
7 SCIENTIFIC HIGHLIGHT OF THE MONTH: ”Harnessing

the power of modern package management tools for a large

Fortran-90-based project: the mutation of ABINIT”

Harnessing the power of modern package management tools for a large

Fortran-90-based project: the mutation of ABINIT

Y. Pouillon1,2,3, X. Gonze1

1 European Theoretical Spectroscopy Facility (ETSF),

Université Catholique de Louvain - Louvain-la-Neuve - Belgium
2 Universidad del Páıs Vasco (UPV/EHU) - Donostia-San Sebastián - Spain

3 European Theoretical Spectroscopy Facility (ETSF) - Donostia-San Sebastián - Spain

Abstract

ABINIT is a Fortran 90 free software application that allows the atomic-scale simulation

of properties of matter, thanks to Density Functional Theory and Many-Body Perturbation

Theory. It is used by more than thousand individuals, who enjoy the wide spectrum of

properties that ABINIT allows to compute easily. Several dozen developers contribute to

ABINIT from different parts of the world. In 2004, it was perceived that a change of the

paradigm for source and package management was needed, in order to benefit from standard

package management tools. Thus started a noticeable mutation of ABINIT.

Although the restructuration of the Fortran 90 source directories was needed, the biggest

clarification arose from understanding the different kinds of people linked to ABINIT, i.e.

end-users, developers and maintainers, and the parts of the package they should have access

to or control of. Previously, everyone was modifying the source and build system, while

further advances required more specialisation in the community, e.g. the management of ex-

ternal libraries, in growing number, which has to be done by skilled maintainers. To address

the issues raised by Fortran compilers, and because the ABINIT developers are mostly scien-

tists, it was decided to provide support beyond the GNU Autotools (nowadays the paradigm

for binary/package generation) by developing a new build system on top of it. While building

ABINIT is now much simpler for end-users, we have had to deal carefully with the additional

complexity encountered by developers and maintainers. We discuss the issues that appeared

during the mutation.

All these efforts now guarantee further extensibility and maintainability of ABINIT,

and have nicely improved its visibility in different communities, with the integration of

the packages into the Debian, Gentoo and Ubuntu Linux distributions. Being generic and

portable, the new build system might be used in the future by other projects as well.

57

7.1 Introduction

ABINIT is a feature-full software package for the atomic-scale simulation of molecules and

materials, based on Density Functional Theory (DFT) and Many-Body Perturbation Theory

(MBPT). Though it is tuned to perform best on periodic systems like crystals, ABINIT is

nevertheless able to deal with surfaces and molecules. Not only does it provide valuable infor-

mation on the geometries of all these systems, it gives access to their electronic, dynamical and

dielectric properties as well. Providing 16 tutorials and a lot of help, its companion website,

http://www.abinit.org/, lets the newcomer step-in smoothly and discover progressively all of

its features.

Started in 1997, on the basis of a legacy code, ABINIT has been being written by scientists for

scientists, and delivered under the terms of the GNU General Public License (GPL) since 2000.

Enjoying the freedom, openness and conviviality found within the project, several dozen devel-

opers have joined the community, bringing unexpected contributions as well. ABINIT counts

now more than 1000 registered users and an average of 45 regular contributors from all around

the world. In addition to its 500,000 lines of Fortran 90 contained in a thousand files, ABINIT

features also about 600 automatic tests. For details about the scientific use of ABINIT, we refer

the reader to Refs. [1, 2].

From the very start of the ABINIT project, many software engineering concepts were kept in

mind, especially those related to portability, self-testing and self-documentation. As an example,

every source file provides a header describing the purpose of the routine it contains, as well as its

arguments, and other useful information, that may be processed by RoboDOC1 to generate the

HTML documentation for the source code2. Yet, despite the rigour that has been the basis of

its development, ABINIT has not been originally designed to handle properly extensive code re-

use. Its structure was quite intermixed and no much care was taken about packaging standards.

Beyond the quite easily handled BLAS/LAPACK library for linear algebra operations, and the

— already more difficult to address — MPI library for parallelism, the demand expanded a lot

from 2004.

