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Abstract

In contrast to its original version that deals with the band structure of periodically or-

dered solids more or less like any other all-electron band structure method, the modern

version of the KKR (Korringa-Kohn-Rostoker) method represents the electronic structure of

a system directly and efficiently in terms of its single-particle Green’s function (GF). This

appealing feature and the wide applicability connected with it, is achieved by the use of

multiple scattering theory (MST) for the electronic structure calculations. The basic ideas

behind the resulting KKR-GF-method are outlined and the various techniques to deal with

the underlying multiple scattering problem are reviewed. The second part of the contribu-

tion presents various applications of the KKR-GF-method meant to demonstrate its great

flexibility and wide applicability. These should also reflect the many developments of the

KKR-GF-method or methods based on it, respectively, that were made during the last years

by many work groups.

7.1 Introduction

The KKR method for electronic structure calculations goes back to the work of Korringa [1],

and Kohn and Rostoker [2], who introduced the original version of the scheme for periodically

ordered solids. In contrast to other all-electron band structure methods based on the variational

principle the KKR starts from the Schrödinger equation formulated as an integral equation; i.e.

the Lippmann-Schwinger equation for Bloch states involving the free-electron Green’s function

G0(~r,~r ′, E). This was expected to lead to higher accuracy compared to other methods. The

ansatz for the Bloch wave function used within the KKR-method implies a minimal basis set

provided by energy and angular momentum dependent partial waves, with a corresponding low

dimension resulting for the eigenvalue problem. Since its introduction the KKR method has

been continuously further developed2 with its domain of application enormously widened. This

1present address: National Renewable Energy Laboratory, Golden, Colorado, USA
2In fact, the title of the contribution has been borrowed from a status report given on occasion of a conference

on band structure techniques in 1972 [3].
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is primarily based on the fact that the KKR scheme can be interpreted in terms of multiple

scattering theory (MST). This implies that the KKR method is not restricted to periodic solids

but can also be applied to finite systems as well, leading to Slater’s Xα-multiple scattering

method for molecules [4]. Although a minimal basis set is used, the KKR-method is numerically

quite demanding in practice because one has to evaluate the free-electron Green’s function

G0(~r,~r ′, E) in terms of so-called structure constants. Nevertheless, a rather efficient version of

the KKR-method could be implemented by Moruzzi, Janak, and Williams [5] who summarised

their results for pure elements in a well-known book [6]. However, as the KKR-method uses

energy-dependent basis functions its original version based on the variational principle does not

lead to a simple algebraic eigenvalue problem, but the energy eigenvalues have to be searched

by scanning the energy with zeros of the secular determinant indicating the eigenvalues. This

great drawback was removed by Andersen introducing the linear approximation for the basis

functions [7]. As a consequence the original KKR-method is rarely used anymore nowadays as

it was replaced by the LMTO (linear muffin-tin orbital) method as its linearised version.

This sounds like the fate of a prehistoric creature. This is by no means the case, as there is

another branch of developments on the KKR-method.3 It seems that it was Beeby who first

realized that the KKR-formalism or, equivalently, multiple scattering theory can be used to get

access to the Green’s function (GF) of the system under consideration [8], leading finally to

the KKR-GF-method. Representing the electronic structure in terms of the Green’s function

gives a large number of advantages as compared to the use of eigenvalues and eigenfunctions.

Beeby exploited these when considering properties of substitutional impurities in solids that

break the Bloch symmetry [8]. Another example is the treatment of disorder in alloys for

which Korringa [9] and Beeby [10] suggested the average t-matrix approximation (ATA). In

the following the basic ideas of the KKR-GF-method are sketched. In particular, the many

developments of the scheme that have been made during the last two or three decades are

reviewed. The various applications presented are meant to demonstrate the great flexibility of

the KKR-GF-method as it is used and further developed by many active groups throughout the

world.4 The close connection between the original version of the KKR and the LMTO-method

was already mentioned. Accordingly, the properties and features of the KKR-GF described will

in general also apply to the TB-LMTO-GF [11] and the EMTO [12] methods as these also supply

the electronic Green’s function. In fact, several developments of the KKR-GF-method go back

to corresponding work on these methods [11,13].

7.2 Basic idea of the KKR-GF method

The KKR method is based on a decomposition of a system (molecule, atomic cluster, solid etc.)

into atomic regions. Originally, this was done using the muffin-tin-construction (see Fig. 1). To

calculate the electronic structure of the total system, as a first step an atomic region is treated

as an isolated system embedded in a free-electron environment. Solving this single-site problem

in a non-relativistic way implies to calculate the angular momentum l- and energy-dependent

solutions Rl(r,E) of the radial Schrödinger equation for a given potential. In a next step the

3otherwise this contribution would end here
4See for example the website www.kkr-gf.org that was installed very recently.
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Figure 1: Central idea of multiple scattering theory: decomposition of electronic motion into

scattering at atomic sites and free-electron like propagation in between. The bottom of the

figure gives a sketch for the potential along the dashed line.

solutions inside the atomic regions are matched coherently with each other assuming a free-

electron like behaviour in the inter-atomic or interstitial region [14]. Obviously, matching can

be achieved only for certain energies corresponding to the energy eigenvalues of the system.

These are found by solving a secular equation expressed in terms of the properties of the radial

wave functions Rl(r,E) at the boundary of the atomic regions and a structural matrix G0 nn′

LL′ (E)

connecting atomic sites n and n′, with L = (l,m) representing the orbital angular momentum

and magnetic quantum numbers. Obviously, the eigenvectors to the secular equation together

with the radial functions Rl(r,E) determine the eigenfunction of the total system. The l-

dependency of the basis functions Rl(r,E)YL(r̂), with YL(r̂) a spherical harmonic, allows for a

chemically intuitive interpretation of the results and leads to a minimal basis set. For example,

for transition metals it is in general sufficient to use basis functions up to lmax = 2 rendering

the KKR-method a minimal basis set method. In addition, using numerical energy-dependent

basis functions obviously ensures corresponding accuracy for the eigenvalues and eigenfunctions.

The energy-dependency of the basis functions, however, leads to the great disadvantage that

the resulting secular equation does not correspond to an algebraic eigenvalue problem but the

eigenvalues have to be found by scanning the energy through an appropriate regime. For this

reason the original KKR-method as an eigenvalue scheme is hardly used any more nowadays for

self-consistent electronic structure calculations.

Instead of interpreting the scheme sketched above as a mere matching technique one can interpret

it in terms of multiple scattering theory. The potential connected with an atomic region gives

rise to scattering of an incoming electronic wave into an outgoing one. With the partial wave

functions Rl(r,E) available this can be represented by a phase shift δl(E) or in a more general

way by a corresponding single-site scattering t-matrix tnLL′(E). The free-electron like propaga-

tion between scattering centres is described by the free-electron Green’s function G0(~r,~r ′, E).

Within the adopted angular momentum representation this is expressed in terms of the struc-

tural Green’s function matrix G0 nn′

LL′ (E) already mentioned. The matching condition referred

to above, now corresponds to the requirement that the wave function coming in at an atomic

site has to be identical to the superposition of the waves outgoing from all other sites. This
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point of view not only gives access to the energy eigenvalues and eigenfunctions of the system

(see above) but also in a rather direct way to its single electron Green’s function G(~r,~r ′, E).

The main features of the resulting KKR-Green’s function (KKR-GF) method, that keeps all

attractive features of the original KKR-method but avoids the tedious eigenvalue search, are

reviewed in the following.

7.3 The single-site problem

Having chosen the decomposition of space (muffin-tin-, ASA- or Wigner-Seitz-construction), the

underlying Hamiltonian (non-, scalar- or fully relativistic) including a potential term (e.g. a

DFT-LSDA potential), the first step of any KKR-GF calculation is to seek the exact numerical

solution of the resulting single-site problem, i.e. the energy dependent scattering solution of the

given single electron Hamiltonian. For a spherical potential the corresponding solutions have

pure angular momentum character L. On the other hand, for aspherical (also termed “full”)

potentials centred at atomic sites n and represented by an angular momentum expansion [15–19]:

V n(~r) =

l
(V )
max∑

L

V n
L (r)YL(r̂) (1)

the potential terms V n
L (r) with L 6= (0, 0) lead to a coupling of angular momentum channels

and non- or scalar-relativistic solutions of the form

Rn
L(~r,E) =

lmax∑

L′

Rn
L′L(~r,E)YL(r̂) . (2)

The partial wave functions Rn
LL′(~r,E) have to be determined by solving a set of coupled radial

differential equations. This may be done directly or by making use of a Born series expansion

[18,20]. The latter approach is very efficient as it starts from a solution to the spherical part of

the potential and accounts for the non-spherical terms in an iterative way. For spin-polarised

systems and a collinear spin configuration assumed, calculations for spin up and down are

done subsequently for a spin-dependent scalar potential. For non-collinear spin configurations

it is advantageous to solve the single-site problem using a local frame of reference with its z-

direction along the magnetic moment of the considered atomic region [21]. If the variation of

the magnetisation direction within the atomic region can be ignored, the spin-dependent part of

the potential is diagonal with respect to the spin and one again has a standard spin-dependent

problem to solve. In case that the variation of the magnetisation is non-negligible the Born

series technique can be applied again starting from the solution to the collinear part of the

potential [22]. Obviously, the resulting solutions have no unique spin character any more.

