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1Department of Computer Siene and EngineeringUniversity of Minnesota, Minneapolis, MN 55455, USAAbstratThe ground state eletroni properties of a material an be obtained using density fun-tional theory as embodied by the Kohn-Sham equation. Typially, one employs eigensolver-basedapproahes to solve this equation. These approahes an be omputationally demanding andhave largely limited the appliability of the Kohn-Sham framework to systems of no more thana few hundred atoms. Here we disuss a di�erent approah based on a nonlinear Chebyshev-�ltered subspae iteration, whih avoids omputing expliit eigenvetors exept to initiate theproess. Our method enters on solving the original nonlinear Kohn-Sham equation by a non-linear form of the subspae iteration tehnique, without emphasizing the intermediate linearizedKohn-Sham eigenvalue problems. The method ahieves self-onsisteny within a similar numberof self-onsistent �eld iterations as eigensolver-based approahes. However, replaing the stan-dard diagonalization at eah self-onsistent iteration by a Chebyshev subspae �ltering stepresults in a signi�ant speedup over methods based on standard dagonalization, often by morethan an order of magnitude. Algorithmi details of a parallel implementation of this methodare disussed. Numerial results are presented to show that the method enables one to performa lass of highly hallenging appliations that heretofore were not feasible.1 IntrodutionEletroni struture alulations based on �rst priniples use often employ a very suessful ombi-nation of density funtional theory (DFT) [1, 2℄ and pseudopotential theory [3�6℄. DFT reduesthe original multi-eletron Shrödinger equation into an e�etive one-eletron Kohn-Sham equation,where the non-lassial eletroni interations are replaed by a funtional of the harge density. Pseu-dopotential theory further simpli�es the problem by replaing the �all eletron� atomi potential with43



an e�etive �pseudopotential� that is smoother, but takes into aount the e�et of ore eletrons.Combining pseudopotential with DFT greatly redues the number of one-eletron wave-funtions tobe omputed, but more importantly the energy and length sales are set solely by the valene states.As suh, speies suh as a arbon and lead an be treated on equal footing. However, even withthese simpli�ations, solving the Kohn-Sham equation remains omputationally hallenging when thesystems of interest ontain a large number, e.g., more than a few hundred, atoms.Several approahes have been advoated for solving the Kohn-Sham equations. They an be lassi�edin two major groups: basis-free or basis-dependent approahes, aording to whether they use anexpliit basis set for eletroni orbitals or not. Among the basis-dependent approahes, plane wavemethods are frequently used in appliations of DFT to periodi systems where plane waves aneasily aommodate the boundary onditions [7,8℄. In ontrast, loalized basis sets suh as Gaussianorbitals are very popular in quantum-hemistry appliations [6, 9℄. Speial basis sets have also beendesigned for all-eletron DFT alulations, whih do not make use of pseudopotentials. These basissets inlude: linearized augmented plane waves, mu�n-tin orbitals, projetor-augmented waves. Asurvey of advantages and disadvantages of these expliit-basis methods an be found in [6, 10℄.Here we will fous on a di�erent approah based on real spae methods, whih are �basis free.� Realspae methods have gained ground in reent years [11�14℄ owing in great part to their simpliity andease of implementation. In partiular, these methods are readily implemented in parallel environments.A seond advantage is that, in ontrast with a plane wave approah, real spae methods do notimpose arti�ial periodiity in non-periodi systems. In ontrast, plane wave basis tehniques an beapplied to lusters (or moleules) by plaing the system of interest in a large superell. Provided thesuperell is su�iently large so that the luster of interest is removed from neighboring repliants, theeletroni struture solution will orrespond to that of the isolated luster. However, the potentialsfrom neighboring ells an be an issue. This makes superell solutions onverge slowly with the size ofthe ell [15℄. A related, and perhaps more signi�ant issue, is that superells ompliate the handlingof systems that are not eletronially neutral. Charged systems an be handled within plane wavemethods by inluding a ompensating uniform harge [15℄. Real spae methods need not addresssuh ompliations. A third advantage is that the appliation of the Hamiltonian to eletron wave-funtions is performed diretly in real-spae. Although the Hamiltonian matrix in real spae methodsis typially muh larger than with plane waves, the Hamiltonians are highly sparse and never stored oromputed expliitly. Only matrix-vetor produts that represent the appliation of the Hamiltonianson wave-funtions need to be omputed.As in plane wave methods, the hief impediment to solving the Kohn-Sham problem is �diagonalizing�the Hamiltonian and obtaining a self-onsistent �eld (SCF) solution. We present examples of areently developed nonlinear Chebyshev-�ltered subspae iteration (CheFSI) method, implemented inour own DFT solution pakage alled PARSEC (Pseudopotential Algorithm for Real-Spae EletroniCalulations) [11, 12℄. Although desribed in the framework of real-spae DFT, CheFSI an beemployed to other SCF iterations. The subspae �ltering method takes advantage of the fat thatintermediate SCF iterations do not require aurate eigenvalues and eigenvetors of the Kohn-Shamequation. 44



The �standard� SCF iteration framework is used in CheFSI, and a self-onsistent solution is obtainedas with previous work, whih means that CheFSI has the same auray as other standard DFTapproahes. Unlike, some so-alled �order-N� methods [16,17℄ CheFSI is equally appliable to metalsand insulators. One an view CheFSI as a tehnique to takle diretly the original nonlinear Kohn-Shameigenvalue problems by a form of nonlinear subspae iteration, without emphasizing the intermediatelinearized Kohn-Sham eigenvalue problems. In fat, within CheFSI, expliit eigenvetors are omputedonly at the �rst SCF iteration, in order to provide a suitable initial subspae. After the �rst SCF step,the expliit omputation of eigenvetors at eah SCF iteration is replaed by a single subspae �lteringstep. The method reahes self-onsisteny within a number of SCF iterations that is lose to thatof eigenvetor-based approahes. However, sine eigenvetors are not expliitly omputed after the�rst step, a signi�ant gain in exeution time results when ompared with methods based on expliitdiagonalization.When ompared with alulations based on e�ient eigenvalue pakages suh as ARPACK [18℄ andTRLan [19, 20℄ an order of magnitude speed-up is usually observed.CheFSI enabled us to perform a lass of highly hallenging DFT alulations, inluding lusters withover ten thousand atoms, whih were not feasible before without invoking additional approximationsin the Kohn-Sham problem [21�24℄.2 Eigenvalue problems in density funtional alulationsThe Kohn-Sham equation as de�ned in density funtional theory is given by
[
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Ψi(r) = EiΨi(r), (1)where Ψi(r) is a wave funtion, Ei is a Kohn-Sham eigenvalue, ~ is the Plank onstant, and m isthe eletron mass. (We will often use atomi units: ~ = m = e = 1 in the following disussion.)The total potential Vtotal, is the sum of three terms,
Vtotal(ρ(r), r) = Vion(r) + VH(ρ(r), r) + Vxc(ρ(r), r), (2)where Vion is the ioni potential, VH is the Hartree potential, and Vxc is the exhange-orrelationpotential. The Hartree and exhange-orrelation potentials depend on the harge density ρ(r), whihis de�ned as