Indeed, that year, the NANOQUANTA Network of Excellence (NoE), consisting in 10 research

teams sponsored by the European Union (EU) was launched. One major goal of NANOQUANTA

was the integration of the software developed within the network into an unified distribution of

which ABINIT is a major component. The interoperability with several other codes guarantees

that many kinds of complex calculations can be smoothly performed. Such efforts continue and

expand within the European Theoretical Spectroscopy Facility (ETSF)3. As a consequence, it

was needed to link ABINIT with NetCDF4 for architecture-independent data exchange, XMLF90

for CML input/output, and the Nanoquanta exchange-correlation library, a C-based library

1RoboDOC home page: http://www.xs4all.nl/~rfsber/Robo/robodoc.html.
2See http://www.abinit.org/package/robodoc/masterindex.html.
3Website of the ETSF: http://etsf.eu/
4NetCDF home page: http://www.unidata.ucar.edu/software/netcdf/

58

coming from the Octopus code [3], providing routines that any DFT-based code may benefit

from. These have been joined recently by a NetCDF-based platform-independent data-exchange

library named ETSF I/O [4,5]. The latter implements the file format we described in the Octo-

ber 2007 highlight of this newsletter (#83). ABINIT has also been chosen as a basis by another

EU-sponsored endeavour, codename BigDFT5, the purpose of which is to eliminate the bottle-

necks limiting the applicability of DFT to “large systems”, i.e. containing more than 10000

atoms. Last but not least, the possibility of quantum transport calculations through the use of

Wannier90 [6] started not much later afterwards.

As a consequence, 2004 became a turning point. When the support for external libraries be-

came somewhat problematic, it felt obvious that the growth would soon become unmanageable

if no action were undertaken quickly. Although very portable, the home-made build system was

rather monolithic, e.g. with two shell-scripts generating a primitive Makefile for each directory

containing the Fortran 90 routines, and was only able to handle Fortran properly. Its limits

with respect to external libraries were obvious for some compilers and architectures.

As most users are running ABINIT in Unix-like environments, and because of the free-software-

oriented philosophy of the development model, it has been decided to bring the code as close

as possible to the GNU Coding Standards. Thus started an extensive and in-depth mutation

of the whole package which is now reaching its final steps. Between its 4.4 and 5.0 versions,

ABINIT underwent a series of preparatory minor modifications: enforcement of the strict pro-

gramming rules, already known within the ABINIT developer community as the “abirules”;

large enhancements within the subroutine headers, in particular addition of intents for all ar-

guments; decompression of the sources into a abinit-<version> directory, instead of the current

directory; complete restructuring of the source directory tree; adoption of a decentralised Ver-

sion Control System (VCS): Bazaar6. While these preliminary steps were quickly addressed by

a few selected developers within a small amount of time, the complete rewriting of the build

system that followed, nicknamed “breaking the monolith”, required many more efforts and a

much broader culture in software programming and management. The former “monolith” was

broken into many pieces, improving the distinction between the three levels of contributors

along: end-users, developers, and maintainers (see Fig. 1).

7.2 Developing software in scientific environments

Before fully entering into the details, and in order to facilitate the understanding of our ap-

proach, let start with an overview of the situation. The ABINIT developer community is mostly

made of physicists and chemists. As such, the typical ABINIT contributors do not have a very

extended culture in computer programming, which means that in most cases their development

expertise is limited to Fortran 90. Furthermore, since most ABINIT developers are hired to

carry out scientific research, they cannot devote too much time in taking a software engineer’s

point of view. Another essential point to account for is the lack of comfort accompanying High-

5See http://www-drfmc.cea.fr/sp2m/L_Sim/BigDFT/index.html for details.
6See http://bazaar-vcs.org/ for details

59

Performance Computing (HPC) environments. Working in a HPC environment may indeed

imply a lot of constraints: restricted access, the need of a custom MPI installation for paral-

lelism, unavailability of recent versions for software like Python and the Autotools, necessity for

very specific skills, to cite the most obvious ones. In some cases, security issues linked with the

potential military applications of the results finish to make things very involved.

All this means that the build system has to take care of as many aspects as possible, far beyond

what standard source management tools provide, and hide as much complexity as possible to the

end-user. In particular, its interface has to be minimalistic and clear. One precision: by using

”source management”, we mean everything related to the build and distribution of the source

code; other aspects, like version control, also play a major role in this respect, but will not be

discussed here. Only maintainers should have to modify the build system, and that is why we

have opted for a configuration-file-based approach for users and developers. Before everything

else, we have defined minimum software requirements: Perl, Python, GNU Make or equivalent,

GNU M4, GNU Autoconf, GNU Automake, and GNU Libtool, the three last ones forming the

so-called “GNU Autotools”. Perl and Python were chosen for performance and clarity, and they

definitely constitute too large packages for us to provide any support for them. However, we

were able to find a version combination of the Autotools which can be installed in a user’s home

directory, in case it would not be possible for them to have recent versions installed system-

wide7. Alternative systems have been thought about as well, but they do not provide sufficient

support for Fortran 90. The GNU Autotools are the only ones able to conciliate the growth of

ABINIT with the preservation of its portability, both by the high number of their features and

because of their ubiquity among the Free Software community.