Having solved for the wave functions up to a angular momentum cut-off, lmax, the single-site

t-matrix tnLL′(E) is obtained from the wave functions Rn
L(~r,E) at the boundary of the atomic

region. To set up the Green’s function G(~r,~r ′, E), the wave functions Rn
L(~r,E) are normalised

using the t-matrix giving the normalised wave functions Zn
L(~r,E), that are regular at the origin

[23]. In addition, an irregular wave function Jn
L(~r,E) has to be calculated in an analogous way

(see below), that fulfils certain boundary conditions at the surface of the atomic regime [23].

For fully relativistic calculations on the basis of the four-component Dirac formalism [24], the
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situation is completely analogous with the spherical harmonics YL(r̂) replaced by spin-angular

functions χΛ(r̂) (Λ = (κ, µ) with κ and µ the relativistic spin-orbit and magnetic quantum

numbers) and the radial wave functions Rn
L(~r,E) by the large and small components gn

κ(r,E)

and fn
κ (r,E), respectively [25]. Calculations for spin-polarised systems, however, become more

complicated now as the spin-dependent part of the potential breaks the full rotational symmetry

and leads to a coupling of partial waves as in Eq. (2) even if one restricts to spherical potential

functions (l
(V )
max = 0 in Eq. (1)) [26, 27]. In the most general situation the potential couples

not only to the spin but also to the orbital degree of freedom of the electron. This holds for

calculations within CDFT (current density functional theory) [28], if the Breit interaction is

included within fully relativistic calculations [29] or if correlation effects are treated by a scheme

going beyond standard LDA (see below). This situation can be dealt with in analogy to the spin-

dependent case leading to more terms to be considered for the set of coupled radial equations.

As long as the orbital-dependent terms do not change the symmetry, however, the number of

coupled wave functions (corresponding to the sum over L′ in Eq. (2)) does not change.

For situations in which the LDA or LSDA, respectively, seem to be inadequate, one may set up

the potential defining the single-site problem in a more sophisticated way. In the case of the non-

relativistic spherical implementation of the so-called local SIC (self interaction correction) [30,31]

this does not cause any technical problems as the potential becomes only l-dependent with no

coupling among the partial waves induced. For the OP (orbital polarisation) [32], the LDA+U

[33], as well as the DMFT (dynamical mean field theory) [34], on the other hand, the effective

potential depends on the m-character of the wave function in addition. This implies that the

corresponding single-site problem has to be dealt with on a full-potential level. In particular it

turns out that the additional potential terms occurring within the LDA+U and DMFT schemes

are strictly spoken non-local. For the DMFT, with the correlation effects represented by a self-

energy matrix ΣLL′(E), these become complex and energy-dependent dependent in addition [34].

When solving the single-site problem, obviously the entire complexity of the underlying geo-

metrical description and Hamiltonian (aspherical potential, non-collinear magnetism, spin-orbit

coupling, Breit interaction, non-local potentials within LDA+U or DMFT etc.) is accounted for.

Accordingly, the resulting regular and irregular wave functions Zn
L(~r,E) and Jn

L(~r,E) as well

as the corresponding single-site t-matrix tnLL′(E) carry all information on the complete Hamil-

tonian. The resulting single-site solutions could of course be used as numerical basis functions

within any all-electron method that determines energy eigenvalues and eigenfunctions on the

basis of the variation principle; as e.g. the LAPW, LMTO or ASW. Apart from few exceptions,

as for example in the spin-polarised relativistic case [35, 36], this is hardly done. Instead solu-

tions to a simplified scalar-relativistic single-site problem with a spherical potential are used in

general, dealing with all additional complexity of the Hamiltonian within the variational step.

7.4 Multiple scattering

With the single-site t-matrix available the next step of a KKR-GF calculation is to solve the

multiple scatting problem. This task can be solved very elegantly by using the scattering path

operator τnn′

introduced by Györffy and Stott [37], that transfers an electronic wave incoming

at site n′ into a wave outgoing from site n with all possible scattering events that may take place
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in between in a self-consistent way. Adopting an angular momentum representation (see above)

this requirement implies for the corresponding matrix the following implicit equation of motion

τnn′

(E) = tn(E) δnn′ + tn(E)
∑

k 6=n

G0 nk(E) τ kn′

(E) , (3)

with (τnn′

)LL′ = τnn′

LL′ etc. For a finite system this equation is solved straight forwardly by a

matrix inversion [38]:

τ(E) = [t(E)−1 − G0(E)]−1 , (4)

where M = [t−1−G0] is the so-called real-space KKR-matrix, with [τ ]nn′

= τnn′

, [G0]nn′

= G0 nn′

and [t]nn′

= tnδnn′ .5 Obviously, the dimension of the various matrices is determined by the

number of sites (atoms) in the system and the angular momentum cut-off lmax. For a non- or

scalar-relativistic formulation G0 can be calculated easily from analytical expressions. For the

fully relativistic case G0 is obtained from its non-relativistic counterpart by a simple Clebsch-

Gordan transformation [39]. For a finite system the solution to the multiple scattering problem

given by Eq. (4) is obviously exact. It is also useful if an extended system is approximated by

a finite subsystem as it is justified for example when dealing with EXAFS spectra [39, 40]. A

cluster representation of the atomic environment is also used within the locally self-consistent

multiple scattering (LSMS) method [41]. As each inequivalent atom is represented by its own

cluster or local interaction zone (LIZ), respectively, the method scales strictly with the system

size N leading to an Order-N method.

Dealing with a three-dimensional periodic system Eq. (3) can also be solved exactly by Fourier

transformation leading to [23]:

τnn′

(E) =
1

ΩBZ

∫

ΩBZ

d3k [t(E)−1 − G0(~k,E)]−1 ei~k(~Rn−~Rn′ ) , (5)

with the (reciprocal space) structure constants matrix G0(~k,E) being the Fourier transformed

of the real-space structure constants matrix G0(E). Accordingly, working on a fully relativistic

level G0(~k,E) is again obtained from its non-relativistic counterpart by a simple Clebsch-Gordan

transformation [42].

The KKR-matrix M(~k,E) = [t(E)−1 − G0(~k,E)] in Eq. (5) is identical to the secular matrix

occurring within the original KKR method. Accordingly, varying the energy E for the wave

vector ~k fixed M(~k,E) will indicate an eigenvalue E~k
by a jump of its phase. This interrelation

is the basis for Lloyd’s formula [43–46] that gives the integrated density of states N(E) in

terms of the imaginary part of the logarithm of the determinant of M(~k,E). This approach

can be applied not only to ordered and disordered (see below) solids [47, 48] but also to finite

systems [49]. It allows in particular to handle the single particle energy term within total energy

calculations in a very elegant way [48]. Closely connected with this, Lloyd’s formula gives a

very sound basis when dealing with magnetic properties, like the exchange coupling constants

Jij (see below), on the basis of the so-called magnetic force theorem [50,51].

The calculation of the structure constants matrix G0(~k,E) was for a long time the bottleneck

when applying the original KKR-method. However, several schemes have been developed for an

5The energy argument has been dropped here and in the following where appropriate.
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efficient evaluation of G0(~k,E) [5,52] allowing to calculate it on-the-fly with much less effort than

needed to invert the KKR-matrix M(~k,E). For systems having only two-dimensional periodicity

appropriate schemes have been developed as well to solve the corresponding multiple scattering

problem leading to the so-called layer KKR (LKKR) method [53, 54]. These are extensively

used when dealing with LEED [55] or angle-resolved photo emission (ARPES) [56] but also

for SCF-calculations for layered systems [54]. The numerical effort to deal with the Brillouin

zone integral in Eq. (5) or its two-dimensional counterpart can substantially be reduced if the

symmetry of the system is exploited. For this purpose a scheme was worked out to find the

non-zero matrix elements and to reduce the integration regime to the irreducible part of the

Brillouin zone [57]. The scheme is applicable in particular for the spin-polarised relativistic case

for which unitary as well as anti-unitary magnetic point group operations have to be considered.

In addition, it allows also to handle more complex Brillouin zone integrals involving products of

scattering path operators occurring in the context of linear response formalism (see below).

7.5 The single electron Green’s function and Dyson’s equation

Having solved the multiple scattering problem the retarded single-electron Green’s function

G(~r,~r ′, E) can be written as [23,58]:

G(~r,~r ′, E) =
∑

LL′

Zn
L(~r,E)τnn′

LL′(E)Zn′×
L′ (~r ′, E)

−
∑

L

[
Zn

L(~r,E)Jn×
L (~r ′, E)Θ(r′ − r)

+Jn
L(~r,E)Zn×

L (~r ′, E)Θ(r − r′)
]
δnn′ , (6)

where ~r (~r ′) lies in the atomic cell n (n′) representing cell-centred coordinates and × indicates

a so-called left-hand side solution [59]. If the spin of the electron is accounted for explicitly,

e.g. when dealing with non-collinear spin-configurations the Green’s function G(~r,~r ′, E) is a

2 × 2-matrix function [22]. In case of fully relativistic calculations using four-component wave

functions Zn
Λ(~r,E) and Jn

Λ(~r,E), respectively, G(~r,~r ′, E) is a 4 × 4-matrix function [29].

