subtracting a homogeneous background charge from the pair-densities and adding a
correction term to the calculated potential afterwards [50, 53]. For non-periodic systems,
the Poisson equation is solved by adjusting the boundary values according to the multipole
expansion of the pair density.

Terms in the Coulomb matrix where either i or j refers to a core orbital can be reduced
to trivial functions of the expansion coefficients P a

in, Eq. (7). Although the valence-core
interaction is computationally trivial to include, it is not unimportant, and we will return
to the effect of neglecting it, as it is unavailable in pseudopotential schemes. The core-core
exchange is simply a constant energy that can be calculated once and for all for every
atom given the frozen core orbitals.

The Fock operator vF (r, r′) corresponding to the exact-exchange energy functional of
Eq. (49) is non-local, and it is difficult to represent on any realistic grid. Fortunately, in
the iterative minimization schemes used in GPAW the explicit form is never needed, but
it suffices to evaluate only the action of the operator on a wave function. By taking into
account the PAW transformation, the action on the PS wave function can be derived by
the relation.

fn
ˆ̃vF |ψ̃n〉 = ∂Exx/∂〈ψ̃n|, (55)

which results in

fn
ˆ̃vF |ψ̃n〉 = −

∑

m

fmṽnm(r)|ψ̃m〉 +
∑

a

∑

i

|p̃a
i 〉∆vFa[ṽnm, {P a

jm}]. (56)
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The computationally demanding first term is related to smooth pseudo quantities only,
which can be accurately represented on coarse grids, making it possible to do converged
self-consistent EXX calculations at a relatively modest cost. Applying the Fock operator
is, however, still expensive, as a Poisson equation must be solved for all pairs of orbitals.
The atomic correction ∆vFa depends both on ṽnm and on the set of expansion coefficients
P a

in. The details of the derivation as well as the exact form of the correction term can be
found in Ref. [54].

As a benchmark of the implementation, and for comparing the PBE and hybrid PBE0 [55]
functionals, we have computed the atomization energies of the G2-1 database of molecules
[56] using these two functionals. The results are compared to the experimental values as
well as to the results of the planewave PAW implementation VASP, and of the all-electron
atomic-orbital code Gaussian 03, as reported in Ref. [50].
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Figure 2: Calculated atomization energies using PBE (dotted) and PBE0 (solid) functionals

compared to experimental values (top) and to VASP (bottom). GPAW PBE0 values are not

geometry optimized (evaluated at PBE geometries)

The PBE0 functional includes a fraction (25%) of Fock exchange in PBE, which improves
the agreement with experiments significantly, as shown in Fig. 2. The figure shows also
that the different implementations deviate from one another by less than 0.05 eV on
average. The GPAW PBE0 energies are all slightly too small because they have not been
geometry optimized with the hybrid functional (they are evaluated at PBE geometries).

The importance of the valence-core exchange interaction for this test suite is typically a
few tenths of eV for the atomization energy, but can induce a shift of several eV in the
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eigenvalues of the frontier orbitals.

The difference in atomization energy between EXX evaluated using PBE orbitals and
self-consistent EXX orbitals is less than 13 meV on average suggesting that PBE and HF
orbitals are very similar. The difference in self-consistency is even less for PBE0. Also, for
the eigenvalues of the EXX (or PBE0) Hamiltonian the use of PBE orbitals has a small
effect, differences being less than 0.1 eV in the worst case (CO2).

3.3 GLLB approximation for the exact exchange

One drawback of the EXX approach is that the evaluation of the Fock operator is computa-
tionally quite expensive. Thus, it would be desirable to have computationally inexpensive
approximations to the exact exchange. One such approximation (GLLB) is provided in
Ref. [57], where the exchange potential vx is separated into a screening part vS and a
response part vresp,

vx(r) = vS(r) + vresp(r), (57)

and the two parts are approximated independently.

In the original work vS is approximated with the GGA exchange energy density ǫGGA
x of

Becke [58]

vS(r) =
2ǫGGA

x (r;n)

n(r)
. (58)

Using the common denominator approximation, exchange scaling relations and asymptotic
behaviour, the response part is approximated as

vresp(r) =
occ
∑

i

K[n]
√
εr − εi

|ψi(r)|2
n(r)

, (59)

where εr is the highest occupied eigenvalue. The coefficient K[n] can be determined for
the homogeneous electron gas, where it is a constant

K =
8
√

2

3π2
≈ 0.382. (60)

In addition to the above GLLB potential, we have implemented an extension (GLLB-
SC) which contains also correlation and is targeted more to solids [59]. Instead of the
exchange potential, the whole exchange-correlation potential vxc(r) is separated into two
parts. The screening part is approximated now with the PBEsol [60] exchange-correlation
energy density and the response part contains also contribution from the PBEsol response
potential,

vresp(r) =

occ
∑

i

K
√
εr − εi

|ψi(r)|2
n(r)

+ vPBEsol
resp (r). (61)

An important property of the exact exchange-correlation potential is the discontinuity at
integer occupation numbers N ,

∆xc = lim
δ→0

[vxc(r;N + δ) − vxc(r;N − δ)] . (62)
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The derivative discontinuity is especially important for the band gaps of semiconductors
and insulators, as the true quasiparticle band gap EQP

g is a sum of the Kohn-Sham band
gap EKS

g and the discontinuity [61, 62]

EQP
g = EKS

g + ∆xc. (63)

Neither LDA nor GGA potentials exhibit the discontinuity, which explains partly their
failure in reproducing experimental band gaps. On the other hand, in the GLLB and
GLLB-SC approximations one obtains an estimate for the discontinuity. As a result,
GLLB-SC gives good description for the band gap of several materials as shown in Table. 1.

Table 1: The minimum Kohn-Sham bands gaps for LDA and GLLB-SC together with derivative

discontinuity and the quasiparticle band gap of GLLB-SC. Experimental values are from Ref. [63].

All values are in eV.
Material EKS

g (LDA) EKS
g ∆xc E

QP
g exp.

C 4.09 4.14 1.27 5.41 5.48

Si 0.443 0.68 0.32 1.00 1.17

GaAs 0.36 0.79 0.25 1.04 1.63

AlAs 1.34 1.67 0.82 2.49 2.32

LiF 8.775 10.87 4.09 14.96 14.2

Ar 8.18 10.28 4.69 14.97 14.2

3.4 van der Waals functional

Van der Waals interactions are due to long range correlation effects that are not included
in GGA-type XC functionals. The recently developed functional which includes van der
Waals interactions [64] (vdW-DF) is available in GPAW.

The vdW-DF is a sum of a GGA exchange and a correlation term consisting of both
short-ranged correlation (evaluated in the local density approximation) and longer-ranged
correlation (depending nonlocally on the electron density) [65]:

Enl
c [n] =

1

2

∫

dr1dr2n(r)φ(q1r12, q2r12)n(r2), (64)

where φ(d1, d2) is the vdW-DF kernel, r12 = |r1 − r2| and q1 and q2 are the values of a
universal function q0(n(r), |∇n(r)|) evaluated at the two points r1 and r2. Instead of n,
we use the PS valence density ñ for the evaluation of Eq. (64). The justification for this
choice is that q0(r) has very high values close to the nuclei, and the vdW kernel φ(d1, d2)

in terms of the rescaled distances d1 = q1r12 and d2 = q2r12 will be quite short ranged
and therfore not important for studying interactions between atoms.