7.3 The build system

The new build system of ABINIT constitutes a software layer above the Autotools. Let us first

examine important characteristics of these.

One of the fundamental concepts of the Autotools has lead our way: the end-user does not have

to care about the build system, in particular it is not necessary to have the Autotools in-

stalled to build the source code. A distributed source tree is fully autonomous and contains

both the data and the code to be built out-of-the-box, by end-users, through the well-established

’configure; make; make install’ trilogy.

On the other hand, the developers and the maintainers have to install the Autotools on their

development platforms, because the build system has to be kept synchronised with the source

code, which means that some files (e.g. the configure script) have to be regenerated on a regular

basis. To make an analogy between an Autotools-based build system and a scientific code, we

can say that:

7One of us (Y.P.) wrote an installer script taking care of everything, and made the software bundle available

on the ABINIT web site. See http://www.abinit.org/gnu/ for details.

60

• the configure.ac is the source code of the main program;

• the M4 macros are the libraries (like BLAS, LAPACK, NetCDF, etc.);

• the configure script is the compiled code, Autoconf being the compiler;

• the Makefile.am files are the input data;

• the Makefile.in files are the preprocessed input data, Automake being the preprocessor;

• the Makefile files are the output data coming out from configure;

• the make program is a post-processor;

• distributing an Autotools-ready source package is like distributing a ready-to-use scientific

code along with some example input data.

In order to facilitate future enhancements, improve modularity and simplify the build system,

the physical and logical structures of the source directory tree have been first aligned, i.e. the

directory tree has been split into 9 blocks (see Fig. 1), with corresponding global configuration

files when necessary. In addition to these global files, one or two other local configuration files

can be found in each of the core source libraries, as well as in some external libraries (see Fig.

2):

• abinit.src (A1), that lists the source files of a library, identifying Fortran modules, and

controlling which files will be part of the libraries; this lets developers easily try and

compare different ways to implement a feature;

• abinit.amf (A2), containing additions to Makefile.am files, such as explicit dependencies

between object files, or lists of extra files to put in the source tarball; this is necessary

when the build process cannot be fully automated.

Apart from the configure.ac file which has to be located in the top source directory, the whole

build system is concentrated in one “pluggable” directory we have called config/. It contains

the global configuration files mentioned above, as well as the scripts generating the files required

to build ABINIT. These scripts take care of the pre-build stage shown in Fig. 2. Even if it

cannot cover all situations, this design is both very flexible and extensible, and still usable by a

relatively unexperienced developer, provided that the corresponding documentation is available.

Taking care of the build system itself has been attributed exclusively to the maintainers, in

order to set the developers free from learning the internals of the Autotools and provide a better

overall stability. As such, the developers of the code can be seen as the end-users of the build

system, while the maintainers of the code are the developers of the build system. This also

means that regular communication during the whole development process has become a key

aspect, which was not the case in the version 4 of ABINIT. In other words, the developers now

concentrate on the source code, while the maintainers provide source code management services.

61

Most of the issues we have to face when building ABINIT come from the Fortran compilers.

In particular, their user interfaces are not-at-all standardised, and the compilation of Fortran

modules produces the very annoying .mod files. These are binary, which means that, contrary to

C header files, they are not platform-independent. Much worse, they are incompatible from one

compiler to the other and may obey various conflicting naming conventions. Another painful

issue is that a few compilers do not use the ’-I’ option to look for modules.

Needless to say, dealing nicely with such a situation is way beyond the average software-

engineering skills of most scientists, and the Autotools do not provide any solution in this case.

We have thus addressed these issues by providing compiler-vendor auto-detection, “tricks”, and

default optimisation flags for most Fortran compilers, at least those used within the ABINIT

community. By “tricks”, we mean workarounds one has to apply to have a Fortran compiler

working properly, e.g. where to apply specific flags to obtain 64-bit objects.

Most build parameters are only machine-dependent, (i.e. not version-specific), and change quite

rarely. Then it is very convenient for both users and developers to store them into config files.

In order to have ABINIT built seamlessly on several machines sharing the same home directory

— which is a relatively common situation in HPC environments, we have named these config

files $HOME/.abinit/build/<hostname>.ac, i.e. the name of the machine plus an ’ac’ extension

to tell that the file is meant to be read by Autoconf’s configure script.