The expression for G(~r,~r ′, E) given in Eq. (6) follows in a natural way if multiple scatting

is represented by the scattering operator τ with a corresponding normalisation of the wave

functions (Bristol-Oak-Ridge convention). An alternative to this is to use the so-called structural

Green’s function matrix G instead that is related to τ by G = t−1τ t−1−t−1 together with regular

and irregular wave functions Rn
L(~r,E) and Hn

L(~r,E), respectively, normalised accordingly (Jülich

convention) [60].

With the Green’s function G(~r,~r ′, E) available all properties of interest can be calculated

straight forwardly. For example the particle density n(~r) and density of states n(E) are given

by:

n(E) = −
1

π
ℑTrace

∫

Ωn

d3r G(~r,~r,E) (7)

ρ(~r) = −
1

π
ℑTrace

∫ EF

dE G(~r,~r,E) , (8)

where the trace applies if G(~r,~r ′, E) is given in matrix form. It’s worth to note that for n(E) and

ρ(~r), needed for example within SCF calculations, only site-diagonal scattering path operators
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τnn are required. For a more detailed representation of the electronic structure than supplied by

the DOS n(E), the Bloch spectral function AB(~k,E) may be used that is defined as the Fourier

transformed of G(~r,~r ′, E) [58]:

AB(~k,E) = −
1

πN
ℑTrace

N∑

n,n′

eı~k(~Rn−~Rn′ )

∫

Ω
d3r G

(

~r + ~Rn, ~r + ~Rn′ , E
)

. (9)

Thus, AB(~k,E) can be seen as a ~k-resolved density of states function. For a perfectly ordered

system, in particular, AB(~k,E) is just a sum of δ-functions δ(E −E~k
) that represents the usual

dispersion relation E~k
.

Obviously, the KKR-GF method supplies all information on the electronic structure that may

also be supplied by any other band structure method that represents the electronic structure in

terms of energy eigenvalues and eigenfunctions. However, using the Green’s function from the

very beginning to represent the electronic structure provides a large number of advantages.

The definition of the Green’s function and all expressions given above is not restricted to real

energies E but also holds for arbitrary complex energies z.6 The fact that G(~r,~r ′, E) is analytical

[61] allows, in particular, to perform the energy integration in Eq. (8) on a contour in the

complex energy plane [62,63] with typically around 30 energy mesh points needed. This results

in an efficiency comparable to linear band structure methods without making use of the linear

approximation (with respect to the energy) for the basis functions [64].

One of the major benefits of working with the Green’s function G(~r,~r ′, E) is the use of the

Dyson equation:

G(~r,~r ′, E) = Gref(~r,~r ′, E) +

∫

Ωpert

d3r′′ Gref(~r,~r ′′, E)Hpert(~r
′′)G(~r ′′, ~r ′, E) . (10)

This equation allows to get the Green’s function G(~r,~r ′, E) of a system described by a Hamil-

tonian H = Href + Hpert in terms of the Greens function Gref(~r,~r ′, E) for a simpler reference

system described by Href and a perturbation Hpert. In fact, this equation supplies the formal

background for the scheme sketched above where the free-electron system supplies the reference

system, i.e. Gref(~r,~r ′, E) = G0(~r,~r ′, E), and the perturbation Hpert is given by the potential

V (~r) of the system to be considered.

The Dyson equation allows for many interesting situations to deal with the multiple scattering

problem in a very efficient way. Replacing the single-site scattering t-matrix of the real system by

t-matrices tTB that are derived from a repulsive potential one gets by solving the corresponding

multiple scattering problem the Green’s function GTB(~r,~r ′, E) for this artificial new reference

system. In contrast to the free-electron Green’s function G0(~r,~r ′, E), this new auxiliary Green’s

function GTB(~r,~r ′, E) decays very rapid in space, i.e. with increasing distance |~r − ~r ′|. As a

consequence the corresponding scattering path operator τTB nn′

is essentially zero if the distance

of sites n and n′ is greater than the next-nearest neighbour distance. Solving now the multiple

scattering problem for the real system using the Green’s function of the new reference system

6The symbol E will still be used in the following for the energy, without implying a restriction to the real axis.
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one gets for its scattering path operator τ the following set of equations [60]:

GTB = G0 [1 − tTB G0]−1 (11)

τ
∆

= [∆t−1 − GTB]−1 (12)

∆t = t − tTB (13)

G = (∆t−1) τ
∆

(∆t−1) − (∆t−1) . (14)

Because of the sparseness of the matrix GTB one has now a sparse matrix problem to deal

with as for the tight binding (TB) formalism. The main idea behind the resulting TB-KKR-

GF [60, 65] goes back to a similar scheme used within the TB-LMTO [66]. Analogous to this

case the TB-KKR-GF method becomes an order(N)-method with its numerical effort scaling

linearly with the system size if the structure of the system can be exploited [60]. Using an

efficient scheme to deal with the auxiliary TB-reference system, this allows to deal with systems

containing thousands of atoms [67].

So far the TB-KKR-GF has been primarily applied to two-dimensional periodic layered systems

for which a hybrid representation of the scattering path operator τ II′(~k‖, E) is used, with I and

I ′ layer indices and ~k‖ a vector of the corresponding two-dimensional reciprocal space. For a

given ~k‖ the multiple scattering problem with respect to the layer index has then a TB-structure,

that can be solved with established techniques [11,65].

As an example Fig. 2 shows results of TB-KKR-GF calculations for a Co mono layer on top

of a Pt(111) substrate. For the first calculation the substrate was approximated by a slab of
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Figure 2: Co-projected Bloch spectral function AB(~k‖, E) for a Co mono-layer on top of a Pt

(111) substrate. Left: a slab geometry with 38 atomic layers was used. Right: the Pt(111)

substrate was represented by a semi-infinite solid.

38 (111)-oriented Pt-layers. The Bloch spectral function AB(~k,E) projected onto the Co-layer

shown in Fig. 2 (left) can now be seen as a ~k‖-resolved partial DOS of Co. Obviously, it shows

many discrete bands that are caused by the spatial confinement imposed by the slab geometry.

Dealing with a Co-mono layer on top of a semi-infinite Pt(111) substrate instead, the artificial

confinement is removed and the spurious features of the local electronic structure are gone.
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7.6 Embedding of atoms clusters in a perfect host system

For the examples considered above the reference system for the Dyson equation is just a suitable

auxiliary system. Another important application of the Dyson equation is the embedding of a

perturbing subsystem into a host reference system. The most simple case is the substitutional

embedding of an impurity atom into an otherwise perfect three-dimensional periodic host, with

a perturbation of its neighbouring atoms. Because the impurity breaks the Bloch symmetry of

the system standard band structure schemes can handle the problem only by using the super

cell approach. To keep the interaction of neighbouring impurity cells negligible, large enough

super cells have to be used.

This problem can be completely avoided by making use of the Dyson equation. Dealing with

a metallic host the perturbation caused by a substitutional impurity is typically restricted to

few neighbouring atomic shells due to screening. The integration regime Ωpert in Eq. (10) can

be restricted accordingly. Representing the Green’s functions by means of multiple scattering

theory Eq. (6) the Dyson equation is transformed to an equivalent algebraic equation for the

scattering operator that can be solved easily:

τ imp = [(timp)−1 − (thost)−1 − (τhost)−1]−1 , (15)

where the site index of the matrices is restricted to the atomic sites within the regime Ωpert.

In Eq. (15) τhost is the scattering path operator matrix for the corresponding cluster of unper-

turbed host atoms with single site t-matrices thost. τ imp is the scattering path operator matrix

representing the embedded atom cluster with the substitutional impurity atom at the centre and

the single site matrices collected in timp. As mentioned, the size of the cluster can be restricted

typically to few neighbouring atomic shells around the impurity atom. For specific problems

much larger clusters may be necessary. An example for this is the investigation of satellites in

Cu-NMR that can be ascribed to Cu-atoms in the vicinity of a magnetic 3d-impurity atom. In

experiment signals from Cu-atoms up to the 6th neighbouring shell could be identified and con-

firmed by KKR-GF-based calculations [68]. Another example is an investigation of the so-called

giant magnetic moments caused by the spin-polarisation of Pd in the vicinity of an embedded

magnetic 3d-impurity atom. In this case even for clusters with 8 atomic shells around the im-

purity, containing 683 atoms all together, an appreciable polarisation of the Pd atoms on the

outermost cluster shell was found [69].

In Fig. 3 the first results of a more exotic application of the embedding scheme are presented.

The left part of the figure shows the electronic charge distribution around a vacancy in Al.

