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Abstract

Physics at the nanoscale has emerged as a field where discoveries of fundamental physical
effects lead to a greater understanding of the solid state. This area of research is additionally
driven by high hopes for technological relevance and a high pace of experimental achieve-
ments in fabrication and characterization has been witnessed in the last decade. From the
side of theoretical modeling —so successful in solid state physics in general, since the emer-
gence of density functional theory— we must acknowledge a weak connection to state of the
art experimental achievements in the realm of nanostructures. The cause for this partial
disconnect resides in the difficulty of the matter. Nanostructures being small in size but
large in the number of atoms constituting them, and the relevant observables being accessi-
ble only through proper treatment of excitations. The large number of atoms and the need
for excited sate properties makes this a challenging task for theory and modeling.

In this contribution we will outline the framework, based on empirical pseudopoten-
tials and configuration interaction, to obtain quantitative predictions of the excited state
properties of semiconductor nanostructures using their experimental sizes, compositions and
shapes. The methodology can be used to describe colloidal nanostructure of few hundred
atoms all the way to epitaxial structures requiring millions of atoms. The aim is to fill the
size gap existing between ab initio approaches and continuum descriptions. Based on the
pseudopotential idea and the developments of empirical pseudopotentials for bulk materials
in the early 60’s, the method has evolved into a powerful tool where the pseudopotential
construction has lost some of its empirical character and is now based on modern density
functional theory. We will present the construction of these potentials and the way the
ensuing wave functions are used in a subsequent configuration interaction treatment of the
excitation. We will illustrate the available capabilities by recent applications of the method-
ology to unveil new effects in the optics of nanostructures, quantum entanglement and wave

function imaging.
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1 Introduction

The new class of materials formed by semiconductor nanostructures has a large and mostly
unexplored ensemble of possible applications. For instance, colloidal semiconductor
nanostructures are used today in biology and medicine as light-emitting markers that remain
inert in the bio-environment. They can help to resolve structures and processes within the
cells and can tag body substances. In the area of classical information science and technology
they have a strong potential for providing efficient tunable light sources and light detectors. In
general, optoelectronics could profit from the developments of semiconductor nanostructures.
Following a rather long-term goal, in the area of quantum information science and technology
(towards the realization of single-photon sources, sources of entangled photons, or quantum
gates and register all the way to a quantum computer), the use of quantum dots is one of the

most promising concepts and is lead by a world-wide effort.

As a general remark one could note that the field of nanostructure science is driven by a high
pace of experimental achievements. Experimentalists are now able to grow nanostructures of
high quality from diverse semiconductor materials [1] with the ability to dope them [2-9].
The area of characterization reveals increasingly complex behavior, including the appearance
of high-energy excited excitons [10], charged excitons [11], multi excitons [12], exchange-induced
splittings [13], Coulomb blockade in addition spectra [14,15], spin blockade [16], quantum en-
tanglement [17], enhancement of electron-hole exchange interactions [18], carrier relaxation and
multiplication via Auger processes [19], and the observation of quasiparticle wave functions

through magnetotunneling experiments [20] and scanning tunneling microscopy [3,21,22].

Nanostructures have therefore potential for applications, they cover a diverse set of materials
and structures, and they revel complex behavior revealed through a growing number of char-
acterization methods leading to interesting and fundamental physical effects. At this point
we should emphasize that the nanometer-scale that is the focus of nanotechnology describes
structures with dimensions of several nanometers up to hundreds of nanometers. While these
structures are “small” they do comprise thousands up to hundred thousands of atoms. In short:
nanometer-scale means thousands of atoms. Smaller structures are referred to as clusters
and are often of poor quality, showing broad size and shape distributions, poor surface passiva-
tions and optical properties. We must conclude that to address the relevant size regime and the
relevant physical observables, we need to be able to address a large number of atoms, including

excitations and many-body effects.