Evaluation of Enl
c [ñ] by direct summation in real-space has an operation count that scales

as N2
g (Ng is the number of grid points), which is often too time consuming for typical
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calculations. We have therefore implemented the fast Fourier transformation (FFT) tech-
nique introduced by Román-Pérez and Soler [66] where the scaling is Ng logNg. As an
example, a self-consistent vdW-DF calculation for water (64 molecules on 16 processors)
takes only 80 % longer than a self-consistent PBE calculation. Additional details of our
implementation can be found in Ref. [67].

3.4.1 DFT+U

In strongly correlated materials such as transition metal oxides, lanthanides or actinides
the strong on-site Coulomb interaction of the localized d or f electrons is not correctly
described by LDA or GGA. The basic idea behind the DFT+U method is to treat this
interaction with an additional Hubbard-like term. The strength of the on-site interactios
are usually described by semi-empirical parameters U and J . The GPAW implementation
is based on the particular branch of DFT+U suggested in Ref. [68] where only a single
effective Ueff = U−J accounts for the Coulomb interaction, neglecting thereby any higher
multi-polar terms.

Following Ref. [68], the DFT+U total energy is

EDFT+U = EDFT +
∑

a

Ueff

2
Tr(ρa − ρaρa), (65)

where ρa is the atomic orbital occupation matrix (AOOM).

In order to evaluate Eq. (65), a mapping between the wave functions and AOOM ρa
mm′

is required. This mapping can be written in terms of the density matrices Da
nℓm,n′ℓm′,

Eq. (10), and the AE atomic orbitals φa
nℓm as [69]

ρa
mm′ =

∑

n,n′

Da
nℓm,n′ℓm′〈φa

nℓm|φa
n′ℓm′〉.

The orbital quantum number ℓ is restricted to the orbital of interest and m restricted to
the associated magnetic quantum numbers. The n index refers to the nth projector of the
particular ℓ-channel. GPAW atomic setups have typically n ∈ (1, 2) where n = 1 is the
bound-state projector and n = 2 is unbound-state projector. Because of the latter, we
truncate the integration in 〈φa

nℓm|φa
n′ℓm′〉 at the augmentation sphere radius. The DFT+U

energy correction adds also a term to the Hamiltonian within the augmentation spheres,
∆Ha

i1i2
in Eq. (31), which is obtained by taking the derivative of Eq. (65) with respect to

Da
i1i2.

As an example, we show in Fig. 3 the calculated spin-magnetic-moment µ and the funda-
mental band gap ∆g of CoO and NiO with increasing values of the effective Hubbard Ueff.
The figure shows clearly that the DFT+U scheme improves the description of the strongly
correlated nature of the transition metal oxide. The calculations have been carried out
using the PBE exchange-correlation functional, a grid spacing of 0.16 Å and 8x8x8 k-
points in the Brillouin zone. In all calculations, the lattice constants are optimized with
pure PBE (Ueff = 0) with a grid spacing of 0.16 Å, the obtained values are 4.19 Å for
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Figure 3: Fundamental band gap ∆g (left) and the spin magnetic moment µ (right), for the

AFMII phase of NiO and CoO as a function of the applied Hubbard Ueff. a: L. Wang et. al. [70].

Experimental values are as cited in Ref. [71]. Two different experimental values are shown for

the spin magnetic moment.

NiO and 4.24Å for CoO. The corresponding experimental values are 4.17 Å and 4.25 Å
for NiO and CoO, respectively.

4 Error estimation

Density-functional theory is used extensively to calculate binding energies of different
atomic structures ranging from small molecules to extended condensed-matter systems.
A number of different approximations to the exchange-correlation energy have been de-
veloped with different scopes in mind and with different virtues. When it comes to the
practical use of DFT it is therefore usually very much up to the user to obtain experience
with the different xc-functionals and gain insight into how accurate the calculations are
for a particular application. This learning process can be rather slow and also for other
more general reasons it would be advantageous to have a reliable and unbiased way to
estimate errors on DFT calculations.

The error estimation implemented in GPAW is inspired by ideas from Bayesian statis-
tics [72]. The ingredients in a typical statistical model construction consist of 1) a database
with a number of (possibly noisy) data points which the model is supposed to reproduce
as closely as possible and 2) the model which is described by a number of parameters
which can be adjusted to improve the model. The quality of the model can for example
be estimated by a least-squares cost which is a sum over all data points of the squared
difference between the database value and the value predicted by the model. The cost
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thus becomes a function of the model parameters and minimization of the cost leads to
the best-fit model. (An important issue here is to control the effective number of pa-
rameters in the model to avoid over-fitting, but we shall not go into this here). So far
we have described a common least-squares fit. What the Bayesian approach adds to this
is the idea of not only a single best-fit model but an ensemble of models representing a
probability distribution in model space. Using the ensemble, the model no longer predicts
only a single value for a data point but a distribution of values which will be more or less
scattered depending on the ability of the model to make an accurate prediction for that
point.
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Figure 4: Left: Ensemble of enhancement factors as optimized to the experimental fragmentation

energies of 148 molecules. The thin black lines running parallel to the best fit mark the width of

the ensemble. The PBE and RPBE enhancement factors are also shown for comparison, s is the

reduced density gradient. Right: Fragmentation energies predicted with the best fit enhancement

factor versus the experimental values. The error bars are calculated from the ensemble in the

left panel.

In the case of GPAW, we have worked on providing error estimates for GGA-type cal-
culations. The model space is defined by a suitable parametrization of the exchange
enhancement factor fx, which enters the exchange functional as (see Ref. [73] for details)

Ex[n] =

∫

fx(s(r); θ) n(r) εunif
x (n(r)) dr .

Here, s is the reduced density gradient ∼ |∇n|/n, and θ our parametrization. The
database consists of the experimental fragmentation energies of 148 small molecules (from
the G2 neutral test set [56]). The left panel in Fig. 4 displays the resulting Bayesian ensem-
ble of enhancement factors in terms of some randomly drawn members. The enhancement
factor for the best-fit model is seen to resemble other commonly used enhancement factors
like PBE, and RPBE. It should be noted that for a typical Bayesian ensemble the spread
is governed mostly by the noise in the data points and the limitations in the number of
data points. In our case the noise in the experimental fragmentation energies is quite
small compared with a typical deviation between the experimental value and the best-fit
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value. This is an indication that our model space is incomplete, i.e. there is simply a
limit to how accurate a GGA-type functional can be. The width of the ensemble shown
in Fig. 4 is therefore controlled not so much by the noise as by the model incompleteness.

The ensemble can be used to estimate errors as also shown in Fig. 4. Here the calculated
fragmentation energies for the molecular database are shown together with the estimated
error bars versus the experimental values. The average of the predicted error bars squared
reproduces by construction of the ensemble the average value of the squared deviation
between experiment and best-fit model. The detailed transferability of the best-fit model
and the error predictions to other classes of systems is currently under investigation.

5 Time-dependent density-functional theory

Standard DFT is applicable only to the ground state properties of a system. However,
there are many properties of great interest which are related to the excited states, e.g.
optical absorption spectrum. Time-dependent density-functional theory (TDDFT) [3] is
the extension of standard DFT into the time-domain enabling the study of excited state
properties. There are two widely used formulations of TDDFT, the real-time propagation
scheme [74] and the linear-response scheme [75]; both of these are available in GPAW.
The details of the implementations are described in Ref. [51], and we present only a brief
overview here.