From this the corresponding potential seen by a positron was constructed [70] and a KKR-GF

calculation for the positron was performed subsequently. The right panel of Fig. 3 shows the

corresponding DOS for the positron on the vacancy and the neighbouring Al sites. As one

can see a bound state for the positron emerges that is localised on the vacancy site. From the

DOS for the neighbouring Al sites it is clear that the positron state is not completely restricted

to the vacancy regime but spills out over the neighbouring sites. In fact, only about 63 % of

the positron charge is localised at the vacancy site. The corresponding charge distribution for a

single positron trapped on the vacancy site shown in the middle panel of Fig. 3 demonstrates this

as well. It should be noted that the lifetime of the positron that can be measured in experiment
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Figure 3: Left: electronic charge distribution n−(~r) around a vacancy in fcc-Al showing the

charge depletion at the vacancy site. Middle: charge distribution n+(~r) for a single positron

trapped in the vacancy regime. Right: DOS n+(E) for the positron on the vacancy and Al sites

of the neighbouring two atom shells, respectively. The δ-like peak for the bound positron state

is smeared out to a Lorentzian line due to the use of complex energies with a corresponding

imaginary part.

is determined by the overlap of the positronic and electronic charge distributions [70]. As it

is obvious from the results shown in Fig. 3 the lifetime of the positron will be modified if an

additional impurity atom becomes nearest neighbour to the vacancy. In fact, positron life time

measurements are a well established experimental tool to investigate impurity-vacancy dimers

that play a very important role for metallurgical properties [70].

The embedding scheme described above is of course not restricted to three-dimensional bulk

systems as a host but can be applied straight forwardly to clusters deposited on a substrate.

This was demonstrated by many investigations on the magnetic properties of transition metal

clusters deposited on various substrates [71–74]. As a corresponding example Fig. 4 shows a

pyramid-shaped cluster of Fe- and Pt-atoms with a fcc-like structure deposited on a Cu (001)-

substrate. The table next to the figure gives the spin and orbital magnetic moments resulting

Cu
Fe
Pt

free supported

µspin µorb µspin µorb

Fe top 3.016 0.206 3.004 0.195

Pt middle 0.356 0.083 0.296 0.067

Fe base 2.622 -0.019 2.322 0.003

Figure 4: Pyramid-shaped FePt-cluster with a fcc-like structure deposited on a Cu (001)-

substrate. The table gives the spin and orbital magnetic moments for the deposited cluster

as well as for a free cluster with the same structure.

from a fully relativistic KKR-GF calculation. The table gives in addition results of corresponding

calculations for a free FePt-cluster that has the same structure as the deposited one and that

has been treated by the real space version of the KKR-GF method for finite systems. As one

notes the resulting spin moments for the Fe atoms are quite high and similar to that for bulk
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FePt with CuAu structure. For the Fe-atom at the top of the pyramid the moments in both

cluster systems are more or less the same implying that the substrate has very weak influence

in the case of the deposited FePt cluster. For the Fe-atom in the middle of the basal plane of

the clusters there is an appreciable difference however. As one would expect on the basis of the

Stoner-criterium for spontaneous spin magnetism, the spin moment is smaller for the deposited

cluster due to bond formation with the substrate and a corresponding increase of the d-band

width for the Fe-atoms in the basal plane.

There are many more applications of the KKR-GF embedding technique to surface nano struc-

tures containing up to several hundreds of atoms. In particular the influence of adatoms and

embedded impurity atoms on the surface electronic structure was studied in detail this way [75].

Another interesting example is the investigation of quantum corrals [76] and the occurrence of

so-called mirages induced by enclosed magnetic impurity atoms [77]. Several investigations were

devoted to the exchange coupling within a magnetic nano structure (see below) or the coupling

of magnetic adatom moments via the substrate [78]. For finite anti-ferromagnetic nano wires

deposited on a ferromagnet, the so-called even-odd effect was studied be means of non-collinear

calculations showing the central importance of the number of atoms in the wire for its magnetic

ground state [79]. The KKR-GF embedding scheme is applicable without modification to any

other two-dimensional system. An example for this are half-infinite electrodes separated by

vacuum and connected by a single wire [80,81]. In the case of magnetic wires non-collinear spin

structures as well as their transport properties have been investigated even in a fully relativistic

way [82].

For most KKR-GF-based embedded cluster calculations it was assumed so far that the cluster

atoms occupy substitutionally perfect lattice sites of the host systems; this implies that possible

lattice relaxations have been ignored. However, this is not a necessary restriction as various

schemes have been worked out to account for lattice relaxations within KKR-GF calculations

for embedded systems. For relatively small relaxations in the order of few percent the Green’s

function of the host reference system can be re-expanded around the shifted atomic positions by a

so-called U-transformation [83,84]. This has been applied with great success for bulk systems [84]

as well as surface systems [85]. In case of more pronounced shifts of the atomic positions or

when dealing with interstitial impurities an auxiliary sub lattice can be introduced [86–88]. In

addition, a scheme has been developed that allows to embed clusters with a structure completely

unrelated to that of the host system as it occurs for example when dealing with segregation in

a bulk material [89,90].

7.7 Treatment of chemical disorder

Dealing with disordered substitutional alloys the chemical disorder destroys obviously the Bloch

symmetry even if a perfect underlying lattice is assumed. Using a standard band structure

method this situation can again be handled only by making use of the super cell technique.

This implies that one is restricted to concentrations that can be represented by stoichiometric

compounds and that one has to use large super cells if the concentration of one of the components

in the alloy is low. In addition, one has to average over several atomic configurations in the

super cell to get the configurational average corresponding to the disordered state.
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Attempts to construct a configurationally averaged wave function for a disordered solid does

not seem to be very sensible [14]. Seeking for the configurational average of the electronic

Green’s function, on the other hand, makes sense and various schemes have been suggested for

this purpose in particular on the basis of multiple scattering theory [14]. Obviously construc-

tion of a configurational average is most simple if any correlation concerning the occupation of

neighbouring sites is ignored i.e. short-range order is excluded and a random distribution of the

components is assumed with the alloy composition being the only restriction. On the basis of

this single-site approximation Korringa [9] and Beeby [10] suggested to represent a disordered

alloy by a single-site t-matrix tATA that is obtained by the concentration-weighted average over

the components; e.g. tATA = xAtA + xBtB for a binary disordered alloy AxA
BxB

. This average

t-matrix approximation (ATA), however, leads to a Green’s function that does not guarantee

a positive definite DOS for real energies. This problem could be removed in a mathematically

sound way by the Coherent Potential Approximation (CPA) of Soven [91] that introduces an

auxiliary CPA medium by demanding that embedding one of the components into the CPA

medium should reproduce in the concentration average the properties of the CPA medium.

This central idea of the CPA is represented by Fig. 5. Expressing it in terms of the KKR-GF

xA + xB =

Figure 5: Basic idea of the Coherent Potential Approximation (CPA): the embedding of one of

the components of an alloy AxA
BxB

into the CPA-medium should not change its properties if

the concentration-weighted average is taken.

formalism this means that the average should cause no additional scattering compared to the

CPA-medium [92]:

xAτA nn + xBτBnn = τCPA nn . (16)

In line with the single site approximation the component projected scattering path operator

matrices τα (α = A,B) are given by Eq. (15) with the CPA-medium as a host and the cluster

size reduced to the single central atom. Eq. (16) imposes implicitly a condition to be met by

the single-site t-matrix tCPA of the CPA-medium. In addition, tCPA has to lead to the CPA

scattering path operator τCPA nn, e.g. via Eq. (5). Due to this implicit definition of tCPA it has

to be calculated by solving these so-called CPA equations iteratively starting from a reasonable

guess as e.g. tCPA
start = tATA [93]. The resulting description of the configurational average via tCPA

and τCPA nn is the best solution that can be achieved on the basis of the single-site approximation.

It can be shown, in particular, that the CPA is exact up to fourth order in the scattering t-

matrices with respect to the CPA medium [91].

Within the combined KKR-GF-CPA scheme the Green’s function for the alloy is given by the

concentration weighted average according to Eq. (16) with [14]:

G(~r,~r ′, E) =
∑

α

xα Gα(~r,~r ′, E) , (17)

with the component projected Green’s function Gα given by Eq. (16) using the component-

projected τα nn′

and specific wave functions Zα and Jα. The expression makes clear that the CPA
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provides an averaged but component specific information on the electronic structure as it may

be probed by element-specific experimental techniques like NMR, Mößbauer spectroscopy [94]

or XAS (x-ray absorption spectroscopy) [95].

Since its first successful numerical implementation [96] the KKR-GF-CPA scheme was applied

with great success to many different alloy systems. In particular using the Bloch spectral function

AB(~k,E) for the discussion of the electronic structure of disordered systems [58] turned out to

be very useful. As an example the top row of Fig. 6 shows results for the Bloch spectral function

AB(~k,E) of ferromagnetic fcc-Fe0.2Ni0.8 as a function of the energy and wave vector ~k ‖ [100] [97].