The current status of theoretical capabilities for describing the electronic and optical properties
of semiconductor nanostructures is as follows. Optical properties can be calculated from atom-
istic first-principles (Quantum Monte Carlo, time-dependent density functional theory, GW
and Bethe Salpeter,...) for nanosystems containing few to 200 atoms (depending on the level of
approximation). Pending a revolutionary change in our current approach to many body physics,
extensions of these approaches are unlikely to be able to address the size regime described above.
However, the development of first principles ab initio methods is important since it gives many
insights into the physics in strong confinement and can often be used as benchmark. Con-
tinuum models such as effective-mass and k - p [23], can handle macroscopic nano systems

but fail to address nanostructure where atomistic effects become important [24-26]. Empirical

41



Tight binding models [27,28] can presently deal with millions of atoms but lack atomistic
wave functions (since the Hamiltonian is directly parametrized) which constitute the essence of

the many-body problem.

In this contribution we will present the empirical- and semiempirical-pseudopotential meth-
ods that can be used in conjunction with configuration interaction to obtain many-body wave
functions of structures with millions of atoms. More than the bare empirical pseudopotential
construction, we will survey the different steps that can lead to the calculation of the observ-
ables relevant to modern experiments, using the experimental nanostructure geometry. We will

conclude by presenting three recent applications of the developed formalism.

2 Method

A summary of the methodology is given in Figure 1 in the form of a flowchart summarizing the
different components of our current approach. Figure 1 is divided into three logical segments,
labelled as Ground State, Fxcitations and Observables, feeding into each other. The calculation
of the ground state requires the input of the geometry and relaxation of the atomic positions to
minimize strain. The generation of empirical pseudopotentials is the prerequisite for the con-
struction of the total crystal potential that is subsequently used in the Schrodinger equation.
The ensuing eigenfunctions are fed into a configuration interaction treatment to obtain excita-
tions. Finally, from the many-body wave functions, observables can be obtained through the
use of post processor tools. These different components will be introduced by using Figure 1 as
the thread of the discussion.

2.1 Input geometry and geometry relaxation

In the first step of the flowchart in Fig. 1, Input Geometry, we construct a supercell containing
the nanostructure. The shape, size and composition are taken as initial input from experiments
and the atoms are placed, at first, on a regular grid representing an initial guess for the final
atomic positions to be obtained in the next step. The atoms within the supercell are then allowed
to relax in oder to minimize the strain energy. In most cases, the system of interest is too large
to be handled by standard density functional theory and we make use of a classical atomistic
force field model [29-31], the Valence Force Field (VFF) method, including bond bending, bond

stretching and bond bending-bond stretching interactions:

nn; nn;
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2
where Ad?j = [[(RZ — R;)? - dgj2] / d%} . Here R; is the coordinate of atom i and d?j is the ideal
(unrelaxed) bond distance between the atoms ¢ and j. Also, Hgik is the ideal (unrelaxed) angle
of the bond angle j —i — k. The """ denotes summation over the nearest neighbors of atom 4.

The bond stretching, bond angle bending, and bond-length/bond-angle interaction coefficients
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Figure 1: Flowchart of the methodology underlying the atomistic calculation of various observables for semicon-
ductor nanostructures. The flowchart is divided into three logical sections: Ground State, Excitations (many-body

part), and Observables. The different computational parts are described in the text.

al(-Jl.)(E ), Bjik, 0jik are directly related to the elastic constants in a pure zincblende structure
[32]. The second-order bond stretching coefficient a(® is related to the pressure derivative of

the Young’s modulus by %, where B = (C11 + 2C12)/3 is the Young’s modulus.

An atomic force field is similar to continuum elasticity approaches [30] in that both methods
are based on the elastic constants, {Cj;}, of the underlying bulk materials. However, atomistic
approaches are superior to continuum methods in two ways, (a) they can contain anharmonic
effects, and (b) they capture the correct point group symmetry. The calculation of the energy
and forces from expressions such as Eq. (1) can be performed within seconds for millions of

atoms, allowing for a manageable strain minimization of large nanostructure.