5.1 Real-time propagation

The time-dependent AE Kohn-Sham equation is

i
∂

∂t
ψn(t) = Ĥ(t)ψn(t), (66)

where the time-dependent Hamiltonian Ĥ(t) can include also an external time-dependent
potential. Assuming that the overlap matrix Ŝ is independent of time, this equation can
be written in the PAW formalism as

iŜ
∂

∂t
ψ̃n(t) = Ĥ(t)ψ̃n(t). (67)

This time-dependent equation can be solved using the Crank-Nicolson propagator with a
predictor-corrector step as described in Ref. [51].

5.2 Linear-response formalism

Within the linear-response regime, the excitation energies can be calculated from the
eigenvalue equation of the form

ΩFI = ω2
IFI , (68)

where ωI is the transition energy from the ground state to the excited state I and FI

denotes the associated eigenvector. The matrix Ω can be expanded in Kohn-Sham single

49



particle-hole excitations leading to

Ωijσ,klτ = δikδjlδστε
2
ijσ +

2
√

fijσεijσfklτεklτKijσ,klτ , (69)

where εijσ = εjσ − εiσ are the energy differences and fijσ = fiσ − fjσ are the occupation
number differences of the Kohn-Sham states. The indices i, j, k, l are state indices, whereas
σ, τ denote spin indices. The coupling matrix can be split into two parts Kijσ,klτ =

KC
ijσ,klτ + Kxc

ijσ,klτ . The former Coulomb matrix has exactly the same form as in the
context of exact exchange, Eq. (50)

KC
ijσ,klτ = (nijσ|nklτ) (70)

and is often called the random phase approximation part. It describes the effect of the
linear density response via the classical Hartree energy. The second contribution is the
exchange-correlation part

Kxc
ijσ,kqτ =

∫

dr1dr2 n
∗
ijσ(r1)

δ2Exc

δnσ(r1)δnτ (r2)
nkqτ (r2), (71)

where nσ is the spin density. The functional derivative can be calculated with a finite
difference scheme.

Diagonalization of the linear-response equation (68) gives directly all the excitation ener-
gies in the linear-response regime. As an example, Table 2 shows the calculated excitation
energies of a CO molecule together with reference calculations. The agreement between
our results and numerically accurate AE results [76] is generally good.

Table 2: Calculated excitation energies of CO molecule within the LDA approximation in eV.

Bond length is 1.128 Å

State Spin GPAW AE [76]

a 3
Π triplet 5.95 6.03

A 1
Π singlet 8.36 8.44

a’ 3
Σ

+ triplet 8.58 8.57

b 3
Σ

+ triplet 9.01 9.02

B 1
Σ

+ singlet 9.24 9.20

d 3
∆ triplet 9.25 9.23

I 1
Σ
− singlet 9.87 9.87

e 3
Σ
− triplet 9.87 9.87

D 1
∆ triplet 10.35 10.36

Within the time-propagation scheme, one obtains only the excitations corresponding to
a particular initial perturbation. Thus, different types of perturbations would be needed
to reach different excited states. In the case of a singlet ground state molecule like CO,
the often applied delta pulse perturbation (as introduced in the following section) can
lead only to dipole allowed singlet-singlet excitations. Therefore the triplet excitations
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and dipole forbidden singlet excitation at 9.87 eV do not appear in the time-propagation
scheme.

5.3 Optical absorption spectra

In the real-time formalism the linear absorption spectrum can be obtained by exciting
the system first with a weak delta pulse,

E(t) = ǫkoδ(t), (72)

where ǫ is a unitless perturbation strength parameter and ko is a unit vector giving the
polarization direction of the field. The delta pulse changes the initial wave functions to

ψ(t = 0+) = exp

(

i
ǫ

a0

ko · r
)

ψ(t = 0−). (73)

The system is then let to evolve freely and during the time-evolution the time-dependent
dipole moment µ(t) is recorded. At the end of the calculation, the dipole strength tensor
and oscillator strengths are obtained via a Fourier transform.

In the linear-response formalism one needs also the eigenvectors of Eq. (68) when calcu-
lating the absorption spectrum. Together with the Kohn-Sham transition dipoles

µijσ = 〈ψiσ| r |ψjσ〉 (74)

the oscillator strengths are given by

fIα =

∣

∣

∣

∣

∣

∣

fiσ>fjσ
∑

ijσ

(µijσ)α

√

fijσ εijσ (FI)ijσ

∣

∣

∣

∣

∣

∣

2

. (75)

The discrete oscillator strengths can be folded by a gaussian (as an example) for compar-
ison with the time-propagation calculation and experiments

Fig. 5 shows the calculated linear absorption spectra of a CH4 molecule. The agreement
between the completely different numerical schemes is remarkable.

Even though the time-propagation scheme is relatively time-consuming in small systems,
the favourable scaling with system size as well as the good parallelization possibilities
(described in more detail in Sec. 8) enable calculations also for large systems. As an
example, Fig. 6 shows the calculated optical spectra of Au25(S-CH3)18

−, Au25(S-CH2-
CH2-C6H5)18

−, and Au102(S-CH3)44. The shapes of Au25(SR)18
− spectra are similar to

experimental spectra in Ref. [77]. However, all features appear systematically at too
low energy. This is most probably due to ALDA approximation. The Au102(S-CH3)44

spectrum has less structure than the smaller clusters and it also shows a significant red
shift of 0.6 eV.
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Figure 5: Calculated optical absorption spectra of CH4 molecule presented as folded oscillator

strengths (FOS). The calculation is performed both with the time-propagation and the linear-

response method.

5.4 Non-linear emission spectra

The time-propagation approach can be used also in the non-linear regime where the linear-
response scheme is no longer applicable. For example, a strong laser field can introduce
non-linear terms in the polarizability of an atom or molecule. Fig. 7 shows the emission
spectra of Mg atom in laser field with frequency 0.5 eV and strength 0.01 and 0.05 atomic
units. Due to non-linear effects, harmonics of the laser field frequency appear at the odd
integer multiples of the driving field. The intensity depends nonlinearly on the strength
of the field. The harmonics at even integer multiples are forbidden by the symmetry. In
the simulated spectrum, weak even harmonics are observed due to numerical inaccuracies.
Compared to our earlier calculation with beryllium [51], the Mg spectra has less numerical
noise, which is because of the imaginary potential absorbing boundary conditions [78] used
in the calculation of Mg spectra.

5.5 Photoelectron spectra

The process of photoionization may be viewed in two different ways. In the simplest
interpretation, the single-particle states of Kohn-Sham DFT are directly connected to the
observed electrons in the experiment. Even though the orbital energies (except for the
highest occupied orbital) do not have rigorous physical meaning, they often give a very
reasonable description of the experimentally observed electron binding energies Ebind [79].