The uppermost plot gives the total Bloch spectral function while the plots below give its minority

Figure 6: Top row: Gray-scale representation of the Bloch spectral function AB(~k,E) (in atomic

units) for fcc-Fe0.2Ni0.8 with ~k ‖ [100] and the magnetisation ~M ‖ [001]. The white background

corresponds to AB(~k,E) = 0, while the black regions represent AB(~k,E) ≥ 50 a.u.; i.e. the

cusps of AB(~k,E) have been cut for a more resolved representation. The column in the middle

and at the end of a row give AB(~k,E) decomposed into their minority and majority spin part,

respectively. Bottom row: AB(~k,E), but for the energy fixed to the Fermi energy EF and ~k

lying in the (010)-plane; i.e. the horizontal axis gives the component of ~k perpendicular to ~M ,

while the vertical axis gives that parallel to ~M [97].

and majority spin contribution. As one notes for the selected concentration the spectral function

resembles very much the dispersion relation E~k
of pure Ni. However, due to the disorder in the

alloy the curves are smeared out implying that the wave vector ~k is not a good quantum number

any more. In addition, one notes that the impact of disorder is much more important for the

minority than for the majority spin channel. This is because the resonance of the d-states of

Fe and Ni is very close to each other for the majority band while – due to the different local

exchange splitting – they are shifted against each other for the minority spin channel. The same
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behaviour can be seen for the plots in the bottom row of Fig. 6 that represent the Fermi surface

of the alloy. The width and variation of the Bloch spectral function at the Fermi level can be

used to deduce a ~k-dependent life time τ~k
of the electrons and a corresponding group velocity v~k

.

This has been exploited by Butler and Stocks to calculate the residual resistivity of AgxPd1−x

on the basis of the Boltzmann formalism (see below) [98].

In the middle column of Fig. 6 one notices very weak features that correspond to the majority

spin spectral function. This mixing of the spin channels is caused by spin-orbit-coupling that has

been accounted for by performing spin-polarised fully relativistic calculations. For the transport

properties of ferromagnetic alloys this spin-mixing has important consequences as is gives among

other rise to the galvano-magnetic properties; i.e. the anomalous magneto-resistance (AMR) and

the spontaneous Hall-effect (SHE) [99,100].

As mentioned before, the CPA is a single-site theory and for that reason does not give direct

access to features in the electronic properties caused by short-range order (SRO). Nevertheless,

as was demonstrated by Györffy and Stocks [101], SRO phenomena may be investigated in terms

of concentration waves. Another route is to investigate the electronic structure of clusters with

specific configurations embedded into the CPA-medium [102]. This embedded cluster method

(ECM) has been used for example to study the variation of the nuclear spin lattice relaxation

time of Cu and Pt in CuxPt1−x [103] and of the hyperfine fields of Fe and Ni in fcc-FexNi1−x

alloys [104] with their local environment. In all cases it turned out that the average over all

investigated configurations agrees very well with the CPA-result.

It should be stressed that the CPA is not restricted to deal with chemical disorder in three-

dimensional alloy systems but can be used for inhomogeneous systems as well. Important exam-

ples for the latter are the inter diffusion at interfaces [105–107] and surface segregation [108] for

which one has to deal with a layer dependent concentration profile. Also in case of finite systems

as free and deposited alloy clusters [109] the CPA has been applied successfully. Furthermore,

exploiting the alloy analogy the CPA scheme was transferred to deal with the thermal fluctu-

ations of magnetic moments in ferromagnets leading to the disordered local moment (DLM)

scheme [110, 111]. Within a non-relativistic approach the single-site averaging leads for the

paramagnetic state of a pure ferromagnet effectively to a binary alloy that has components with

their moments oriented up and down, respectively, having each a concentration x = 1/2. An

extension of the DLM to layered systems allowed to determine the magnetic ordering temper-

ature for 3 and 7 layers of Fe on Cu(100) as a function of the Cu coverage in very satisfying

agreement with experiment [112]. Recently, corresponding work was done for rare earth systems

revealing the magnetic ordering tendencies as a function of the volume and the c/a-ratio [113].

In this case correlation effects were accounted for by making use of the local SIC [30]. Combining

local SIC and CPA causes obviously no conceptual or technical problems within the KKR-GF

formalism because both schemes make use of the single-site approximation. The same holds

for the combination of the CPA used to deal with disordered alloys and the LDA+U [33] or

DMFT [34,114] to account for correlation effects beyond LSDA – as long as the latter schemes

are used on a site-diagonal, i.e. single-site level.

In spite of the great success of the CPA many more sophisticated schemes have been worked

out in the past to avoid the single-site approximation and to include SRO effects directly within
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the primary electronic structure calculation [14]. Recently, a cluster extension of the single-

site CPA – called non-local CPA (NL-CPA) – was suggested that is based on ideas borrowed

from averaging techniques developed in many body theory [115,116]. As Fig. 7 shows the basic

idea of the NL-CPA is very similar to that of the CPA: embedding a cluster with given atomic

configuration into the NL-CPA medium should not change its properties if the average over all

possible configurations of the cluster is taken. Within multiple scattering formalism this can be

P1 P2+ + + . . .  =P3

Figure 7: Basic idea of the non-local CPA (NL-CPA): embedding a cluster with given atomic

configuration into the NL-CPA medium should not change its properties if the average over all

possible configurations of the cluster is taken.

expressed again by the corresponding scattering path operators:

∑

config γ

Pγ τ
γ

= τNL−CPA , (18)

where the site index of the matrices runs over all sites within the cluster. The summation in Eq.

(18) is performed over all possible atomic configurations γ of the cluster with the probability

Pγ . For a completely disordered system the probabilities Pγ are all the same, but they differ if

ordering or clustering occurs.

Fig. 8 shows results for the spin and orbital magnetic moment of Pt in disordered fcc-Fe0.5Pt0.5

as obtained by the NL-CPA [117]. For these calculations clusters with Nc = 4 atoms on the
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Figure 8: Spin (left) and orbital (right) magnetic moment of Pt in fcc-Fe0.5Pt0.5 as obtained

by the NLCPA. The various data points show the moments for individual sites of all occurring

cluster configurations for Nc = 4 as a function of the occupation of the cluster by Fe and

Pt atoms, respectively. The horizontal lines represent the average NLCPA result, that nearly

coincides with the CPA result [117].

fcc-lattice have been used; i.e. 24 configurations have been considered. The various data points

give the moments as a function of the number of Pt atoms within the cluster (1-4). One notes

that the induced Pt spin moment increases if the number of Fe atoms in the cluster increases

(from the right to the left). For the spin moment obviously only the number of Fe atoms in
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the cluster matters, i.e. the specific geometrical arrangement of the atoms within the cluster is

more or less unimportant. For the orbital magnetic moment, on the other hand, that is very

sensitive to the electronic structure at the Fermi level, the specific geometry matters as well as

it is reflected by finding different moments for a given number of Fe atoms in the cluster.

There are already several further developments based on the NL-CPA and interesting corre-

sponding applications to be found in the literature that demonstrate the great potential of this

new scheme [116,118,119] (see also below).

7.7.1 Magnetic Anisotropy and Exchange interaction

Magnetic anisotropy denotes the dependency of the total energy of a system on the orientation of

its magnetisation. For transition metal systems the magnetic anisotropy energy is usually split

into a contribution, connected with the spin-orbit coupling and one associated with the dipole-

dipole interaction of the individual magnetic moments [120, 121]. The latter one ∆Edip(n̂, n̂ ′)

is treated classically by evaluating a corresponding Madelung sum [121, 122]. The magnetic

anisotropy energy ∆ESOC(n̂, n̂ ′) connected with spin-orbit coupling, on the other hand, is de-

termined by total energy calculations with the magnetisation oriented along directions n̂ and n̂ ′,

respectively, and taking the difference. Obviously, for both orientations a full SCF calculation

has to be performed. This can be avoided by making use of the so-called magnetic force the-

orem that allows to approximate ∆ESOC(n̂, n̂ ′) by the difference of the single particle or band

energies for the two orientations obtained using a frozen spin dependent potential [120]. This

simple scheme has been used among other things for surface layered systems. In particular for

Fen/Au(001) it was found that the spin-orbit coupling term ∆ESOC(n̂, n̂ ′) and the dipole-dipole

term ∆Edip(n̂, n̂ ′) are of the same order of magnitude leading to a change from out-of-plane to

in-plane anisotropy if the number n of Fe layers is increased above three [121]. By decomposing

the band-energy via the DOS in a layer-resolved way the anisotropy energy ∆ESOC(n̂, n̂ ′) could

be decomposed accordingly [123]. A corresponding analysis of ∆ESOC(n̂, n̂ ′) shows in general

that the dominating contributions originate from interface or surface layers, respectively.