2.2 Pseudopotentials

It is advantageous to split the electrons into core and valence electrons. The valence electrons
occupy the outer shells and interact with the potentials of the neighboring atoms. They are
responsible for the interatomic binding, in contrast to the atom-localized core electrons. In the
frozen core approximation, the core electrons are assumed to be unperturbed by their environ-
ment and the Schrédinger equation has to be solved only for the valence electrons. The assump-
tion that the core electrons are independent of their surroundings is poorly fulfilled [33], but the
change in energy vanishes in the first order of density change [33,34] making this approximation
practical. The frozen core approximation is the founding assumption of pseudopotentials.
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The Pauli principle requires from the valence wave functions to be orthogonal to the core wave
functions leading to valence wave functions that are fast oscillating in the core region with high
kinetic energy. This behavior can be pictured with a virtual repulsive potential at the ion cores.

It turns out that this repulsion is nearly perfectly compensated by the attractive core potential,

both effects leading to a weak effective potential acting on the valence electrons’.

Following the formulation of Phillips and Kleinman [35] the formal justification of pseudopoten-
tials can be given as follows. [¢)) represents the valence wave functions and {|x,)} the core wave
functions with eigenvalues {E,, }. The aim is to construct a node-free pseudo—wave function |¢).

Initially, we assume:

) = |é) + ch’Xn> . (2)
From the orthonormality relation we obtain:

(Xnl¥) = 0= (xnl®) + cn — cn = —(Xn|®) (3)

and

) = [8) = > [xn) (xnl®) (4)
This expression for the valence wave functions is used in the Schrédinger equation H|y) = E)):
Hig) = Hlg) = > Hxn)(xnl6) = Hl) = > Enlxn) (xalo) = El¥) (5)
= Elo) =Y Elxa)(xald) (6)
and the terms are rearranged:

H|¢) + > (E = En)lxn) (xal$) = El¢) . (7)

The node-free pseudo—wave functions fulfill a Schrodinger equation with an additional energy

dependent non-local pseudopotential \A/nlz

i)+ {V + 3 (B = E)lxn) (xal J10) = El9) ®)

Vi

where H has been split into kinetic T and potential V terms. The expression in curly brackets
is the pseudopotential, which is made of a positive attractive part V and a negative repulsive
part \A/nl. The eigenvalues of the Schrodinger equation for the real— and the pseudopotential are

identical since Eq. (7) can be rewritten as:
(WIH|9) + D (E = En){@lxa) (xnld) = E@WI9) (9)

and the core and valence states must be orthogonal: (¢|x,) = 0.

The pseudopotential at this point is not necessarily soft since \Afnl includes core states but it is not

unique, since (E — E,) can be arbitrarily replaced. This non-uniqueness will be used to generate

!This compensation is only effective when electrons with the angular momentum of the valence electrons are

present in the core. A lack of thereof lead to strong (or hard) pseudopotentials.
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soft pseudopotentials. The pseudopotential is also non-local since the projector |x,){x»| applied
on the pseudo-wave functions yields a volume integration |y, ){xn|®). The pseudopotential also

depends on energy and acts mainly in the core region.

At this point where we have established the partial cancellation of attractive and repulsive parts
of the potential [35,36] and given a formal derivation for weak pseudopotentials, there are two

possible routes.

e The construction of ionic pseudopotentials where the interaction of valence electrons is ex-
plicitly taken into account. This route has been very successful, especially when ab initio
calculations for the atom have been used to construct transferable and accurate pseudopoten-
tials. One of the requirements for such pseudopotentials is to deliver pseudo-wave functions
identical to the real all-electron wave functions outside of a certain cut-off radius. This
guarantees to obtain accurate binding properties. There are several implementations of ionic
pseudopotentials starting with norm-conserving pseudopotentials where the generalized eigen-
value problem of Eq. (8) (the pseudo-wave function are not orthogonal, Eq. (4)) is transformed
to a standard eigenvalue problem where the pseudo-eigenfunctions satisfy the orthonormality
condition. The norm conservation guarantees that the important scattering properties only
change in second order with a change in energy [37-40] which is the key ingredient for the
good transferability of these potentials. The most common construction procedures are due
to Vanderbilt [41], Hamann, Schliiter and Chiang [40,42] , Troullier and Martins [43], and von
Kerker [44]. Another type of ionic pseudopotentials are ultrasoft pseudopotentials (US) [45,46]
where the norm-conservation is not explicitly required for the pseudo valence wave functions
at the expense of introducing an auxiliary function acting at the ionic cores. Yet another
type of ionic pseudopotentials are used in the projector augmented waves (PAW) [47] method.
Like for ultrasoft pseudopotentials, projectors and auxiliary functions are introduced but the
all-electron wave function is kept. This involves in the calculation of the integrals smooth func-