A more rigorous description of the photoelectron spectrum (PES) is available in the
many-body picture. The “daughter” system, after emitting the electron, is left either in
the electronic ground state or in an electronically excited state when the released electron
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Figure 6: Optical absorption spectra of Au25(S-CH3)18− (dashed magneta), Au25(S-CH2-CH2-

C6H5)18− (dash-dotted blue), and Au102(S-CH3)44 (solid green).

has reached the detector. The measured kinetic energy distribution of the ejected electron
is given by the difference between the ground state energy of the “mother” system EN

0

and excited state energies of the daughter system EN−1
I

Ebind = EN−1
I − EN

0 , (76)

where N denotes the number of electrons. The ground state energy and excitation energies
can be calculated with DFT and TDDFT, respectively. However, it is not only the
energies that determine the amount of electrons in the detector, but also the probability
for ionization, i.e. not all excited states of the daughter system can be reached by ionizing
the mother system.

In principle, one would need the many-particle wave-functions to be able to calculate the
transition probabilities, but these are not available in DFT. One can nevertheless create
an approximate scheme to calculate the overlaps [80]: The ground state wave functions
of daughter and mother systems are approximated by a single Slater determinant of the
occupied Kohn-Sham orbitals. The excited-state wave functions of the daughter states
are constructed via the weights FI (eq. 68) of the Kohn-Sham single orbital excitations.
With these approximations one can evaluate the spectroscopic factor fI , the energy inde-
pendent probability for the daughter system to end up in a given excited state I due to
photoemission.

We have implemented this scheme in GPAW. As an example, we have calculated the re-
sultant PES spectrum of H2O, CO and NH3. Figure 8 shows the comparison of the spec-
troscopic factors with experiments and the single particle Kohn-Sham approach, where
the spectroscopic factor is unity for each occupied orbital. Both the Kohn-Sham approach
and the linear-response TDDFT scheme give good agreement with experiment for lower
bound electrons. For peaks at high binding energies, there is a clear improvement by the
new scheme. In particular the “broadening” of the highest energy peak can not be de-
scribed by the Kohn-Sham single particle picture. Here many excitations of the daughter
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Figure 7: Non-linear emission spectra of Mg atom in a laser field of frequency 0.5 eV and strength

of 0.01 (solid blue) and 0.05 (dashed green) atomic units. Strong harmonic frequency generation

is observed at odd multiples of the laser field frequency.

system contribute to the peak.
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Figure 8: Experimental photoelectron cross sections (adapted from ref. [81]) compared with

spectroscopic factors from TDDFT and Kohn-Sham approaches.

6 Localized atomic-like basis functions

As an alternative to the grid-based finite-difference approach described above, GPAW
offers also the possibility to work with atomic-like basis functions, or linear combinations
of atomic orbitals (LCAO). A detailed description of GPAW’s LCAO implementation is
available in Ref. [82]. An LCAO basis function centered at atom a has the form

Φa
nℓm(r) = Ra

nℓ(|r− Ra|)Yℓm(r −Ra), (77)
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where Ra
nℓ is a radial function which vanishes beyond a certain cut-off radius, and Yℓm is

a spherical harmonic. By defining ν as the composite a, n, ℓ,m, a general PAW state i
can then be expanded as

ψ̃i =
∑

ν

CiνΦν(r), (78)

where Ciν are expansion coefficients.

The grid method and the localized basis complement each other very well. With the
grid-based scheme the complete basis set limit can be systematically reached while the
localized basis allows for fast calculations in situations where efficiency is more important
than high accuracy. Moreover, the localized basis is well suited for quantum transport
calculations, linear-scaling computation schemes, molecular dynamics simulations, as well
as for analysis purposes. The "multi-basis" feature of GPAW allows the user to switch
seamlessly between the accurate grid mode and the efficient LCAO mode at any point of a
computation. For example, the first part of a structural optimization could be performed
efficiently using the minimal localized basis while the final steps could be performed in the
"grid mode". To our knowledge GPAW is the first code combining localized basis functions
with the PAW method, and the first code supporting two different representations for the
Kohn-Sham orbitals within the same unifying DFT framework, that is, with exactly the
same set of approximations.

The LCAO implementation reuses most of what is implemented in the finite-difference
PAW method: calculation of electrostatic interactions, evaluation of the XC potential,
atomic PAW energy-corrections, density mixing and also most of the contributions to
the atomic forces are the same. It is only the evaluation of overlap integrals and matrix
elements of the kinetic energy operator that are done differently. Instead of calculating
integrals like 〈ψ̃n|Ŝ|ψ̃m〉, 〈ψ̃n|T̂ |ψ̃m〉, and 〈p̃a

i |ψ̃n〉 on a 3-d grid and using a finite-difference
representation for T̂ , we express these integrals in terms of two-center integrals of the
type: 〈Φµ|Φν〉, 〈Φµ|T̂ |Φν〉, and 〈p̃a

i |Φν〉, where Φµ are the atomic-like basis functions.
These integrals can be pre-calculated as described in Ref. [11].

Because of the much smaller number of degrees of freedom in a LCAO calculation com-
pared to a grid-based calculation, we can do a complete diagonalization in the subspace
of our basis set instead of being forced to use iterative diagonalization techniques.

A minimal atomic basis set consists of one modified atomic orbital for each valence state
– the single-zeta basis functions. First, localized atomic-like orbitals ΦAE are obtained for
each valence state by solving the radial AE Kohn-Sham equations for the isolated atom.
In order to ensure that the wave function vanishes beyond a certain cutoff radius, the
atom is placed in a suitably defined confining potential well [83]. The basis functions
are then obtained using Φ(r) = T −1ΦAE(r). The cutoff radius is selected in a systematic
way by specifying the energy shift ∆E of the confined orbital compared to the free-atom
orbital [84]. In this approach small values of ∆E will correspond to long-ranged basis
orbitals [82].

In order to improve the radial flexibility, extra basis functions with the same angular
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momentum ℓ (multiple-zeta) are constructed for each valence state using the split-valence
technique [11]. The extra function is constructed by matching a polynomial to the tail of
the atomic orbital, where the matching radius is determined by requiring the norm of the
part of the atomic orbital outside that radius to have a certain value.

Finally, polarization functions (basis functions with ℓ quantum number corresponding to
the lowest unoccupied angular momentum) can be added in order to improve the angular
flexibility of the basis. There are several approaches for generating these orbitals, such as
perturbing the occupied eigenstate with the highest ℓ quantum number with an electric
field using first order perturbation theory or using the appropriate unoccupied orbitals.
In GPAW we use a Gaussian-like function of the form rℓ exp(−αr2) for the radial part,
where ℓ corresponds to the lowest unoccupied angular momentum.

One of the most time consuming parts of a basis set calculation is the evaluation of matrix
elements of the effective pseudo-potential 〈Φµ|ṽ|Φν〉, which is done on a 3-d grid. For an
efficient evaluation of these matrix elements, it is important to have as short-ranged basis
functions as possible and to use as coarse grids as possible. For the latter, the PAW
method helps to make the basis functions and potentials smooth.

Table 3: Lattice constants, a, cohesive energies, Ec, and bulk moduli, B, for selected solids.