ρ(r) = 2

nocc
∑

i=1

|Ψi(r)|
2. (3)Here nocc is the number of oupied states, whih is equal to half the number of valene eletrons inthe system. The fator of two omes from spin multipliity, if the system is non-magneti. Eq. (3)an be easily generalized to situations where the highest oupied states have frational oupanyor when there is an imbalane in the number of eletrons for eah spin omponent.The most omputationally expensive step of DFT is in solving the Kohn-Sham Eq. (1). Sine Vtotaldepends on the harge density ρ(r), whih in turn depends on the wave funtions Ψi, Eq. (1), an45



be viewed as a nonlinear eigenvalue problem. The SCF iteration is a general tehnique used to solvethis nonlinear eigenvalue problem. The iteration proess begins with an initial guess of the hargedensity usually onstruted from a superposition of free atomi harge densities, then obtains theinitial Vtotal and solves Eq. (1) for Ψi(r)'s to update ρ(r) and Vtotal. Then the Kohn-Sham (Eq. ( 1))is solved again for the new Ψi(r)'s and the proess is iterated until Vtotal (and also the wave funtions)beomes stationary. The standard SCF proess is desribed in Algorithm 2.1 and illustrated in Fig. 1Algorithm 2.1 Self-onsistent-�eld iteration:1. Provide initial guess for ρ(r), get Vtotal(ρ(r), r).2. Solve for Ψi(r), i = 1, 2, ..., from
[
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Ψi(r) = EiΨi(r). (4)3. Compute the new harge density ρ(r) = 2
∑nocc

i=1
|Ψi(r)|

2.4. Obtain new Hartree potential VH by solving: ∇2VH(r) = −4πρ(r).5. Update Vxc; get new Ṽtotal(ρ, r) = Vion(r) + VH(ρ, r) + Vxc(ρ, r) with a potential-mixingstep.6. If ‖Ṽtotal − Vtotal‖ < tol, stop; Else, Vtotal ← Ṽtotal, goto step 2.The number of eigenvetors needed in Step 2 of Algorithm 2.1 is just the number of oupied states.In pratie, a few more eigenvetors are usually omputed. For omplex systems, i.e., when thenumber of valene eletrons is large, eah of the linearized eigenvalue problems an be omputationallydemanding. This is ompounded by the fat that Hamiltonian matries an be of very large size.
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2Figure 1: Flow diagram for obtaining a self-onsistent solution of the Kohn-Sham equation.For this reason, one hopes to lessen the burden of solving Eq. 4 in the SCF iteration. There are several46



options here. One ould use some physial arguments to redue the matrix size or zero some existingelements. Or, one ould attempt to avoid diagonalization altogether, as is done in work representedby linear-saling or order-N methods (see e.g. [16,17℄). This approah, however, has other limitations.In partiular, the approximations involved rely heavily on some deay properties of the density matrixin ertiain funtion bases. In partiular, they an be di�ult to implement in real-spae disretizationsor for systems where the deay properties are not optimal, e.g., in metals. Another option is to usebetter (faster) diagonalization routines. However, this approah is limited as most diagonalizationsoftware is quite mature.Our approah avoids standard diagonalizations, but otherwise makes no new approximations to theHamiltonian. We take advantage of the fat that aurate eigenvetors are unneessary at eah SCFiteration, sine Hamiltonians are only approximate in the intermediate SCF steps, and exploit thenonlinear nature of the problem. The main point of the new algorithm is that one we have a goodstarting point for the Hamiltonian, it su�es to �lter eah basis vetor at eah iteration. In theintermediate SCF steps, these vetors are no longer eigenvetors but together they represent a goodbasis of the desired invariant subspae.3 Numerial methods for parallel platformsThe motivation and original ideas behind our real spae method (PARSEC) go bak to the early1990s, see [11, 12℄. Within PARSEC, an uniform Cartesian grid in real-spae is plaed on the regionof interest, and the Kohn-Sham equation is disretized by a high order �nite-di�erene method [25℄on this grid. Wave funtions are expressed as values on grid positions. Outside a spei�ed sphereboundary that enloses the physial system, wave funtions are set to zero for non-periodi systems.In addition to the advantages mentioned in the introdution, another advantage of the real-spaeapproah is that periodi boundary onditions are also reasonably simple to implement [26℄.The latest version of PARSEC is written in Fortran 90/95. PARSEC has now evolved into a mature,massively parallel pakage, whih inludes most of the funtionality of omparable DFT odes [27℄.The reader is referred to [28, 29℄ for details and the rationale of the parallel implementation. ThePARSEC software an be obtained fromhttp://parse.ies.utexas.edu/The following is a brief summary of the most important points. PARSEC allows for either parallel orsequential exeutions. When run in the parallel mode, PARSEC uses the standard Message PassingInterfae (MPI) library for ommuniation. Parallelization is ahieved by partitioning the physialdomain whih an have various shapes depending on boundary onditions and symmetry operations.Fig. 2 illustrates four ube-shaped neighboring sub-domains. For a generi, on�ned system withoutsymmetry, the physial domain is a sphere whih ontains all atoms plus some additional spae (owingto deloalization of eletron harge).In reent years, PARSEC has been enhaned to take advantage of physial symmetry. If the systemis invariant upon ertain symmetry operations, the physial domain is replaed with an irreduiblewedge onstruted aording to those operations. For example, if the system has mirror symmetry47