An alternative to the calculation of ∆ESOC(n̂, n̂ ′) via the total energy or the force theorem is to

consider the torque exerted on a magnetic moment when the magnetisation is tilted away from

its equilibrium orientation (easy axis). Using multiple scatting theory the torque component

with respect to a rotation of the magnetisation about an axis û can be expressed as [124]:

T n̂
αû = −

1

π
ℑ

∫ EF

dE
∂

∂αû

[
ln det

(
t(n̂)−1 − G0

)]
. (19)

The great flexibility of this approach has been demonstrated by investigations on the temperature

dependence of the magnetic anisotropy energy of L11-ordered FePt alloys [125]. Another example

for its application are investigations on small deposited Fe clusters on a Pt(111) substrate [126].

Calculating the magnetic moments and anisotropy energies for various cluster sizes, the input

necessary to simulate the magnetisation curves M(B) for ensembles of Fe clusters could be

supplied. Fig. 9 shows the results for two different temperatures compared with experimental

data [126]. Obviously, the calculations based on Eq. (19) lead to a parameter set that is in very

satisfying accordance with experiment.
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Figure 9: Experimental magnetisation curves M(B) (dots) of an ensemble of Fen (n=1,2,3)

clusters on Pt(111) measured at T = 6 K for an orientation of the magnetic field M(B) along

the easy axis ẑ(θ = 0◦) and rotated by θ = 65◦ with respect to that. The full lines give

corresponding theoretical results obtained on the basis of the calculated properties of Fen clusters

and the Langevin formula. The dashed line is obtained by including in addition Fe4 clusters in

the simulation [126].

The expression for the magnetic torque given above is derived by considering the change of the

single-particle energies if all magnetic moments change their orientations the same way. If only

two moments change their relative orientation the corresponding change in the energy ∆Eij can

be expressed in an analogous way. As was shown by Lichtenstein et al. ∆Eij can be expressed

very elegantly within multiple scattering theory by making use of Lloyd’s formula [51]. If ∆Eij

is expressed to lowest order with respect to the orientation angle of the moments m̂i and m̂j, one

gets a one-to-one mapping of the exchange coupling energy ∆Eij to the Heisenberg Hamiltonian

H = −
∑

ij Jij m̂i · m̂j, with the coupling constants Jij given by [51]:

Jij = −
1

4π
Im

∫ EF

dE Trace
(

t−1
i↑ − t−1

i↓

)

τ ij
↑

(

t−1
j↑ − t−1

j↓

)

τ ji
↓ . (20)

This expression for the isotropic exchange coupling has been used extensively to supply the input

for subsequent Monte-Carlo simulations on the basis of the Heisenberg Hamiltonian. This hybrid

approach offers a realistic route to investigate magnetic properties at finite temperatures and

has been applied with great success for bulk [127–129], layered [130–132], one-dimensional [133]

as well as finite cluster systems [134,135].

If spin-orbit coupling is accounted for the exchange coupling parameter in the Heisenberg Hamil-

tonian has to be replaced by a corresponding tensor:

H = −
∑

i6=j

m̂iJ ij
m̂j +

∑

i

K(m̂i) (21)

= −
∑

i6=j

Jijm̂i · m̂j −
∑

i6=j

m̂iJ
S
ij
m̂j −

∑

i6=j

~Dij · (m̂i × m̂j) +
∑

i

Ki(m̂i) . (22)

with the single-site magnetic anisotropy represented by the term K(m̂i). In Eq. (22) the coupling

tensor J
ij

has been decomposed in the standard way into its isotropic part Jij , its traceless

symmetric part JS
ij

and its anti-symmetric part that in turn is represented in terms of the

so-called Dzyaloshinsky-Moriya (DM) vector ~Dij . A corresponding generalisation of the non-

relativistic expression forJij given in Eq. (20) to its relativistic tensor form was worked out by
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Udvardi et al. [136]. An alternative expression, that offers several advantages, is given by [137]:

J
αiαj

ij = −
1

π
ℑ

∫

dE Trace ∆V αi τ ij ∆V αj τ ji , (23)

with

∆V αi

ΛΛ′ =

∫

d3r Z×
Λ (~r)β σαB(r)ZΛ′(~r) . (24)

The expressions given above have been applied recently to a number of cluster systems [138,139]

with the interest focussing on the impact of the DM-interaction. For Fe, Co, and Ni dimers on

Pt(111) it was found for example that the DM-interaction leads to a tilting of the individual

magnetic moments in the dimer in spite of the pronounced out-of-plane anisotropy and a strong

ferromagnetic isotropic exchange coupling. Another system studied was an FePt cluster on

Pt(111) that has rows of Fe atoms separated by Pt atoms (see Fig. 10). The left panel of Fig. 10
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Figure 10: Left: Temperature dependence of the thermally averaged Fe moment mFe(T ).

Around T = 25 K the transition from non-collinear low-temperature structure caused by the

Dzyaloshinsky-Moriya interaction to the ordered ferromagnetic structure occurs. Right: Mag-

netic structure of Fe43Pt48 cluster for three different temperature range: non-collinear (T = 1 K),

ferromagnetic (T = 50 K) and disordered paramagnetic (T = 100 K) [139].

shows the thermally averaged Fe moment mFe(T ) as a function of the temperature T that was

obtained from Monte-Carlo simulations on the basis of the generalised Heisenberg Hamiltonian

in Eq. (21). For high temperatures, one starts in the paramagnetic regime with the individual

moments randomly oriented as it is shown by the snapshot for T = 100 K. With decreasing

temperature the strong isotropic exchange coupling leads to a ferromagnetic alignment of the

moments within each Fe row (see snapshot for T = 50 K). Below around T = 25 K the Fe-rows

get coupled with their average moment tilted against each other due to the DM-interaction.

It should be emphasised that Eq. (21) is an approximate mapping of the complicated energy

landscape E({m̂i}) of a system calculated in an ab-initio way onto a simplified analytical ex-

pression. This implies corresponding limitations [138] in particular due to the use of the rigid

spin approximation (RSA) [140]. A coupling tensor of the same shape as in Eq. (21) occurs for

the indirect coupling of nuclear spins mediated by conduction electrons. In this case the above

mentioned restrictions do not apply. As a consequence the linear response formalism on the

basis of the Dyson equation can be used without restrictions to determine the corresponding

nuclear spin – nuclear spin coupling tensor [141].
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7.7.2 Magnetic response functions

The Green’s function formalism supplies a natural basis for investigations on the response of a

system to an external perturbation via the Dyson equation (10). Inserting the Dyson equation

repeatedly into itself one obtains for the Green’s function Gpert of the perturbed system a power

series with respect to the perturbation Hpert expressed in terms of the Green’s function Gref of

the unperturbed reference system. Keeping only the first order term one ends up with the linear

response of the system to the perturbation:

Gpert(~r,~r ′, E) = Gref(~r,~r ′, E) +

∫

Ωpert

d3r′′ Gref(~r,~r ′′, E)Hpert(~r
′′)Gref(~r ′′, ~r ′, E) . (25)

Considering for example the perturbation caused by a static magnetic field Bext along the z-axis

the corresponding perturbation Hpert(~r) may be written as:

Hpert(~r) = βσz µBBext + βl̂z µBBext
︸ ︷︷ ︸

Zeeman

+ ∆V xc(~r) + ∆V H(~r)
︸ ︷︷ ︸

induced

. (26)

Here a relativistic formulation has been adopted with β standing for one of the standard Dirac

matrices. The first two terms represent the Zeeman-type coupling of the external magnetic

field to the spin and orbital angular momentum of the electrons, while the remaining terms

represent the changes of the exchange-correlation (xc) and Hartree (H) potential induced by the

perturbation. For non-magnetic solids the last term can usually be ignored. Focusing in this

case on the spin magnetisation mspin(~r) induced by Bext the second term can also be omitted if

the influence of the spin-orbit coupling is neglected. Expressing now mspin(~r) as well as ∆V xc(~r)

in terms of Gpert(~r,~r ′, E) using Eq. (26) one ends up with an implicit equation for mspin(~r) that

in turn is linear with respect to Bext. Accordingly, one gets a corresponding equation for the spin

susceptibility χspin with the term connected with ∆V xc(~r) giving rise to the Stoner-enhancement.

This scheme was used to arrive at a formulation for the Stoner-enhanced spin susceptibility

that accounts for the influence of spin-orbit coupling and that is applicable also for disordered

alloys [142]. Later it was extended to include also orbital contributions giving rise to the Van-

Vleck-susceptibility χVV as well as spin-orbit cross-terms [143]. In an analogous way the NMR

Knight-shift in metals was formulated accounting for all spin and orbital contributions [144].