MAE denotes the mean absolute error of the double-zeta polarized (DZP) basis set with respect

to the grid based results.

a (Å) Ec (eV) B (GPa)

DZP GRID DZP GRID DZP GRID

LiF 4.10 4.06 4.52 4.24 70 80

C 3.58 3.57 7.89 7.72 422 433

Na 4.24 4.19 1.07 1.09 7.9 7.9

MgO 4.27 4.26 4.97 4.95 173 154

Al 4.07 4.04 3.54 3.43 79 77

NaCl 5.67 5.69 3.26 3.10 26 24

Li 3.43 3.43 1.63 1.62 16.3 14.2

SiC 4.41 4.39 6.48 6.38 202 211

Si 5.49 5.48 4.71 4.55 86 88

AlP 5.53 5.51 4.21 4.08 81 82

Fe 2.83 2.84 5.07 4.85 231 198

Cu 3.64 3.65 4.14 3.51 143 141

Pt 3.98 3.98 5.69 5.35 263 266

MAE 0.019 0.0 0.18 0.0 7.4 0.0

As an example, Table 3 shows the lattice constant, cohesive energy, and bulk modulus for
a range of solids calculated with double-zeta polarized (DZP) basis sets and compared to
the grid based results. The cutoff radii of the basis orbitals correspond to an energy shift
of 0.1 eV. The DZP values are in good agreement with the grid based values, in particular
for the structural properties, i.e. lattice constants and bulk moduli. Cohesive energies
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are more difficult to describe with a localized basis set. The primary source of error in
cohesive energies comes from the free-atom calculation, where the confinement of each
orbital raises the energy levels by around 0.1 eV. Thus, atomic energies are systematically
overestimated, leading to stronger binding

6.1 Non-equilibrium electron transport

Driven by the prospects of nano-scale electronics, the field of quantum transport has
developed rapidly over the last decade. In support of this development, GPAW supports
open- boundary finite-bias electron transport calculations with the LCAO basis. The
basic setting is that of a central device region (C) connected to two semi-infinite leads (L)
and (R). The leads are kept at fixed chemical potentials, µL and µR, to simulate an applied
bias voltage of V = (µL −µR)/e across the device region. Due to electronic screening the
electron potential inside the leads converges rapidly to the bulk value and this defines the
boundary conditions for the electrostatic potential inside C. Rather than obtaining the
wave functions from the eigenvalue equation we work with the Green function (GF) of
the central region defined by

G(z) = (zS −HC − ΣL(z) − ΣR(z))−1, (79)

where S and HC are, respectively, the overlap and Kohn-Sham Hamiltonian matrix of the
central region in the LCAO basis. The self-energies, ΣL/R, represent the coupling to the
leads and are obtained using the efficient decimation technique [85]. The electron density
matrix is given by

D =
1

2πi

∫ ∞

−∞

G<(ε)dε =
1

2πi

∫

C

G<(z)dz (80)

with the lesser GF defined by

G<(z) = G(z)(Σ<
L (z) + Σ<

R(z))G(z)† (81)

As indicated in the last equality of Eq. (80) the integral is performed along a complex
contour C. The equivalence of the two expressions follows from the analytical properties of
the Green function and residue calculus [86]. Away from the real axis the Green function
varies slowly with z and the integral can be efficiently evaluated using a Gauss-Kronrod
quadrature [87]. The non-equilibrium density is obtained from

ñ(r) =
∑

νµ

DνµΦν(r)
∗Φµ(r) +

∑

a

ña
c , (82)

where Φν and Φµ are the LCAO orbitals in the central region and Dνµ are the correspond-
ing matrix elements of the density matrix. The Poisson equation is solved on the real
space grid to obtain the electrostatic contribution to the effective potential ṽ in region C.
The boundary conditions for the Poisson equation at the C-L and C-R interfaces are given
by bulk potential of the leads (shifted by the applied bias voltage ±eV/2), while periodic
boundary conditions are used in the plane perpendicular to the direction of transport.
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The cycle D → ñ(r) → ṽ(r) → HC → D is iterated until self-consistency using Pulay den-
sity mixing. At self-consistency the current of a spin-degenerate system can be calculated
from [88,89]

I(V ) =
1

π

∫ ∞

−∞

(fL(ε) − fR(ε))Tr[ΓL(ε)G(ε+)ΓR(ε)G(ε+)†]dε, (83)

where ε+ = ε + i0+ and ΓL/R(ε) = i(ΣL/R(ε+) − ΣL/R(ε+)†) and the trace is taken over
the central region basis functions.

As an example, Fig. 9 shows the IV curve of a molecular junction consisting of a benzene
dithiol molecule attached to gold electrodes (see inset). We have used a DZP basis set
for the molecule and SZ basis for the Au, a total of 84 Au atoms in the central region,
and 4× 4 k-points in the surface plane (8 irreducible). A 2-d plot of the average effective
potential at a bias of 3 V is shown in the right panel. Although four Au layers are included
in the central region on both sides of the molecule, electronic screening limits the potential
drop to the molecule and outermost Au surface layer.

Figure 9: Left: Calculated IV curve for the Au/benzene-dithiolate junction shown in the inset.

Right: Effective potential at a bias voltage of 3 volts.

Let us finally mention some of the limitations of the DFT-based transport approach. It
has recently been shown that the energetic position of molecular electronic levels at a solid-
molecule interface can be substantially wrong in DFT due to self-interaction errors [90]
and the lack of dynamical screening [91–93]. This circumstance is expected to influence
the calculated conductance, in particular when the transport mechanism is off-resonant
tunneling which is the most commonly encountered case. In such cases DFT must be
considered to be only qualitatively correct while quantitative predictions require a many-
body description such as the GW approximation [94]. More fundamental problems are
encountered for weakly coupled and strongly correlated systems dominated by Coulomb
blockade and Kondo physics where the single-particle approximation breaks down [95,
96]. In the opposite regime, characterized by strong molecule-lead couplings, DFT has
been found to work surprisingly well and provides results in quantative agreement with
experiments [97, 98].
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7 Additional features

7.1 ∆ SCF

∆SCF [33, 99, 100] is a simple method for estimating excitation energies within DFT.
The acronym refers to the fact that the excitation energy is calculated as the difference
between two self-consistent calculations, one traditional ground state calculation and one
where an electron is constrained to a certain Kohn-Sham orbital as the system reaches
self-consistency. The method is formally justified only when the constrained orbital is the
lowest lying of its symmetry [101], but it is often applied in other situations with rea-
sonable success [33, 102–105]. GPAW implements a generalized version of ∆SCF, where
it is possible to constrain an electron to any linear combination of Kohn-Sham orbitals,
which is desirable for molecules on surfaces where the molecular orbitals hybridizes with
substrate states. A molecular orbital |α〉 can always be represented by a linear combina-
tion of Kohn-Sham orbitals if a sufficient number of unoccupied Kohn-Sham orbitals is
included in the calculation:

|α〉 =
∑

n

cn|ψn〉, cn = 〈ψn|α〉. (84)

The contribution to the PS electron density from this molecular orbital is then:

∆ñα(r) =
∑

m,n

c∗mcnψ̃
∗
m(r)ψ̃n(r), (85)

and the corrections to the atomic density matrices Eq. (10) are

∆Da
iii2

=
∑

m,n

c∗mcn〈ψ̃m|p̃a
i1
〉〈p̃a

i2
|ψ̃n〉.

The extra electron is usually taken from the Fermi level by simply requiring that the Fermi
distribution integrates to the number of valence electrons minus one, but it is possible to
introduce any specified hole according to the above description.