One very delicate point is MPI support, both as it is critical for HPC and because there is no

standard neither for its structure nor for its location. After a few failed attempts, we finally

decided to push towards maximum flexibility, providing as many options as possible. Even if

these options have to be set manually, it will typically be done every other year. It is possible

either to let the build system auto-detect natively MPI-capable Fortran compilers or to use

command-line parameters, e.g. specifying a prefix for the MPI installation. As time goes by, a

more and more comprehensive database of examples is made available as well, saving developers’

and users’ time more and more efficiently.

7.4 Using the build system

End-users do not need know what the build system is, since they are not supposed to modify the

sources. They may even ignore that it exists at all, as they will mostly download a tarball and

build the code once in a while. For them, the mutation of ABINIT only means enhanced com-

fort. What they only have to know is that the build of ABINIT now follows the well-established

’configure; make; make install’ trilogy, and that they should store critical information into

a config file. In most situations, once the latter has been set and proved to lead to reliable bina-

ries, one may forget anything about the build parameters for quite a while. A fully documented

template is provided with the source code of ABINIT to facilitate the setting of these parameters.

For developers, the new build system of ABINIT introduces the concept of a pre-build stage,

62

necessary to ensure a permanent consistency between the source tree itself and the metadata

used to build it. The front-end script makemake performs all required steps that make the build

of ABINIT possible (see Fig. 2):

1. Update the source tree according to the latest information available. Some routines are

written by scripts and depend on the contents of other source files, like e.g. the routine

checking the names of input variables. The most important and time-consuming part is

dedicated to the parsing of all ABINIT source files and the subsequent generation of the

Fortran interfaces for all the routines.

2. Update parts of the build system in order to follow accurately the evolution of the ABINIT

source tree. This critical step consists in the writing of M4 macros by the build system

itself. For instance, command-line options for the configure script are declared and a parser

is written so that their validity and consistency can be checked at configure-time. Another

example is the declaration of all the makefiles, which vary in number and location with

time.

3. Generate prototype makefiles for Automake. Each of these files describes in a compact

way how to build the contents of a directory. They highly depend on the auxiliary config

files found in many source directories.

4. Run the Autotools in order to make the source tree autonomous and distributable. This

step gathers all hand-written and script-written M4 macros into one file (running aclocal)

and uses them in various places when creating the configure script (running autoconf).

It also creates a C header input file (runing autoheader) that will store all preprocessing

options later when processed by the configure script. Last but not least, it transforms the

prototype makefiles into input data for the configure script (running automake).

Let’s now have a look at the pre-configuration stage also described in Fig. 2. By having the

ABINIT build system partly writing itself we suppress the need for developers to edit config-

ure.ac, which is the most delicate part of any autotools-based build system. Moreover, having

everything grouped under one command and performed systematically ensures that the source

tree will always be in a consistent state. When developers add, move or delete a file or a direc-

tory, they have to update the corresponding metadata and run the makemake script. In case of a

file, they mostly have to change one line in the abinit.src file (A1) found in the same directory; in

the case of a new pre- or post-processing program, they have to edit the config/specs/binaries.cf

(D1) file as well; for a directory containing a library, editing config/specs/corelibs.cf (D2) will

be necessary. To facilitate the process, all these files are self-documented.

Providing the configure.ac script as well as a set of hand-made useful M4 macros is under the

responsibility of the maintainers, who are the only ones who should edit the other global config

files, as it will likely have consequences on the behaviour of the whole build system. Adding

support for a new platform, compiler, or plug-in are also maintainer tasks, since such operations

involve writing or modifying M4 macros, as well as editing the configure.ac script. Therefore, in

contrast to what was happening until ABINIT 4, some communication is now necessary when

63

performing a certain number of actions, and this is precisely where the mutation of the code has

involved a mutation of the community: roles have become specified more clearly and protocols

have had to be defined.

7.5 Outcome

At present, several lessons have been drawn from the mutation. First, it is not yet possible to

provide full auto-detection: the <hostname>.ac file is needed on most platforms, especially to

deal with MPI. Now that there is a Fortran 90 compiler in the GNU Compiler Collection (GCC),

the support of Fortran 90 by the GNU Autotools is greatly improving and the user interfaces

of the Fortran compilers will hopefully tend to unify. This is however far from being the case

for MPI, as system administrators are completely free to install it as they wish. Second, the

jump from a home-made build system the developers were used to, towards a sophisticated build

system based on the Autotools has generated some temporary frustration within the developer

community. Indeed, the GNU Autotools generate automatically a large number of files defying

human readability. During the transition, when the documentation on the new build system