Dealing with spontaneously magnetised solids the last term in Eq. (26) has also to be included. In

addition the Fermi energy may be shifted due to the perturbation. Including these modifications

gives access to the high-field susceptibility χHF of ferromagnetic solids [145]. In Fig. 11 results of

corresponding calculations for the alloy system bcc-CoxFe1−x are shown. For the Fe-rich regime

of the system the experimental data are obviously reproduced quite well by the theoretical

results. For the region around x = 1/2 agreement is less satisfying. However, accounting for

partial ordering in the system in this regime, that may be expected because the equilibrium

structure for x = 1/2 is the CsCl-structure, agreement between theory and experiment is again

very good. The right panel of Fig. 11 shows the contribution of the spin susceptibility to the

total high-field susceptibility of bcc-CoxFe1−x. As one notes, the partial susceptibilities of Fe and

Co are quite different and give rise to the concentration dependence of the total susceptibility

(left panel). In addition one can see that the spin susceptibility is only a minor contribution to

the total susceptibility that is dominated by its orbital Van-Vleck-contribution. The latter one
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Figure 11: High-field magnetic susceptibility χHF of bcc Fe1−xCox alloys: Total susceptibility

(left); green circles correspond to randomly disordered alloys, while blue squares correspond to

’partially ordered’ alloys. Experimental data are given by filled circles; (right) Element-resolved

contributions to the spin magnetic susceptibility χspin of Fe and Co in disordered Fe1−xCox [145].

is more or less concentration independent and is accompanied by an appreciable Landau-type

contribution χLan. Here, it should be noted that Hpert given in Eq. (26) does not give access to

χLan. However, as was shown by Benkowitsch and Winter [146] for the non-relativistic case, χLan

can be determined by starting from a spatially oscillating magnetic field ~B~q(~r) and considering

the coupling of the orbital current density to the corresponding magnetic vector potential ~A~q(~r).

A corresponding relativistic formulation suitable for magnetic solids was used to calculate χLan

included in the total high-field susceptibility χHF given in Fig. 11.

The formalism sketched here is not restricted to a static perturbation. Corresponding work on

the frequency and wave-vector dependent dynamic spin susceptibility has been done for example

on pure Pd on a non-relativistic level [147].

7.7.3 Transport properties

Another important field for the application of linear response formalism is electronic transport.

As mentioned above, Butler and Stocks demonstrated the use of the KKR-GF-CPA to calculate

the residual resistivity of disordered alloys on the basis of the Boltzmann formalism [98]. Later

on an expression for the electronic conductivity of alloys was developed by Butler on the basis

of the Kubo-Greenwood formalism and the KKR-GF-CPA that allows to express the elements

of the symmetric conductivity tensor σ in terms of the auxilary conductivities σ̃µν [148]:

σ̃µν = −
4m2

π~3Ω






∑

α,β

∑

L1,L2
L3,L4

xαxβJ̃αµ
L4,L1

(z2, z1)

[

{1 − χω}−1 χ

]

L1,L2
L3,L4

J̃βν
L2,L3

(z1, z2)

+
∑

α

∑

L1,L2
L3,L4

xαJ̃αµ
L4,L1

(z2, z1)τ
CPA 00
L1,L2

(z1)J
αν
L2,L3

(z1, z2)τ
CPA 00
L3,L4

(z2)




 , (27)

with z1(2) = EF ± iǫ. Here the quantities Jαµ
LL′ are matrix elements of the µ-component of

the current density operator ~j for the alloy component α, with J̃αµ involving in addition the

component projected scattering path operators τα. The term χ stands for a sum over all
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scattering path operators τCPA 0n
L,L′ (z1)τ

CPA n0
L′′,L′′′ (z2) with n 6= 0 and the expression in curly bracket

accounts for the so-called vertex corrections.

Results of a corresponding application to disordered AgxPd1−x are shown in Fig. 12 [149]. The
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Figure 12: Left: Residual resistivity in disordered AgxPd1−x alloys as a function of the concen-

tration x. Results are shown obtained on the basis of the CPA and NL-CPA including (VC) and

excluding (no VC) the vertex corrections. Experimental results are shown in addition. Right:

Residual resistivity in disordered bcc-CuxZn1−x alloys as a function of the concentration ob-

tained using the NL-CPA. Results are shown including (SRO) and excluding (no SRO) atomic

short-range order together with corresponding experimental data [149].

calculations have been performed with and without inclusion of the so-called vertex corrections.

As one notes these have an impact on the residual resistivity only on the Ag-rich side of the

alloy system. In addition, one finds that the experimental data are reproduced quite well by

the calculations implying in particular that the single-site CPA is completely sufficient to deal

with the residual resistivity of randomly disordered alloys. This is also confirmed by calculations

based on the NL-CPA formalism [149]. As Fig. 12 shows corresponding results are indeed in

very good agreement with the resistivity obtained by using the CPA.

In addition, Fig. 12 shows the residual resistivity in disordered bcc-CuxZn1−x alloys as a function

of the concentration obtained using the NL-CPA including the vertex corrections [149]. Assum-

ing a random distribution of the alloy components a simple parabolic variation of the resistivity

with concentration is found. On the other hand, assuming SRO according to the CsCl-structure

within the NL-CPA cluster a pronounced reduction in the resistivity is found as it is expected

from the corresponding experimental data that are also shown in Fig. 12.

The scheme to implement the Kubo-Greenwood (KG) equation for disordered alloys sketched

above (see Eq. (27)), can also be used to introduce a layer-resolved conductivity σII′ appropriate

for two-dimensional periodic systems [150–152], with I and I ′ being layer indices. This approach

was later extended to finite frequencies [153,154] supplying a suitable basis for investigations on

the spin-orbit induced magneto-optical Kerr-effect of magnetic surface layer systems [153, 155,

156], that can show a pronounced enhancement of the Kerr rotation as a function of the layer

thickness. As an alternative to the Kubo-Greenwood formalism, transport in two-dimensional

systems may also be described in terms of a layer-resolved conductance gII′ introduced within

the framework of the Landauer-Büttiker (LB) formalism [157,158]:

gII′ ∝

∫

d~k‖
∑

n∈I
n′∈I′

Trace
[

Jn Gnn′

(~k‖, EF)Jn′

Gnn′†(~k‖, EF)
]

, (28)
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with the matrix elements of the perpendicular component of the current density operator ~j:

Jn
ΛΛ′ =

1

Vn

∫

Sn

d2rRn×
Λ j⊥ a⊥ Rn

Λ′ . (29)

The Kubo-Greenwood and Landauer-Büttiker approaches have been used extensively to inves-

tigate the giant magneto resistance (GMR) [159–161] and the tunnelling magneto resistance

(TMR) [162–165] of FM/SP/FM trilayer systems consisting of ferromagnetic (FM) leads sepa-

rated by a non-magnetic metallic or insulating, respectively, spacer (SP). Corresponding studies

were dealing among other with the influence of the relative orientation of the magnetisation in

the magnetic leads [160,166] or spin-flip processes due to spin-orbit coupling [165]. Correspond-

ing results of relativistic calculations for the conductance g of the trilayer system Fe/n(GaAs)/Fe

with Ga-termination are shown in Fig. 13 [165] for the magnetisation in ([110]) and out-off ([001])

plane. Although for both geometries the magnetisation of the magnetic leads are parallel, there
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Figure 13: Left: conductance g of the trilayer system Fe/n(GaAs)/Fe with Ga-termination for

the magnetisation in ([110]) and out-off ([001]) plane. Right: sketch for the in (bottom) and

out-off (top) plane geometry. Middle: first type of tunnelling anisotropic magneto resistance

(TAMR) for the full spin-orbit coupling (exact SOC) and for the spin-orbit coupling suppressed

for the interface layers (SOC off I).

is a pronounced dependence of the conductance on the orientation of the magnetisation due

to spin-orbit coupling. The middle panel of Fig. 13 shows that the corresponding tunnelling

anisotropic magneto resistance (TAMR) can be as large as 200 % for a thin GaAs-spacer. The

fact that the TAMR is caused by spin-orbit coupling can be demonstrated very easily. In addi-

tion to the TAMR for the full spin-orbit coupling (exact SOC) results for the spin-orbit coupling

suppressed for the interface layers (SOC off I) are shown in addition in the middle panel of Fig.

13. The drop of the TAMR by nearly a factor 2 reflects the central role of the hybridisation

at the Fe/GaAs-interface for the TAMR. This gets even more important for a second type of

TAMR that can be observed even with only one magnetic layer present [167]. Fig. 14 shows the

corresponding set up for a Fe/(GaAs)/Au trilayer system with the magnetisation of the Fe lead

in plane. Rotating the magnetisation in the plane changes the hybridisation at the interface due

to spin-orbit coupling and gives rise to a corresponding variation of the conductance with the

rotation angle. As Fig. 14 shows, the experimental results [167] for this second type of TAMR

are reasonably well reproduced by the calculations [168]. Again the central role of spin-orbit
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coupling can easily be demonstrated by model calculations with the strength of the spin-orbit

coupling manipulated.

The transport theory for layered systems presented above can be applied more or less directly to

lead/wire/lead systems. Corresponding investigations accounted in particular for the influence

of spin-orbit coupling and a non-collinear spin configuration within the wire [82]. The effect of

a finite bias voltage on the TAMR was already investigated using the sketched linear response

schemes [164]. A more general description can be achieved by use of the steady state Keldysh

or non-equilibrium Green’s function approach. A first implementation of this numerically quite

demanding scheme within the KKR-GF formalism could already be presented [169,170].