The contribution to the band energy from the excited state is given by

〈α|Ĥ|α〉 =
∑

m,n

c∗mcn〈ψm|Ĥ|ψn〉 =
∑

n

|cn|2εn. (86)

The linear combination in Eq. (84) is found by projecting the Kohn-Sham orbitals onto
a desired orbital in the self-consistency cycle. In GPAW this can be done in the two
different ways as described below.

7.1.1 Projector-pseudo wave function overlap

If the orbital to be kept occupied is an atomic orbital corresponding to a partial wave
(|α〉 = |φa

i 〉), then the overlaps in Eq. (84) can be approximated by

〈ψn|φa
i 〉 ≈ 〈ψ̃n|p̃a

i 〉, (87)
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which follows from Eq. (5) if we neglect overlap between atomic sites. This is a quick
and efficient way of obtaining the expansion coefficients cn, since the projector overlaps
Eq. (87) are calculated in each step of the self-consistence cycle anyway. The method is
easily extended to molecular orbitals by taking appropriate linear combinations of 〈ψ̃n|p̃a

i 〉.

7.1.2 AE wave function overlap

In principle one has access to the AE wave functions in the PAW formalism and thus it is
possible to resolve any molecular orbital exactly into Kohn-Sham orbitals. However, the
DFT PAW formalism works with the PS wave functions and these are the ones which are
immediately available in the GPAW code.

To find the overlaps cn = 〈ψn|α〉 one should start by performing a gas-phase calculation of
the molecule or atom which is to be used in an ∆SCF calculation. The PS wave function
|ψ̃α〉 corresponding to the orbital to be occupied is then saved along with the its projector
overlaps 〈p̃a

k|ψ̃α〉 and the ∆SCF calculation is initialized. In each step of the calculation
the AE overlap cn can then be obtained by

cn = 〈ψn|ψα〉 = 〈ψ̃n|ψ̃α〉 +
∑

a,i1,i2

〈ψ̃n|p̃a
i1
〉∆Sa

i1i2
〈p̃a

i2
|ψ̃α〉. (88)

Note that there is only a single sum over atoms (and only the ones in the molecule)
and that the cross terms of PS/AE wave functions do not contribute. Since the AE wave
functions are orthonormal, the squared norm of the coefficients sums to one,

∑

n |cn|2 = 1,
if the Kohn-Sham orbitals span the molecular orbital |α〉. If this is not the case, one has
to increase the number of unoccupied states in the calculation.

The expansion in Eq. (84) holds for each point in k-space so one has to use the same
k-points in the gas phase calculation and then calculate the overlaps for each k-point.

7.1.3 Application to CO on Pt(111)

In Fig. 10 we show the potential energy surfaces of CO on a Pt surface (1/4 monolayer)
in the ground state and in an excited state where the 2π∗ resonance is occupied. This
demonstrates how the minimum energy configuration in the resonance state is shifted with
respect to the ground state, which is interesting in relation to molecular motion induced
by hot electrons [102]. Fig. 10 also compares the projected density of states using the two
projection methods described in Secs. 7.1.1 and 7.1.2 and clearly shows that the methods
have the same qualitative features. However, the long high energy tail of the projector
overlap method is a symptom of the lower accuracy of this method and indicates that
the excitation energy will depend on the number of unoccupied bands included in the
calculation. In contrast, the AE overlaps approaches zero for high lying states and this
method can be converged in the number unoccupied bands. Finally, Fig. 10 shows the
charge redistribution due to the excitation. The 2π∗ orbital of the molecule is clearly seen
as well as an induced image charge on the surface.
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Figure 10: CO on Pt(111). Top left: Potential energy surfaces in the ground state and the 2π∗

resonance as a function of the CO binding distance and the molecules center of mass distance

to the surface. Top right: The change in charge distribution due to the excitation. Green:

more charge (0.02 a.u. contour), red: less charge (-0.02 a.u. contour). Lower: Density of states

projected onto the 2π∗ orbital of CO using the two projection methods described in Secs. 7.1.1

and 7.1.2.

7.2 X-ray absorption spectra

In a one particle picture, X-ray absorption (XAS) can be viewed as exciting a core electron
to an unoccupied orbital [106]. The absorption cross section is given by Fermi’s golden
rule:

σ(ω) ∝
∑

f

|〈ψf |e · µ|φa
c〉|2δ(Efc − ω) (89)

where |φa
c〉 is the core orbital, |ψf〉 are unoccupied orbitals, Efc is the eigenvalue difference

between orbitals c and f , e is the polarization vector of the incoming photon and µ is
the dipole operator. To account for core hole effects we use specially constructed PAW
setups with half or a full electron removed from the core orbital. The wave functions are
then relaxed in this potential [107]. Using the PAW transformation we can rewrite the
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expression for the cross section [108]

σ(ω) ∝
∑

f

|〈ψ̃f |φ̃a
c〉|2δ(Efc − ω) (90)

where |φ̃a
c〉 =

∑

i |p̃a
i 〉〈φa

i |e · µ|φa
c〉. In the above expression for the cross section a lot of

unoccupied states must be determined which is computationally demanding. This can be
avoided with the Haydock recursion scheme [109] which we have also implemented. Due to
the non-orthogonal PS wave functions in the PAW method the calculation of the recursion
coefficients involves the inverse overlap Ŝ−1 which cannot be explicitly computed. Instead,
the equation Ŝx = y is solved with the conjugate gradient method using an approximate
Ŝ−1 as a preconditioner [110]. The absolute energy scale is determined separately in a
∆SCF procedure where the total energy difference is computed between the ground state
and the first core excited state using a full core hole setup and an extra electron in the
valence band. ∆SCF transition energies depend strongly on the functional used [111],
mostly due to differing descriptions of the core electrons. The spectra discussed in the
following were calculated using the LDA functional, with the ∆SCF shifts computed using
the BLYP functional.

In Fig. 11 we show the calculated half core hole XAS-spectrum for the pyridine nitrogen
K-edge. A cubic box with 20 Å sides and a grid spacing of 0.2 Å was used with open
boundary conditions. The agreement with experiment and a calculation using the StoBe
code [112, 113] is good. Comparing the GPAW calculation to experiment the first peak
is 0.8 eV too low and the relative energy between the first peak and the sigma resonance
(408 eV in experiment) is about one electron volt too low.

Figure 11 shows also the calculated carbon K-edge XAS-spectrum of diamond both for
half and full core hole. A cubic super cell with 216 atoms was used with periodic boundary
conditions and the Brillouin zone was sampled at the Γ point. The grid spacing was set
to 0.2 Å. The spectrum was calculated with the recursion method using 6 × 6 × 6 k-
points and 2000 recursion coefficients. The full core hole spectrum is in good agreement
with [108], but has too much intensity near the onset of the spectrum compared to the
experiment [114]. Neither the half or the full core hole reproduces the first excitonic peak
of the experiment.

7.3 Wannier orbitals

The partly occupied maximally localized Wannier functions (WF) [115] are constructed
by doing an unitary rotation for the lowest states (fixed space), and using a dynamically
optimized linear combination of the remaining orbitals (active space). Both linear com-
binations are chosen such as to minimize the spread of the resulting Wannier functions.
The unitarity of the rotation in the fixed spaces implies that the eigenvalues of the Bloch
states contained in the fixed space can all be exactly reproduced by the resulting WF,
whereas the largest eigenvalues of the WF will not necessarily correspond to any “real”
eigenvalues.
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Figure 11: Left: Half core hole K-edge nitrogen spectrum of Pyridine. Spectrums shown are for

GPAW (blue), StoBe (green), and experiment (red). The GPAW spectrum shows the individual

oscillator strengths. Right: K-edge carbon spectrum of diamond. Spectrums shown are the half

core hole (blue), full core hole (green), abd experiment (red).