Figure 2: Sample deomposition of a physial domain used in the PARSEC pakage.on the xy plane, the irreduible wedge overs only one hemisphere, either above or below the mirrorplane. For periodi systems, the physial domain is the periodi ell, or an irreduible wedge of it ifsymmetry operations are present. In any irumstane, the physial domain is partitioned in ompatregions, eah assigned to one proessor only. Good load balane is ensured by enforing that theompat regions have approximately the same number of grid points.One the physial domain is partitioned, the physial problem is mapped onto the proessors in adata-parallel way: eah proessor is in harge of a blok of rows of the Hamiltonian orrespondingto the blok of grid points assigned to it. The eigenvetor and potential vetor arrays are row-wisedistributed in the same fashion. The program only requires an index funtion indx(i, j, k) whihreturns the number of the proessor in whih the grid point (i, j, k) resides.Beause the Hamiltonian matrix is never stored, we need an expliit reordering sheme whih renum-bers rows onseutively from one proessor to the next one. For this purpose we use a list of pointersthat gives for eah proessor, the row with whih it starts.Sine �nite di�erene disretizetion is used, when performing an operation suh as a matrix-vetorprodut, ommuniation will be required between nearest neighbor proessors. For ommuniation weuse two index arrays, one to ount how many and whih rows are needed from neighbors, the otherto ount the number of loal rows needed by neighbors. With this deomposition and mapping, thedata required by the program is ompletely distributed. In other words, the ode runs in the so-alled�Single Program Multiple Data� approah. For large problems it is quite important to be able todistribute memory loads among proessors on high performane omputers. For example, ertainlarge jobs an simply not be run on a small number of proessors on good-size distributed memorymahines.Parallelizing subspae methods for the linearized eigenvalue problems (represented as Eq. 4) beomesquite straightforward with the above mentioned deomposition and mapping. Note that the subspaebasis vetors ontain approximations to eigenvetors, therefore the rows of the basis vetors aredistributed in the same way as the rows of the Hamiltonian. In this way, all vetor updates (e.g.,linear ombinations of vetors), an be exeuted loally (i.e., without ommuniation). Matrix-vetor produts, and matrix-matrix produts, an be easily exeuted in parallel but may require someommuniation with a few neighbors. Redution operations, e.g., omputing inner produts andmaking the result available in eah proessor, are e�iently handled by the MPI redution funtion48



MPI_ALLREDUCE().4 The nonlinear Chebyshev-�ltered subspae iterationSine the Hamiltonians of the intermediate SCF steps are approximate, there is no need to omputeeigenvetors of the intermediate Hamiltonians to a high auray. Moreover, as observed in Refs. [13,17, 22, 30�32℄, the (disretized) harge density is the diagonal of the �funtional� harge densitymatrix de�ned as P = ΦΦT , where the olumns of the matrix Φ are disretized wave funtionsorresponding to oupied states. Notie that for any orthonormal matrix Q of a suitable dimension,
P = (ΦQ)(ΦQ)T . Therefore, expliit eigenvetors are not needed to alulate the harge density.Any orthonormal basis of the eigensubspae orresponding to oupied states an give the desiredintermediate harge density.The proposed method ombines the outer SCF iteration and the inner iteration required for diagonal-ization at eah SCF step into one nonlinear subspae iteration. In this approah an initial subspaeis progressively re�ned by a low degree Chebyshev polynomials �ltering. This means that eah basisvetor ui is proessed as follows:

ui,new := pm(H)uiwhere pm is some shifted and saled Chebyshev poynomial whose goal is to enhane eigenomponentsof ui assoiated with the oupied states. Throughout the artile the integer m denotes the degreeof the polynomial pm whih is used for �ltering.If it were not for the nonlinear nature of the SCF loop, i.e., if H were a �xed operator, this approahwould be equivalent to the well-known Chebyshev aelerated subspae iteration proposed by Bauer[33℄, and later re�ned by Rutishauser [34, 35℄4.Chebyshev polynomial �ltering has long been utilized in eletroni struture alulations (see e.g.[30, 36�40℄), foussing primarily on approximating the Fermi-Dira operator.Chebyshev polynomials of rather high degree were neessary and additional tehniques were requiredto suppress the Gibbs phenomena. In ontrast, the polynomials used in our approah are of relativelylow degree (say < 20). They exploit the fast growth property of Chebyshev polynomials outside theinterval [−1, 1] to �lter out undesired eigenomponents.The main idea of CheFSI is to start with a good initial subspae V orresponding to oupied states ofthe initial Hamiltonian, this initial V is usually obtained by a diagonalization step. No diagonalizationsare neessary after the �rst SCF step. Instead, the subspae from the previous iteration is �ltered bya degree-m polynomial, pm(t), onstruted for the urrent Hamiltonian H. The polynomial di�ersat eah SCF step sine H hanges. Note that the goal of the �lter is to make the subspae spannedby pm(H)V approximate the eigensubspae orresponding to the oupied states of the �nal H.At the intermediate SCF steps, the basis need not be an aurate eigenbasis sine the intermediate4Rutishauser published an Algol routine alled ritzit in the volume: �Handbook for automati omputations:linear algebra�, see [35℄. This volume was largely at the origin of the EISPACK pakage (whih later beame apart of LAPACK), but Rutishauser's ritzit Algol routine was not translated into EISPACK.49