was still inexisting, most developers would try to solve their build-time problems by reading

and hacking these files, which is both a nightmare for everybody and also the wrong way to

proceed. Now, after a few years of practice, this issue has completely disappeared but took

a long time to be eliminated. Third, while the usual developers could read, understand and

modify the former build system according to their needs, a full handle of the new one is now

only possible for maintainers. Though it is frustrating for some of the expert developers to lose

the full understanding of the package they had previously, this is the price for the continued

growth and complexification of the ABINIT package, as the Autotools are invisibly taking care

of countless details. A good deal of the challenge is in the shift from independent individual

contributions towards partnerships, and from control to mastery, with a particular emphasis on

the critical importance of communicating before hacking .

But one of the nicest results of this big mutation is that ABINIT has attracted the attention of

several software packagers, who have also contributed in an interesting way to the improvement

of its overall quality. ABINIT is now distributed with the Debian, Gentoo and Ubuntu Linux

distributions, though no request or effort has been made on our side. This unexpected acknowl-

edgment by the Free Software community is very encouraging and has a lot of nice side-effects.

On one hand, the visibility and availability of the software are greatly improved, publicity is

made for the related projects, and the user base expands faster. On the other hand, it puts

an additional pressure on the developers and maintainers to produce higher-quality code and

documentation. In any case, having standard packages available is a neat feature when it comes

to deploy the software on a bunch of machines for schools or lectures.

Along with the 5.6 version of ABINIT, the new build system has reached a good level of qual-

ity and robustness. Its user interface is now frozen and most of the upcoming bug fixes and

improvements will only appear as minor changes to end-users. We have successfully tested the

automatic generation of Fortran 90 interfaces for all the subroutines and functions contained

64

in ABINIT, which was an extremely critical step. This has put a definitive end to the era of

quick-and-very-dirty developments. In order to have the build system fitting the needs of both

users and developers, we have allowed as many degrees of freedom as possible. As a bonus to

our efforts, the set of Python scripts forming the new build system might be used by other in-

termixed C/C++/Fortran 90/Python software projects; actually the build systems of BigDFT

and ETSF I/O have already imported some of our ideas.

References

[1] X. Gonze and et al. First-principle computation of material properties: the ABINIT software

project. Comput. Mater. Sci., 25:478–492, 2002.

[2] X. Gonze and et al. A brief introduction to the ABINIT software package. Z. Kristallog.,

220:558–562, 2005.

[3] A. Castro and et al. Octopus: a tool for the application of time-dependent density functional

theory. Phys. Stat. Sol. B, 243:2465–2488, 2006.

[4] X. Gonze and et al. Specification of an extensible and portable file format for electronic

structure and crystallographic data. Comput. Mater. Sci., 43:1056–1065, 2008.

[5] D. Caliste, Y. Pouillon, M. J. Verstraete, V. Olevano, and X. Gonze. Sharing electronic

structure and crystallographic data with ETSF IO. Comput. Phys. Comm., 179:748–758,

2008.

[6] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari. Wannier90:

A Tool for Obtaining Maximally-Localised Wannier Functions. Comput. Phys. Comm.,

178:685–699, 2008.

Acknowledgments

This work was funded by the European Union’s Sixth Framework Programme through the

Nanoquanta Network of Excellence (NMP4-CT-2004-500198). Additional support was provided

by the FRFC project #2.4502.05 and the EU project NEST-2003-1 ADVENTURE 511815

(BigDFT). We would like to warmly thank T. Deutsch, M. Mikami, M. Torrent, M. Verstraete,

P.-M. Anglade and D. Caliste (by order of appearance) for their precious help and feedback

during the development and early tests of the new build system. We are also very grateful

to M. Marques and M. Oliveira for their help during the implementation of the support for

the LibXC. Technical support from the high-performance computing and mass-storage facil-

ity (CISM) in Louvain-la-Neuve was greatly appreciated as well, with very special thanks to

J.-M. Beuken. We thank all the ABINIT community members for their patience, understand-

ing, and cooperation all along this great mutation too, in particular D.R. Hamann, M. Côté,

J. Zwanziger, and M. Giantomassi. Y. Pouillon is also grateful to L. Ferraro and Y. Leroy for

very helpful and interesting discussions.

65

Figure 1: Overall view on the mutation of ABINIT, based on the restructuring of the code and

the implementation of a new build system, providing better modularity and extensibility.

66

Figure 2: Steps involved in a build of ABINIT. As many files are generated automatically, the

process requires different classes of contributors to operate at different steps and to co-operate

with one another.

67