tions extending outside the core region and functions localized inside of muffin-tin spheres.

e The construction of total pseudopotentials that include the interaction of not only the core
electrons but of all electrons. This is the route taken in the construction of empirical and

semiempirical pseudopotentials, as described in the next section.

2.3 Empirical pseudopotentials and their construction

The empirical pseudopotential method (EPM) (see Ref. [48] and references therein for a more
detailed review of the method and a historical introduction) involves a fit of the reciprocal space
pseudopotential V' (G) to experimentally known quantities, such as certain points of the band
structure. The first assumption is that the self-consistent effective pseudopotential of the crystal
(we use capital V for crystal potentials and lower-case v for atomic potentials) can be written
as a sum of atom-centered pseudopotentials:
V() = Z vo(r =Ry — 10 ) (10)
«,7,n
where n is the index for the primitive unit cells and R,, the corresponding lattice vector. «

stands for the atom type and j is the atom index. r, ; is therefore the basis vector for the atom
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j of type a. Simplifying, at first, to a crystal with only one type of atoms (e.g. Si), v, we can

write the potential in reciprocal space as
V() = ) v(G)S(G)ST (11)

with the structure factor

S(G)==>) e i6n 12
R S (12)
J
where n is the number of basis atoms. The structure factor only depends on the geometry. The

potential v(G), also called the form factor, is treated in the EPM as disposable parameter.

To illustrate the practical implications of this formalism, we take the example of Si in the
diamond structure. The lattice vectors in real and reciprocal space are given by A and B and

the vectors of the two basis atoms by r and —r:

110 , 11 -1 1
A=%10 11 , B=""| -1 1 1 Cor=21 1| . (13
2 ag 8
101 1 -1 1 1

In this case, the structure factor from Eq. (12) simplifies to
S(G)=cos(G-r) . (14)

A few reciprocal lattice vectors sorted according to their length are given in Table 1. According

Table 1: Reciprocal lattice vectors G with smallest length in diamond structure with lattice

constant ag.

0G| (2G)° |G r
000 0 0
{111} 3 3m/4
{200} 4 /2
{220} 8 7r
{311} 11 5 /4

to Eq. (14) and Table 1 the structure factor for G2 = 4(27/ag)? vanishes. It turns out that for
Si and most conventional group IV, and III-V semiconductors the potential G becomes week
for reciprocal vectors larger than G? = 11(27/ag)?, so that truncating the expansion at this
point turns out to be a reasonable approximation. The G=0 component of the form factor
simply gives the averaged potential and shifts the band structure rigidly along the energy axis.
If we further assume that v(r) is spherically symmetric the form factor takes the form v(G)
and only three different form factors remain. These three factors, v111, v299 and w311 are used
as adjustable parameters to reproduce experimental results, such as the band structure. Early
applications of the method were done for Si and Ge [49, 50] and soon extended to fourteen
different semiconductors [51] with surprisingly accurate results, considering the limited input.

The band structure of most semiconductors can be fitted to high accuracy using this procedure
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giving us the hint that a local potential V' (r) can be used as a mean field to describe the complex

many-body electronic interactions in the crystal.