Hamiltonians are not exat. The �ltering is designed so that the resulting sequene of subspaes willprogressively approximate the desired eigensubspae of the �nal Hamiltonian when self-onsistenyis reahed. At eah SCF step, only two parameters are required to onstrut an e�ient Chebyshev�lter, namely, a lower bound and an upper bound of the higher portion of the spetrum of the urrentHamiltonian H in whih we want pm(t) to be small. These bounds an be obtained with littleadditional ost, as will be seen in Setion 4.2.After self-onsisteny is reahed, the Chebyshev �ltered subspae inludes the eigensubspae or-responding to oupied states. Expliit eigenvetors an be readily obtained by a Rayleigh-Ritzre�nement [41℄ (also alled subspae rotation) step.4.1 Chebyshev-�ltered subspae iterationThe main struture of CheFSI, whih is given in Algorithm 4.1, is quite similar to that of the standardSCF iteration (Algorithm 2.1). One major di�erene is that the inner iteration for diagonalization atStep 2 is now performed only at the �rst SCF step. Thereafter, diagonalization is replaed by a singleChebyshev subspae �ltering step, performed by alling Algorithm 4.2.Although the harge density (Eq. (3)) requires only the lowest nocc states, the number of omputedstates, whih is the integer s in Algorithm 4.1, is typially set to a value larger than nocc, in order toavoid missing any oupied states. In pratie we �x an integer nstate whih is slightly larger than
nocc, and set s = nstate + nadd with nadd ≤ 10.The parallel implementations of Algorithms 4.1 and 4.2 are quite straightforward with the parallelparadigm disussed in Setion 3. We only mention that the matrix-vetor produts related to �l-tering, omputing upper bounds, and Rayleigh-Ritz re�nement, an easily exeute in parallel. There-orthogonalization at Step 4 of Algorithm 4.2 uses a parallel version of the iterated Gram-ShmidtDGKS method [42℄, whih sales better than the standard modi�ed Gram-Shmidt algorithm. Thisproess is illustrated in Fig. 3.The estimated omplexity of the algorithm is similar to that of the sequential CheFSI method in [22℄.For parallel omputation it su�es to estimate the omplexity on a single proessor. Assume that pproessors are used, i.e., eah proessor shares N/p rows of the full Hamiltonian. The estimated ostof Algorithm 4.2 on eah proessor with respet to the dimension of the Hamiltonian denoted by N ,and the number of omputed states s, is as follows:� The Chebyshev �ltering in Step 3 osts O(s∗N/p) �ops. The disretized Hamiltonian is sparseand eah matrix-vetor produt on one proessor osts O(N/p) �ops. Step 3 requires m ∗ smatrix-vetor produts, at a total ost of O(s∗m∗N/p) where the degree m of the polynomialis small (typially between 8 and 20).� The ortho-normalization in Step 4 osts O(s2∗N/p) �ops. There are additional ommuniationosts beause of the global redutions.� The eigen-deomposition at Step 5 osts O(s3) �ops.� The �nal basis re�nement step (Φ := ΦQ) osts O(s2 ∗N/p).50



If a standard iterative diagonalization method is used to solve the linearized eigenproblem (Eq. 4)at eah SCF step, then it also requires (i) the orthonormalization of a (typially larger) basis; (ii)the eigen-deomposition of the projeted Rayleigh-quotient matrix; and (iii) the basis re�nement(rotation). These operations need to be performed several times within this single diagonalization.But Algorithm 4.2 performs eah of these operations only one per SCF step. Therefore, althoughAlgorithm 4.2 sales in a similar way to standard diagonalization-based methods, the saling onstantis muh smaller. For large problems, CheFS an ahieve a tenfold or more speedup per SCF step,over using the well-know e�ient eigenvalue pakages suh as ARPACK [18℄ and TRLan [19, 20℄.S e l e c t i n i t i a l P o t e n t i a l ( e . g . , s u p e r p o s e a t o m i cc h a r g e d e n s i t i e s )G e t i n i t i a l b a s i s : { ψ n } f r o m d i a g o n a l i z a t i o nF i n d t h e c h a r g e d e n s i t y f r o m t h e b a s i s :ρ = ψ nn , o c c u p∑ 2S o l v e f o r V H a n d a n d c o m p u t e V x c :∇ 2 V H = − 4 π ρ V x c = V x c [ ρ ]C o n s t r u c t H a m i l t o n i a n :H = − 12 ∇ 2 + V i o nP + V H + V x cA p p l y C h e b y s h e v fi l t e r t o t h e b a s i s :ψ n{ } = m ( ) ψ n{ }Figure 3: Flow diagram for obtaining a self-onsistent solution of the Kohn-Sham equation usingdamped Chebyshev subspae �ltering.In summary, a standard SCF method has an outer SCF loop�the usual nonlinear SCF loop, andan inner diagonalization loop, whih iterates until eigenvetors are within spei�ed auray. Algo-rithm 4.1 essentially bypasses the seond loop, or rather it merges it into a single outer loop, whihan be onsidered as a nonlinear subspae iteration algorithm. The inner diagonalization loop isreplaed by a single Chebyshev subspae �ltering step.4.2 Chebyshev �lters and estimation of boundsChebyshev polynomials of the �rst kind are de�ned, for k = 0, 1, · · · , by (see e.g., [41, p.371℄,or [43, p.142℄):
Ck(t) =







cos(k cos−1(t)), −1 ≤ t ≤ 1,

cosh(k cosh−1(t)), |t| > 1.51



Algorithm 4.1 CheFSI for SCF alulation:1. Start from an initial guess of ρ(r), get Vtotal(ρ(r), r).2. Solve [

−1

2
∇2 + Vtotal(ρ(r), r)

]

Ψi(r) = EiΨi(r) for Ψi(r), i = 1, 2, ..., s.3. Compute new harge density ρ(r) = 2
∑nocc

i=1
|Ψi(r)|

2.4. Solve for new Hartree potential VH from ∇2VH(r) = −4πρ(r).5. Update Vxc; get new Ṽtotal(ρ, r) = Vion(r) + VH(ρ, r) + Vxc(ρ, r) with a potential-mixingstep.6. If ‖Ṽtotal − Vtotal‖ < tol, stop; Else, Vtotal ← Ṽtotal (update H impliitly),all the Chebyshev-�ltered subspae method (Algorithm 4.2) to get s approximate wave fun-tions; goto step 3.
Algorithm 4.2 Chebyshev-�ltered Subspae (CheFS) method:1. Get the lower bounds blow and γ from previous Ritz values (use the largest one and thesmallest one, respetively).2. Compute the upper bound bup of the spetrum of the urrent disretizedHamiltonian H (all Algorithm 4.4 in Setion 4.2).3. Perform Chebyshev �ltering (all Algorithm 4.3 in Setion 4.2) on the previous basis Φ,where Φ ontains the disretized wave funtions of Ψi(r), i = 1, ..., s:

Φ = Chebyshev_filter(Φ, m, blow, bup, γ).4. Ortho-normalize the basis Φ by iterated Gram-Shmidt.5. Perform the Rayleigh-Ritz step:(a) Compute Ĥ = ΦTHΦ;(b) Compute the eigendeomposition of Ĥ: ĤQ = QD,where D ontains non-inreasingly ordered eigenvalues of Ĥ, and Q ontains the or-responding eigenvetors;() 'Rotate' the basis as Φ := ΦQ; return Φ and D.
52
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Figure 4: Degree 8 Chebyshev polynomial on the interval [-1, 1℄ saled to one at γ = −0.2.The shaded area orresponds to eigen-omponents that will be ampli�ed relative to the othereigenomponents, those orresponding to the interval [−1, 1], whih will be dampened.Note that C0(t) = 1, C1(t) = t. The following important 3-term reurrene is easy to derive fromproperties of the osine funtion,
Ck+1(t) = 2t Ck(t)− Ck−1(t), t ∈ R. (5)By �ltering we mean a proess applied to a vetor that has the e�et of magni�ant desired eigen-omponents of this vetor relative to other, undesirable, omponents. If the proess is repeatedinde�nitely, the resulting vetor will have zero omponents in the undesirable part of the spetrum.In our ontext, we need to �lter out all omponents assoiated with the non-oupied states, or,equivalently to enhane the omponents assoiated with oupied states, relative to other omponents.Filtering an be readily ahieved by exploiting well-known properties of Chebyshev polynomials. It isknown that among all polynomials of degree k, whih have value one at a ertain point |γ| > 1, thepolynomial Ck(t)/Ck(γ) is the one whose maximum absolute value in the interval [−1, 1] is minimal.Thus, Ck(t)/Ck(γ) an be viewed as an optimal polynomial if one wishes to dampen values of thepolynomial in [−1, 1] among all polynomials p of degree k, saled so that p(γ) = 1. The 8th degreeChebyshev polynomial saled at γ = −0.2 is shown in Figure 4.Assume that the full spetrum of H (denoted by Λ(H)) is ontained in [γ, b]. Then, in orderto approximate the eigensubspae assoiated with the lower end of the spetrum, say [γ, a] with

γ < a < b, it is neessary to map [a, b] into [−1, 1] before applying the Chebyshev polynomnial. Thisan be easily realized by an a�ne mapping de�ned as
L(t) :=

t− c

e
; c =

a + b

2
, e =

b− a

2where c denotes the enter and e the half-width of the interval [a, b]. The Chebyshev iteration utilizingthe three-term reurrene (5) to dampen values on the interval [a, b] is listed in Algorithm 4.3, see53



also [22℄. The algorithm omputes
Y = pm(H)X where pm(t) = Cm [L(t)] . (6)This yields the iteration

Xj+1 =
2

e
(H − cI)Xj −Xj−1, j = 1, 2, ...,m − 1.with X0 given and X1 = (H − cI)X0.The above iteration is without any saling. In the ase of the interval [−1, 1] we saled the polynomialby Ck(γ) in order to ensure that the value of the polynomial at γ equals one. For general intervals,this leads to the saled sequene of polynomials [43℄

X̃j =
Cj [

2

e
(H − cI)]

Cj [
2

e
(γ − cI)]

X0.Thus, the saling fator is ρj = Cj[
2

e
(γ − cI)]. Clearly this requires an estimate for γ whih, in ourase, is the smallest eigenvalue of the Hamiltonian. However, sine this is used for saling, for thepurpose of avoiding over�ow, only a rough value is needed. For the �rst SCF iteration, we an usethe smallest Ritz value of T from the same Lanzos run (Algorithm 4.4 below) as used to obtain theupper bound b for γ. For the latter SCF steps, the smallest Ritz value from the previous SCF stepan be used. Clearly, the vetor sequene is not omputed as shown above beause ρj itself an belarge and this would defeat the purpose of saling. Instead, eah X̃j+1 is updated using the saledvetors X̃j and X̃j−1. The orresponding algorithm, disussed in [43℄ is shown in Algorithm 4.3 (thetildes and vetor subsripts are omitted).The eigen-omponents assoiated with eigenvalues in [a, b] will be transformed to small values whilethose to the left of [a, b] will be around unity owing to the properties of the Chebyshev polynomials.This is the desired �ltering property when omputing an approximation to the eigensubspae assoiatedwith the lower end of Λ(H). As seen in Algorithm 4.3, a desired �lter an be easily ontrolled byadjusting two endpoints that bound the higher portion of Λ(H).The wanted lower bound an be any value whih is larger than the Fermi-level but smaller than theupper bound. It an also be a value slightly smaller than the Fermi-level; thanks to the monotoniityof the shifted and saled Chebyshev polynomial on the spetrum of H, and the fat that we ompute

s > nocc number of Ritz values, the desired lowered end of the spetrum will still be magni�edproperly with this hoie of lower bound.Sine the previous SCF iteration performs a Rayleigh-Ritz re�nement step, it provides naturally anapproximation for the lower bound a. Indeed, we an simply take the largest Rayleigh-quotient fromthe previous SCF iteration step as an approximation to the lower bound for the urrent Hamiltonian.In other words, a is taken to be the largest eigenvalue omputed in step 5-(b) of Algorithm 4.2 fromthe previous SCF iteration, with no extra omputation.The upper bound for the spetrum (denoted by b) an be estimated by a k-step standard Lanzosmethod. As pointed out in [23℄, the higher endpoint b must be a bound for the full spetrum of
H. This is beause the Chebyshev polynomial also grows fast to the right of [−1, 1]. So if [a, b]54



Algorithm 4.3 [Y ] = Chebyshev_filter(X,m, a, b, γ).Purpose: Filter olumn vetors of X by an m degree Chebyshev polynomial in H that dampenson the interval [a, b]. Output the �ltered vetors in Y .1. e = (b− a)/2; c = (b + a)/2;2. σ = e/(γ − c); σ1 = σ; γ = 2/σ1.3. Y = σ1

e
(HX − cX);4. For i = 2 : m5. σ2 = 1/(γ − σ);6. Ynew = 2σ2

e
(HY − cY )− σσ2X;7. X = Y ;8. Y = Ynew;9. σ = σ2;10. End Forwith b < λmax(H) is mapped into [−1, 1], then the [b, λmax(H)] portion of the spetrum will alsobe magni�ed, whih will ause the proedure to fail. Therefore, it is imperative that the bound bbe larger than λmax(H). On the other hand it should not be too large as this would result in slowonvergene. The simplest strategy whih an be used for this is to use Gershgorin's Cirle Theorem.Bounds obtained this way an, however, overestimate λmax(H).An inexpensive way to estimate an upper bound of Λ(H) by the standard Lanzos [44℄ method isdesribed in Algorithm 4.4, to whih a safeguard step is added. The largest eigenvalue λ̃ of thetridiagonal matrix T is known to be below the largest eigenvalue λ of the Hamiltonian. If ũ isthe orresponding Ritz vetor and r = (H − λ̃I)ũ then there is an eigenvalue of H in the interval