When constructing Wannier functions, the only quantities that need to be supplied from
the DFT calculation are the integrals ZG

n1n2
= 〈ψn1

|e−iG·r|ψn2
〉, where G is one of at

most 6 possible (3 in an orthorhombic cell) vectors connecting nearest neighbor cells in
the reciprocal lattice. When introducing the PAW transformation, this quantity can be
expressed as [115, 116]

ZG
n1n2

= 〈ψ̃n1
|e−iG·r|ψ̃n2

〉 (91)

+
∑

a

∑

i1i2

P a∗
i1n1

P a
i2n2

(

〈φa
i1
|e−iG·r|φa

i2
〉 − 〈φ̃a

i1
|e−iG·r|φ̃a

i2
〉
)

. (92)

Even for small systems, the phase of the exponential of the last integral does not vary
significantly over the augmentation spheres where φa

i and φ̃a
i differ. The integrals in the

last two terms can therefore safely be approximated by taking the exponential outside the
integrals as e−iG·Ra

.

An example of partly occupied Wannier functions constructed using the GPAW code is
shown in Fig. 12 (left) for a benzene molecule.

One can also, in the same sense as for the partly occupied Wannier functions, form a
linear combination of the Kohn-Sham Bloch states, spanning the occupied space exactly,
where the unitary rotation in the fixed space, and the linear combination of the active
space are chosen such that the overlap of the resulting wave functions with the projector
functions or the PS LCAO orbitals is maximized. This will result in a optimized single
zeta numerical basis set, which can be used for minimal basis set calculations. An example
of such localized optimized orbitals for benzene is shown in Fig. 12 (right). In this case
the resulting orbitals have been rotated to diagonalize the Hamiltonian in the subspaces
spanned by orbitals on the same atom. In GPAW, these functions are used as an efficient
minimal basis set for performing computationally demanding GW calculations [52].

The algorithm for constructing such localized functions is much faster, and more robust
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Figure 12: Left: Partly occupied WF; 6 C-H σ bonds, 6 C-C σ bonds, and 6 pz orbitals on C.

Right: Projected localized functions; 12 s orbitals on C and H respectively, and 3 p-type orbitals

on each C, one pz, one along the C-H bond, and one perpendicular to the C-H bond.

than the one for constructing the partly occupied WF, as it only involves some linear
algebra on the pre-calculated projections, and not an iterative maximization of a spread
functional. The procedure is described in more detail in Ref. [117].

An exact representation of the Kohn-Sham eigenstates in a minimal and maximally lo-
calized basis can facilitate orbital analysis [115].

7.4 Local properties

This section describes quantities that can somehow be related to a specific atom. As
the PAW transform utilizes an inherent partitioning of space into atomic regions, such
quantities are usually extractable from already determined atomic attributes, such as the
atomic density matrices or the projector overlaps.

The projector overlaps P a
in are simultaneous expansion coefficients of the PS and the AE

wave functions inside the augmentation spheres (see Eqs. (5) – (6)). They can therefore
be used both for reconstruction of AE wave function or densities, and for making a local
expansion in atomic orbitals.

7.4.1 Density partitioning

Charge redistribution during a chemical reaction can often be studied by assigning the
density distribution to the individual atoms. Formally, it is easy to reconstruct the true
AE density from the PS density and the atom projected density matrix via Eq. (13).

In GPAW, charge assignment can be done in several ways. One choice is to apply a
Wigner-Seitz scheme, where ñ(r) at each grid point is assigned to the closest atom. The
atomic PAW corrections in Eq. (13) can then be integrated on the radial grid, and added
for each atom.

In the Bader analysis [118], it is not possible to apply the algorithm to the PS density and
corrections separately, as the dividing surfaces might intersect the augmentation spheres.
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Thus, the AE density should be reconstructed on a single regular grid, which can also be
useful for other post-processing purposes. To accurately represent the peaked features of
the AE density, the PS density is interpolated to a grid with reduced grid spacing before
transferring the density corrections from the radial- to the uniform grid.

For the purpose of studying charge transfer, it can be advantageous to adjust the value
of the atomic corrections on the uniform grid at the grid point closest to each nucleus,
such that these integrate to the same value as on the more accurate radial grid. This does
not affect the determination of the dividing surfaces, but enforce the integral properties
of the reconstructed AE density within each domain.

In pseudopotential schemes, a reconstruction of the AE density is not possible, which
can cause problems if dividing surfaces and pseudization regions intersect. This is the
case for water, as illustrated in Fig. 13, showing the dividing surfaces of a water molecule
determined using the Bader program [119] and the reconstructed AE density from GPAW.

Figure 13: Contour lines for the PS (left) and reconstructed AE (right) densities of a water

molecule. While the PS density only has a single maximum, the AE density has one distinct

local maximum per atom, and a Bader partitioning scheme can be used to analyse charge transfer.

The AE density integrates to the total number of electrons.

7.4.2 Projected density of states

Given a set of states |ψn〉 with eigenenergies εn, the density of states projected onto a
state |α〉 is defined by

ρα(ε) =
∑

n

|〈α|ψn〉|2δ(ε− εn). (93)

If |α〉 is an atomic orbital which can be represented by a partial wave |φa
i 〉, the simplest

way to obtain the overlaps is to use the single center expansion of the AE wave function
Eq. (5), which gives 〈α|ψn〉 ≈ 〈p̃a

i |ψ̃n〉 when neglecting the overlap of φa
i with neighbouring

augmentation spheres. The method is easily extended to molecular orbitals by considering
superpositions of partial waves.

If the state |α〉 can be represented by a Kohn-Sham state |ψα〉 from a different calculation,
the PAW formalism allows one to obtain the AE overlaps exactly from Eq. (88). The
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difference in the two methods is illustrated for the case of the 2π∗ orbital of CO adsorbed
on Pt(111) in Fig. 10. A major advantage of the AE overlap method is that the projected
density of states is correctly normalized and one can obtain the fraction of an orbital
located below a given energy by truncating the sum in Ref. (93) at that energy.

8 Parallel calculations

Drastic performance improvements in desktop computers and supercomputers are nowa-
days being achieved through new CPU designs with high density of processing elements
(PEs). (Here we will use the terms cores, processors, and processing elements interchange-
ably). Thus, parallel computing is needed for utilizing this kind of hardware. The benefits
of parallelization are two-fold: firstly, a reduction in the time-to-solution, and secondly,
the capability to study larger problems. At present, parallelization of GPAW is accom-
plished using MPI; though with the advent of multicore CPUs fine-grained parallelism
with OpenMP or Posix threads is a likely future enhancement.