7.7.4 Electron Spectroscopy

When dealing with electron spectroscopies multiple scattering theory offers especially great ad-

vantages compared to any other scheme for electronic structure calculations. A most prominent

example is EXAFS (extended X-ray absorption fine structure) [171]. An adequate theoretical

description has to deal with matrix elements with respect to the electron-photon interaction op-

erator with a tightly bound core state and an extended final state involved. As the final state lies

in the energy range of about 50 – 1500 eV above the Fermi level, the energy-dependence of the

final state wave function cannot be ignored. For the same reason non-dipole contributions to the

matrix element may become important. The finite life time of the final state caused by various

relaxation processes is usually accounted for by a corresponding complex and energy dependent

self-energy Σ(E) [172]. Finally, the influence of the environment of the absorber atom on its

electronic structure has to be included in a transparent way – again up to very high energies.

All these requirements are met by applying multiple scattering theory to a finite cluster centred

at the absorber atom. In particular a connection of the oscillations observed in an EXAFS spec-

trum and the atomic configuration around the absorber atom can be established in a transparent

way. A similar situation occurs for many other core level spectroscopies [39,40,173,174].

In the case of a crystalline solid most detailed information on its electronic structure can be
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obtained by use of angle-resolved photo emission spectroscopy (ARPES) applied to the valence

band. An appropriate theoretical description of ARPES is supplied by the so-called one-step

model of photo emission that expresses the photo electron current j~qλ
~kms

(Ef) by making use of

Fermi’s golden rule [56,175–177]:

j~qλ
~kms

(Ef) ∝ ℑ

∫

d3r

∫

d3r′
[

T φLEED
~kms

(~r,Ef)

]†

X~qλ(~r)

G(~r,~r ′, Ei) X†
~qλ

(~r ′)T φLEED
~kms

(~r ′, Ef) (30)

with

φLEED
~kms

(~r,Ef) = Ξmse
i~k~r +

∫

d3r′ G(~r,~r ′, Ef)V (~r ′) Ξmse
i~k~r ′

. (31)

Here the initial valence band states at energy Ei are represented by the Green’s function G(Ei).

The final state at energy Ef = Ei + ~ω – a so-called time-reversed LEED-state – is constructed

on the basis of the Lippmann-Schwinger-equation involving the Green’s function at energy Ef ,

Ξms represents the spin part of the free-electron wave function charcaterized by the quantum

number ms and T is the time reversal operator. Finally, X~qλ(~r) is the electron-photon interaction

operator for radiation with wave vector ~q and polarisation λ.

Again evaluating the expression for the photo electron current by means of multiple scattering

theory allows to account in an appropriate way for matrix-elements, finite life time effects rep-

resented by a corresponding self-energy Σ(E) and – most important in the UV-regime – for the

surface of the system. This allows in particular for a proper inclusion of contributions to the

photo electron current due to surface states. In fact, many experimental and theoretical inves-

tigations are focused recently on the influence of spin-orbit coupling giving rise to the so-called

Rashba-splitting for the surface states [178, 179]. As for all other electronic properties disorder

in the system may be accounted for by means of the CPA within an ARPES calculation based

on multiple scattering theory [176,180].

During the last one or two decades the resolution of ARPES experiments could be substantially

improved allowing for a very detailed mapping of the electronic properties of solids. Results

of a corresponding investigation on Ni(110) at a photon energy of ~ω = 21 eV are shown in

Fig. 15 and compared to the bulk spectral function calculated on the basis of the LSDA [181].

Obviously, the various features of the experimental spectra cannot be described in a satisfying

way on that basis indicating the non-negligible influence of correlation effects not accounted for

by LSDA. In fact, calculations of the spectral function on the basis of the LSDA+3BS (three

body scattering) many-body formalism describe the spectra in a much better way [181], but

still neglect the influence of matrix-elements and of the surface. Application of the KKR-GF-

formalism, on the other hand, allowed to account for these on the basis of the one-step model

of photo emission [182]. In addition, correlation effects were accounted for by making use of the

LSDA+DMFT scheme [34]. As Fig. 15 shows this coherent approach leads to a very satisfying

agreement of the calculated photo current and the experimental one.

During the last years ARPES experiments were continuously pushed to higher photon energies

up to the keV-regime to reduce the surface sensitivity of this spectroscopy and to probe primarily

the electronic structure of the bulk this way. Apart from many technical problems this raises

103



Single particle (LDA)

-1.5 -1 -0.5 0 0.5
E - E

F
  (eV)

-1.5 -1 -0.5 0 0.5
E - E

F
 (eV)

-1.5 -1 -0.5 0 0.5
E - E

F
 (eV)

θ=5 θ=27 θ=58ο ο ο

Quasi particle (3BS)

-1.5 -1 -0.5 0 0.5
E - E

F
 (eV)

-1.5 -1 -0.5 0 0.5
E - E

F
 (eV)

-1.5 -1 -0.5 0 0.5
E - E

F
 (eV)

θ=5 θ=27 θ=58ο ο ο

LSDA+DMFT

-1.5 -1 -0.5 0 0.5
E - E

F
  (eV)

-1.5 -1 -0.5 0 0.5
E - E

F
 (eV)

-1.5 -1 -0.5 0 0.5
E - E

F
 (eV)

θ=5 θ=27 θ=58ο ο οθ=5 θ=27 θ=58ο ο οθ=5 θ=27 θ=58ο ο ο

Figure 15: Spin-integrated ARPES spectra from Ni(011) along Γ̄-Ȳ for three different angles

of emission. Upper row: comparison between LSDA-based calculations and experiment [181];

middle row: comparison between experiment and non-self-consistent quasi particle calculations

neglecting matrix element and surface effects [181]; lower row: spin-integrated LSDA+DMFT

spectra including photo emission matrix elements (this work). Theory: solid red line, experi-

ment: black dots [182].

several questions concerning the interpretation of the ARPES spectra on the experimental side.

Also for the calculation of ARPES spectra in the soft or hard X-ray regime extensions have to

be introduced as the momentum of the photon cannot be neglected any more and non-dipole

contributions may get important. Fig. 16 shows results of corresponding investigations on the

ARPES of W(110) for a photon energy of ~ω = 260 eV [183]. Obviously, the calculations based

on the one-step model reproduce the experimental spectral data rather well. In addition, one

notes that the spectra essentially follow the dispersion relation E~k
calculated for bulk W rather

well indicating that for the selected photon energy indeed primarily the bulk band structure

is probed. The experimental data shown in Fig. 16 were recorded at T = 300 K. For higher

temperatures but also for higher photon energies the influence of lattice vibrations gets more and

more pronounced leading finally to spectra that essentially reflect the DOS of the system [183].

Theoretical schemes to deal with this complex situation have already been suggested [184] that

should allow for corresponding calculations of the spectra in the near future.
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Figure 16: Plots of the experimental (left) and theoretical (right) photo current intensity for the

excitation from the valence bands of W(110) at T = 300 K with a photon energy of ~ω = 260 eV

as a function of the initial state energy and the angle of emission with respect to the surface

normal. The emission angle corresponds essentially to a probing of initial states with ~k along

the Γ-to-N line in the Brillouin zone with a corresponding dispersion relation E~k
included [183].

7.8 Concluding remarks

The various examples presented in some detail7 were meant to demonstrate that the KKR-GF-

method provides a very flexible framework to deal with a wide range of systems and properties

using one and the same formalism without using unnecessary simplifications or artificial bound-

ary conditions.8 One of the reasons for the flexibility of the KKR-GF is the fact that it is an

all-electron method using a minimal, numerical and energy-dependent basis set. This allows to

deal, for example, with hyperfine interaction, EXAFS or valence band photo-emission account-

ing for all their specific features and to interpret the results in a chemically intuitive way. The

most important feature, however, is that the KKR-GF supplies the electronic Green’s function

directly. This is of great advantage when dealing with spectroscopic properties or making con-

tact with many-body schemes that go beyond LDA as in these cases representing the electronic

structure in terms of the Green’s function is the standard starting point. Connected with the

availability of the Green’s function is the use of the Dyson equation that can be exploited in

many different ways. One branch is the description of complex systems on the basis of a simpler

reference system. The other branch is the straight forward investigation of all type of response

quantities. Finally, one should mention the treatment of disorder by means of the CPA or

NL-CPA with their application not at all restricted to chemical disorder in alloys.

7In fact these reflect only some of the activities of the authors; i.e. much more examples can be found via the

various references given, that are by no means complete ...
8This statement does not imply the claim that other methods are not able or useful to deal with the systems

or properties considered here.
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Of course, the various features of the KKR-GF method give also rise to some disadvantages.

Solving the single-site problem for the full complexity of the underlying Hamiltonian, for exam-

ple, implies accuracy but also corresponding numerical effort. This can be reduced, however,

to a large extent by the Born series technique. Another more serious drawback is the use of

fixed atomic positions for the reference system making atomic relaxation somewhat cumber-

some. However, various techniques are available now that should allow to account for atomic

relaxations more or less routinely. Obviously, these minor technical problems are more than

outweighed by the many advantages offered by the KKR-GF method.
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