[λ̃−‖r‖, λ̃ + ‖r‖] (see e.g. [41℄). Algorithm 4.4 estimates λmax by max(λ̃) + ‖f‖, sine it is knownthat ‖r‖ ≤ ‖f‖. This is not theoretially guaranteed to return an upper bound for λmax - but it isgenerally observed to yield an e�etive upper bound. The algorithm for estimating b is presented inAlgorithm 4.4 below. Note that the algorithm is easily parallelizable as it relies mostly on matrix-vetor produts. In pratie, we found that k = 4 or 5 is su�ient to yield an e�etive upper boundof Λ(H). Larger k values (e.g., k > 10) are not neessary in general.In the end we an see that the extra work assoiated with omputing bounds for onstruting theChebyshev polynomials is negligible. The major ost of �ltering is in the three-term reurrenesin Algorithm 4.3, whih involve matrix-vetor produts. The polynomial degree m is left as a freeparameter. Our experiene indiates that an m between 8 and 20 is good enough to ahieve overallfast onvergene in the SCF loop.
55



Algorithm 4.4 Estimating an upper bound of Λ(H) by k-step Lanzos:1. Generate a random vetor v, set v ← v/‖v2‖;2. Compute f = Hv; α = fTv; f ← f − αv; T (1, 1) = α;3. Do j = 2 to min(k, 10)4. β = ‖f2‖;5. v0 ← v; v ← f/β;6. f = Hv; f ← f − βv0;7. α = fTv; f ← f − αv;8. T (j, j − 1) = β; T (j − 1, j) = β; T (j, j) = α;9. End Do10. Return ‖T2‖+ ‖f2‖ as the upper bound.
5 Diagonalization in the �rst SCF iterationWithin CheFSI, the most expensive SCF step is the �rst one, as it involves a diagonalization in order toompute a good subspae to initiate the nonlinear SCF loop. This setion disusses options availablefor this task.In priniple, any e�etive eigenvalue algorithms an be used for the �rst SCF step. PARSEC originallyhad three diagonalization methods: Diagla, whih is a preonditioned Davidson method [28, 29℄; thesymmetri eigensolver in ARPACK [18, 45℄; and the Thik-Restart Lanzos algorithm alled TRLan[19,20℄. For systems of moderate sizes, Diagla works well, and then beomes less ompetitive relativeto ARPACK or TRLan for larger systems when a large number of eigenvalues are required. TRLanis about twie as fast as the symmetri eigensolver in ARPACK, beause of its redued need forre-orthogonalization. In [22℄, TRLan was used for the diagonalization at the �rst SCF step.Another option suggested and tested in [32℄ but not implemented in PARSEC, is to resort to theLanzos algorithm with partial reorthogonalization. Partial reorthogonalization Lanzos would runthe Lanzos algorithm without restarting, reorthogonalizing the vetors only when needed, see [41℄.This is a very e�etive proedure, some would even say optimal in some sense, exept that it typiallyrequires an enormous amount of memory. As illustrated in [32℄ the method an be 5 to 7 times fasterthan ARPACK for moderate size problems. It is possible to address the memory problem by resortingto seondary storage, though parallel implementations would be tedious.At the other extreme when onsidering memory usage, one an use the Chebyshev �ltered subspaeiteration in its linear implementation. This means that we will now add an outer loop to the pro-edure desribed by Algorithm 4.2 and test onvergene for the same Hamiltonian (the initial one)without updating potential from one outer loop to the next. Pratially, this is simply as a variant of56



Algorithm 4.1, whereby step 2 is replaed by as many �ltering steps of Algorithm 4.2 as are requiredfor the subspae to onverge. This proedure is the most eonomial in terms of memory, so it is re-ommended if memory is an issue. However, it is well-known that subspae iteration methods (linear)are not as e�etive as the Lanzos algorithm, and other Krylov-based methods, see, e.g., [41, Chap.14℄.Even with standard restart methods suh as ARPACK and TRLan, the memory demand an stillremain too high in some ases. Hene, it is important to develop a diagonalization method that isless memory demanding but whose e�ieny is omparable to ARPACK and TRLan. The Chebyshev-Davidson method [23, 24℄ was developed with these two goals in mind. Details an be found in [23,24℄. The priniple of the method is to simply build a subspae by a proedure based on a form ofBlok-Davidson approah. The Blok-Davidson approah builds a subspae by adding a 'window' ofpreonditioned vetors. In the Chebyshev-Davidson approah, these vetors are built by exploitingChebyshev polynomials.The �rst step diagonalization by the blok Chebyshev-Davidson method, together with the Chebyshev-�ltered subspae method (Algorithm 4.2), enabled us to perform SCF alulations for a lass of largesystems, inluding the silion luster Si9041H1860 for whih over 19,000 eigenvetors of a Hamiltonianwith dimension around 3 million were to be omputed. These systems are pratially infeasible with theother three eigensolvers (ARPACK, TRLan and Diagla) in PARSEC, using the urrent superomputerresoures available to us at the Minnesota Superomputing Institute (MSI).Though results obtained with the Chebyshev-Davidson method in the �rst step diagonalization aresatisfatory, there is still muh work to be done in this area. We do not know for example how auratethe subspae must be in order to be a good initial guess to ensure onvergene. It may possible tofurther redue exeution times by hanging the stopping riterion needed in the �rst SCF step. It maybe also possible to exploit well-known �global onvergene� strategies utilized for non-linear iterations(suh as ontinuation, or damping) to avoid ompletely the �rst step diagonalization.6 Numerial ResultsPARSEC has been applied to study a wide range of material systems (e.g. [12,26,27℄). The fous ofthis setion is on large systems where relatively few numerial results exist beause of the infeasibilityof eigenvetor-based methods. We mention that Ref. [46℄ ontains very interesting studies on lustersontaining up to 1100 silion atoms, using the well-known e�ient plane wave DFT pakage VASP[8,47℄; however, it is stated in Ref. [46℄ that a luster with 1201 silion atoms is �too omputationallyintensive.� As a omparison, PARSEC using CheFSI, together with the urrently developed symmetrioperations of real-spae pseudopotential methods [48℄, an now routinely solve silion lusters withseveral thousands of atoms.The hardware used for the omputations is the SGI Altix luster at MSI, it onsists of 256 IntelItanium proessors at CPU rates of 1.6 GHz, sharing 512 GB of memory (but a single job is allowedto request at most 250 GB memory).The goal of the omputations is not to study the parallel salability of PARSEC, but rather to use57