The real-space representation allows seamless distribution of the PS wave function ψ̃nkσ(rg)

over all wave function indices: band n, k-point, spin σ, as well as the grid-point g in-
dex. This is in sharp contrast to plane-wave basis codes which rely on the dual-space
technique [120] for iterative diagonalization, and are thus complicated by representing
the PS wave function in both real and reciprocal space. Parallelization over k-points and
spin is nearly trivial as these degrees are normally only coupled through electron density
(except in the case of EXX). The generalized eigenvalue problem, Eq. (29) can be solved
independently for each k-point and spin. However, as there are significant number of
k-points only in small periodic systems and spin only in magnetic systems, the scalability
accessible via k-point and spin parallelization is limited benefit for large systems.

The primary parallelization scheme in GPAW is the domain decomposition of the real-
space grid. The simulation box is divided among the PEs so that each subdomain has
approximately the same number of grid points. Due to the local nature of the finite-
difference Laplacian, communication is needed only between neighboring PEs when eval-
uating derivatives. The non-local parts of the PAW Hamiltonian also require only nearest-
neighbor communication: Calculating an integral involving a projector function, 〈p̃a

i |ψ̃n〉,
only involves contributions from those PEs that have grid points inside the augmentation
sphere of atom a.

The computation of the dense matrix diagonalization and Cholesky decomposition needed
for subspace diagonalization and orthogonalization scales as N3

e , where Ne is the number
of electronic states. For large systems with many electrons (Ne > 2000), these operations
can be excessively slow in serial and and must be performed in a parallel. In GPAW, we
use ScaLAPACK [121] to perform these dense linear algebra operations. In practice, a
small subset of the PEs is used for ScaLAPACK parallelization. As an example, in a 2048
core calculation with Ne ∼ 1800, ScaLAPACK diagonalizations is performed with only 16
cores ands takes a few percent of the total computing time. In our most recent release of
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GPAW, the associated dense linear algebra matrices, requiring O(N2
e ) storage, are fully

distributed so that very large problems Ne > 10000 can be treated.

Even though the real-space domain decomposition scales well, the ratio of computation
to communication decreases when number of PEs is increased (for a fixed problem size).
The limiting factor is the ratio Ng/Pd where Ng is the total number of grid points (propor-
tional to system size N) and Pd is the number of PEs used for domain decomposition. The
computational workload of the entire calculation scales as O(N3) (due to orthonormality
constraints and subspace diagonalization), so that in large systems additional paralleliza-
tion levels are necessary.

For large systems, domain-decomposition is combined with parallelization over the band
index. This is ideal in the case of real-time propagation TDDFT because different elec-
tronic states can be propagated independently of each other and communication is needed
only when summing for the electron density, similar to k-point and spin parallelization.
However, for a ground-state DFT calculation, the subspace diagonalization and orthogo-
nalization steps necessitate communication of all the electronic states on co-subdomains
(g index). The amount of data to communicate per PE is proportional to NgNe/(PdPe).
On the other hand, the relevant computational workload is proportional to NgN

2
e /(PdPe)

(where Pe is the number of band groups and PdPe equals to the total number of PEs).
In sharp contrast to the domain decomposition, where the communication is proportional
to surface area of the subdomain, parallelization over the band index introduces com-
munication which is proportional to the volume of the subdomain. Pe must be carefully
chosen so that the computation to communication ratio can be kept reasonable. Part
of the communication overhead can often be hidden by overlapping communication and
computation.

Optimal values of Ng/Pd and Ne/Pe depend a lot on the underlying hardware, but our
experience has shown that typical minimum values are Ng/Pd = 1000−8000 and Ne/Pe =

250 for ground state calculations, and Ne/Pe = 20 − 40 for real-time propagation. This
enables scaling to thousands of processors for large systems, as shown in Fig. 8. The
ground-state DFT calculation is a 102 Au atom cluster surrounded by 44 p-MBA molecules
[122] and the dimension of the system is ∼ 3 nm. There are total of 762 atoms on 1603

real-space grid and ∼ 1800 electronic states are included in the calculation. The real-time
propagation TDDFT is performed for a silicon cluster with 702 atoms on 1603 real-space
grid, the number of electronic states in the calculation is ∼ 1600.

When using the LCAO basis, the real-space domain decomposition is used when solving
the Poisson equation and in the evaluation of two-center integrals. Dense matrix diago-
nalizations can also be performed with the help of ScaLAPACK, and parallelization over
basis functions (equivalent of state parallelization in grid calculations) has been imple-
mented. Generally, the parallel scaling of LCAO calculations is not as good as that of grid
calculations, on the other hand the more modest memory requirement and computational
workload enable large LCAO-type calculations with smaller number of CPUs.

In some special cases, it is possible to introduce further parallelization levels. For example,
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Figure 14: Parallel scaling for ground state total energy calculation (left) and for real-time

propagation (right). The calculations are performed on a Cray XT5 systems at CSC and at Oak

Ridge National Laboratory. The speedup is normalized so that at the first data point (256 PEs

on left and 5000 PEs on right) the speed-up equals the number of PE’s.

in nudged elastic band calculations the total energies of the images are independent and
can hence be calculated in parallel. Also, when calculating optical spectra with real-
time propagation the calculations over different polarization directions (if required by
the symmetry of the system) can be performed in parallel. Finally, in linear response
TDDFT the construction of the Ω matrix, Eq. (69), can be performed parallel over the
electron-hole pairs. All these additional parallelization schemes are trivial and therefore
scale ideally.

9 Summary and outlook

As described in this article, GPAW is now a stable and fairly mature real-space realization
of DFT and TDDFT, based on the PAW method. In addition to the grid-based descrip-
tion, a localized atomic-orbital basis is available for fast computations of more limited
accuracy. Many features have been implemented including a wide range of exchange-
correlation functionals. The code is currently developed by an expanding group of devel-
opers situated primarily in Denmark, Finland, Sweden, and Germany with users from all
over the world.

GPAW is an open-source project with only a loose organization behind it and therefore
there exists no single long-term master plan for the further development of the code. The
implementations that take place are exclusively based on the needs of the researchers
working with the code and the whole project is therefore in the end carried by the enthu-
siasm of researchers at all levels. Among the features which are currently implement, we
mention the calculation of static response functions using density-functional perturbation
theory and more general calculations of dynamical response functions within TDDFT.
The calculation of forces as well as adiabatic and Ehrenfest dynamics are also being im-
plemented within TDDFT. Furthermore, there is ongoing-work to extend the number of
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atomic setups to include all elements through atomic number 86.

The GPAW code builds upon the Atomistic Simulation Environment (ASE) [123] which is
a set of python modules to facilitate setting up, running, and analyzing atomistic/electronic
calculations. The tight integration with ASE is expected to be maintained in the future.
This seems natural also from the point of view that the interest in ASE has increased
considerably the past few years so that ASE now supports about 12 different force and
energy calculators.

There are of course a number of other open-source projects focused on DFT/TDDFT such
as ABINIT, Quantum ESPRESSO, and Octopus. How does GPAW fit into this ”market”
of codes? The main feature which distinguishes GPAW is the combination of real-space de-
scription with the PAW method. The PAW allows for an accurate, essentially all-electron,
frozen-core description which leads to soft pseudo wave functions even for transition met-
als. The real-space description allows for easy and very scalable parallelization through
real-space decomposition making it possible to perform accurate calculations for large sys-
tems. Only time can tell which future developments will make their way into the GPAW
code but almost certainly they will benefit from the PAW accuracy and the real-space
parallelization.
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