PARSEC to do SCF alulation for large systems that were not studied before. Therefore, we donot use di�erent proessor numbers to solve the same problem. Salability is studied in [29℄ forthe preonditioned Davidson method, we mentioned that the salability of CheFSI is better thaneigenvetor-based methods beause of the redued reorthogonalizations.In the reported numerial results, the total_eV/atom is the total energy per atom in eletron-volts,this value an be used to assess auray of the �nal result; the #SCF is the iteration steps neededto reah self-onsisteny; and the #MVp ounts the number of matrix-vetor produts. Clearly #MVpis not the only fator that determines CPU time, the orthogonalization ost an also be a signi�antomponent.For all of the reported results for CheFSI, the �rst step diagonalization used the Chebyshev-Davidsonmethod. In Tables 4�11, the 1st CPU denotes the CPU time spent on the �rst step diagonalizationby Chebyshev-Davidson; the total CPU ounts the total CPU time spent to reah self-onsistenyby CheFSI. dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU1074080 5843 1400187 14 -86.16790 7.83 hrs. 19.56 hrs.Table 4: Si2713H828, using 16 proessors. m = 17 for Chebyshev-Davidson; m = 10 for CheFS.(First step diagonalization by TRLan ost 8.65 hours, projeting it into a 14-steps SCF iterationost around 121.1 hours.)The �rst example (Table 5) is a relatively small silion luster Si525H276, whih is used to omparethe performane of CheFSI with two eigenvetor-based methods. All methods use the same symmetryoperations [48℄ in PARSEC.method #MVp #SCF steps total_eV/atom CPU(ses)CheFSI 189755 11 -77.316873 542.43TRLan 149418 10 -77.316873 2755.49Diagla 493612 10 -77.316873 8751.24Table 5: Si525H276, using 16 proessors. The Hamiltonian dimension is 292584, where 1194states need to be omputed at eah SCF step. The �rst step diagonalization by Chebyshev-Davidson ost 79755 #MVp and 221.05 CPU seonds; so the total #MVp spent on CheFS inCheFSI is 110000. The polynomial degree used is m = 17 for Chebyshev-Davidson and m = 8 forCheFS. The �st step diagonalization by TRLan requires 14909 #MVp and 265.75 CPU seonds.For larger lusters Si2713H828 (Table 4) and Si4001H1012 (Table 6), Diagla beame too slow to bepratial. However, we ould still apply TRLan for the �rst step diagonalization for omparison, but wedid not iterate until self-onsisteny was reahed sine that would ost a signi�ant amount of our CPUquota. Note that with the problem size inreasing, Chebyshev-Davidson ompares more favorably overTRLan. This is beause we employed an additional trik in Chebyshev-Davidson, whih orresponds58



to allowing the last few eigenvetors not to onverge to the required auray. The number of thenon fully onverged eigenvetors is bounded above by actmax, whih is the maximum dimension ofthe ative subspae. Typially 30 ≤ actmax ≤ 300 for Hamiltonian size over a million where severalthousand eigenvetors are to be omputed. The implementation of this trik is rather straightforwardsine it orresponds to applying the CheFS method to the subspae spanned by the last few vetorsin the basis that have not onverged to required auray.dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU1472440 8511 1652243 12 -89.12338 18.63 hrs. 38.17 hrs.Table 6: Si4001H1012, using 16 proessors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.(First step diagonalization by TRLan ost 34.99 hours, projeting it into a 12-steps SCF iterationost around 419.88 hours.)For even larger lusters Si6047H1308 (Table 8) and Si9041H1860 (Table 7), it beame impratialto apply TRLan for the �rst step diagonalization beause of too large memory requirements. Forthese large systems, using an eigenvetor-based method for eah SCF step is learly not feasible.We note that the ost for the �rst step diagonalization by Chebyshev-Davidson is still rather high,it took lose to 50% of the total CPU. In omparison, the CheFS method (Algorithm 4.2) savesa signi�ant amount of CPU for SCF alulations over diagonalization-based methods, even if verye�ient eigenvalue algorithms are used.dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU2992832 19015 4804488 18 -92.00412 102.12 hrs. 294.36 hrsTable 7: Si9041H1860, using 48 proessors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU2144432 12751 2682749 14 -91.34809 45.11 hrs. 101.02 hrs.Table 8: Si6047H1308, using 32 proessors. m = 17 for Chebyshev-Davidson; m = 8 for CheFS.One the DFT problem, Eq. (1), is solved, we have aess to several physial quantities. One ofthem is the ionization potential (IP) of the nanorystal, de�ned as the energy required to remove oneeletron from the system. Numerially, we use a ∆SCF method: perform two separate alulations,one for the neutral luster and another for the ionized one, and observe the variation in total energybetween these alulations. Fig. 5 shows the IP of several lusters, ranging from the smallest possible(SiH4) to Si9041H1860. For omparison, we also show the eigenvalue of the highest oupied Kohn-Sham orbital, EHOMO. A known fat of DFT-LDA is that the negative of the EHOMO energy islower than the IP in lusters [6℄, whih is on�rmed in Figure 5. In addition, the �gure shows thatthe IP and −EHOMO approah eah other in the limit of extremely large lusters.59
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Figure 5: Ionization potential, IP, (rosses) and eletron af��nity, EA, (�plus� signs), for variouslusters with diameters ranging from 0 nm (SiH4) to 7 nm (Si9041H1860). �Squares� denote thenegative of the highest oupied moleular orbital (−EHOMO) eigenvalue energy of the neutralluster. �Diamonds� denote the negative of the lowest unoupied moleular orbitaleigenvalueenergy (−ELUMO).Fig. 5 also shows the eletron a�nity (EA) of the various lusters. The EA is de�ned as the energyreleased by the system when one eletron is added to it. Again, we alulate it by performingSCF alulations for the neutral and the ionized systems (negatively harged instead of positivelyharged now). In PARSEC, this sequene of SCF alulations an be done very easily by reusingprevious information: The initial diagonalization in the seond SCF alulation is waived if we reuseeigenvetors and eigenvalues from a previous alulation as initial guesses for the ChebFSI method.Fig. 5 shows that, as the luster grows in size, the EA approahes the negative of the lowest-unoupiedeigenvalue energy. A power-law analysis in Fig. 5 indiates that both the ionization potential andthe eletron a�nity approah their bulk values aording to a power-law deay Rn with n ≈ 1. Thenumerial �ts are:
IP = IP0 + A/Dα (7)

EA = EA0 −B/Dβ (8)with IP0 = 4.50 eV, EA0 = 3.87 eV, α = 1.16, β = 1.09, A = 3.21 eV, B = 3.13 eV. These valuesfor A and B assume a luster diameter D given in nanometers. The di�erene between ionizationpotential and eletron a�nity is the eletroni gap of the nanorystal. As expeted, the value of thegap extrapolated to bulk, IP0 − EA0 = 0.63 eV, is very lose to the energy gap predited in variousDFT alulations for silion, whih range from 0.6 eV to 0.7 eV [6,49℄. Owing to the slow power-lawdeay, the gap at the largest rystal studied is still 0.7 eV larger than the extrapolated value.Other properties of large silion lusters are also expeted to be similar to the ones of bulk silion,whih is equivalent to a nanorystal of �in�nite size�. Fig. 6 shows that the density of states already60



assumes a bulk-like pro�le in lusters with around ten thousand atoms. The presene of hydrogenatoms on the surfae is responsible for subtle features in the DOS at around -8 eV and -3 eV. Beauseof the disreteness of eigenvalues in lusters, the DOS is alulated by adding up normalized Gaussiandistributions loated at eah alulated energy eigenvalue. In Fig. 6, we used Gaussian funtions withdispersion of 0.05 eV. More details are disussed in [50℄.
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Figure 6: Density of states (DOS) of the luster Si9041H1860 (upper panel) ompared with periodirystalline silion (lower panel). As a onsequene of the large size, the DOS of the Si9041H1860luster is very lose to that of bulk silion (the in��nite-size limit).
H size nstate #MVp #SCF total_eV/atom 1st CPU total CPU2790688 1812 × 2 9377435 110 -795.18064 16.16 hrs. 112.44 hrs.Table 9: Fe302, using 16 proessors. m = 20 for Chebyshev-Davidson; m = 19 for CheFS.
H size nstate #MVp #SCF total_eV/atom 1st CPU total CPU2985992 1956 × 2 10241385 119 -795.19898 11.62 hrs. 93.15 hrs.Table 10: Fe326, using 24 proessors. m = 20 for Chebyshev-Davidson; m = 19 for CheFS.We also applied PARSEC to some large iron lusters. Tables 9�11 ontain three lusters with morethan 300 iron atoms. The number of states, nstate, is multiplied by two beause these lusters aremagnetized and spin degeneray is broken. These metalli systems are well-known to be very di�ultfor DFT alulations, beause of the �harge sloshing� [7, 8℄. The LDA approximation used to getexhange-orrelation potential Vxc is also known not to work well for iron atoms. However, PARSECwas able to reah self-onsisteny for these large metalli lusters within reasonable time length.Physial signi�ane of the omputed data will be disussed in [51℄. It took more than 100 SCF steps61



H size nstate #MVp #SCF total_eV/atom 1st CPU total CPU3262312 2160 × 2 12989799 146 -795.22329 16.55 hrs. 140.68 hrs.Table 11: Fe360, using 24 proessors. m = 20 for Chebyshev-Davidson; m = 17 for CheFS.to reah self-onsisteny, whih is generally onsidered too high for SCF alulations, but we observed(from alulations performed on smaller iron lusters) that eigenvetor-based methods also required asimilar number of SCF steps to onverge, thus the slow onvergene is assoiated with the di�ultyof DFT for metalli systems. Without CheFS, and under the same hardware onditions as listed inTables 9�11, over 100 SCF steps using eigenvetor-based methods would have required months toomplete for eah of these lusters.7 Conluding RemarksWe developed and implemented the parallel CheFSI method for DFT SCF alulations. WithinCheFSI, only the �rst SCF step requires a true diagonalization, and we perform this step by the blokChebyshev-Davidson method. No diagonalization is required after the �rst step; instead, Chebyshev�lters are adaptively onstruted to �lter the subspae from previous SCF steps so that the �lteredsubspae progressively approximates the eigensubspae orresponding to oupied states of the �nalHamiltonian. The method an be viewed as a nonlinear subspae iteration method whih ombinesthe SCF iteration and diagonalization, with the diagonalization simpli�ed into a single step Chebyshevsubspae �ltering.Additional tests not reported here, have also shown that the subspae �ltering method is robustwith respet to the initial subspae. Besides self-onsisteny, it an be used together with moleulardynamis or strutural optimization, provided that atoms move by a small amount. Even after atomidisplaements of a fration of the Bohr radius, the CheFSI method was able to bring the initial subspaeto the subspae of self-onsistent Kohn-Sham eigenvetors for the urrent position of atoms, with nosubstantial inrease in the number of self-onsistent yles needed.CheFSI signi�antly aelerates the SCF alulations, and this enabled us to perform a lass of largeDFT alulations that were not feasible before by eigenvetor-based methods. As an example ofphysial appliations, we disuss the energetis of silion lusters ontaining up to several thousandatoms.8 AknowledgmentsWe thank the sta� members at the Minnesota Superomputing Institute, espeially Gabe Turner, forthe tehnial support. There were several oasions where our large jobs required that the tehnialsupport sta� hange ertain default system settings to suit our needs. The alulations would nothave been possible without the omputer resoure and the exellent tehnial support at MSI. This62
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