The application of this idea to calculate the electronic properties of nanostructures requires a
continuous form of v(G) since the few discrete points, v111, va20 and vs11, fail to address a large
structure with a dense mesh of G vectors. The continuous empirical pseudopotential can be
represented, for instance, by a function with 4 parameters aj,as,a3,a4 [52] or by a sum of N
Gaussians with parameters a;, ¢;, b; [53]:

9 N
EPM a1(q” — az) EPM —ci(q—h;)?2
v = ——>5—— or v = E ae” i . 15

(Q) agea4q2 1 (Q) — i ( )

From the empirical atomic pseudopotentials v(q) we construct the bulk crystal empirical pseu-

dopotential V (r) from the sum given in Eq. (10). We solve the Schrodinger equation

o~ 2 o~
Fiti(r) = (o + VEP () + Vo }a(r) = &1 wi(r) (16)

using a basis set of plane waves with a low energy cut-off (e.g., 4.5 Ry for Si in Ref. [52]). At this
point, the parameters from Eqgs. (15) are fitted to reproduce known experimental quantities such
as the bulk band structure at high symmetry points, the effective masses for different bands at
different k-points and along different reciprocal space directions, the deformation potentials, the

surface work function [32,52,53]. The nonlocal spin-orbit interaction can be written as [54, 55]

Vso = D ViO(R) =3 3 Vit (r = Bo)|Pim(R))L - S(Pn(R)| (17)

i Im

where | P, (R;)) is a projector of angular momentum [m centered at the atomic position R,
L is the spatial angular momentum operator, S is the spin operator with components given by
Pauli matrices, and Vlio (r) is a potential describing the spin-orbit interaction. The functional
form of V}fxo(r) was set to a Gaussian and only the effect of p states (I=1) was included in most
recent works [31,56]. In practice this approach leads to a single spin-orbit parameter for each

atom type o.

There have been several modifications to the approach from Eq. (16). The most prominent ones

are (i) The strain dependence of the potential through the local hydrostatic strain Tr(e) [31]:
v (rye) = vg ()1 Te(e)] (18)

where 7, is a fitting parameter. The explicit strain dependence of the potential helps to capture
effects that would enter the picture only through a self-consistent charge rearrangement in
response to compression or expansion, which is absent in the conventional EPM framework.

More sophisticated strain dependences have been introduced for nitride pseudopotentials [57].

(ii) The rescaling of the kinetic energy. In Eq. (16), the kinetic energy of the electrons has been
scaled [31,56] by a fitting parameter 3: —3V?/2. This procedure can be seen as the attempt
to correct for the lack of non-locality in the potential. The introduction of 3 enables to fit both

the band gap and the effective masses with the same set of few parameters.

(iii) The environment dependence of the potential. If the EPM is used to describe common-anion

or common-cation alloys of semiconductors the question of environment dependence needs to
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Figure 2: Flowchart describing the steps necessary to generate a semi-empirical pseudopotential (SEPM).

be addressed. For a common anion semiconductor (e.g., In, Ga;_,As) each anion is surrounded
by n cations of type 1 (e.g., Ga) and 4 — n cations of type 2 (e.g. In). The pseudopotentials
are always constructed from independent binaries (e.g, InAs and GaAs) so that there are two,
likely different, pseudopotentials for the same anion (e.g. As). This is legitimate since the
pseudopotential describes not only the bare atom but also the interaction with its neighbors.
However, the potentials should remain similar enough to guarantee some degree of transferability.
The simplest expression for an As atom surrounded by n Ga and (4 —n) In atoms, is a weighted
sum of the type:

1
vas(nGa, (4 —n)In) = 1 (n ’UE?AS +(4—n) UX‘SAS) , (19)
where vaAS(GaAS) represents the As pseudopotentials derived from InAs (GaAs). With this

approximation, the parameters in Eqgs. (15,17,18) can be slightly modified to correctly reproduce
alloy properties, such as band gap bowing [53,58].

2.4 Semi-Empirical Pseudopotentials and their Construction

The EPM framework we described uses a fully local description of the potential, besides the
spin-orbit term in Eq. (17). It was soon recognized [59] that this approach can be improved by
using non-local potentials. The non-locality is introduced by making the potential dependent
on the angular momentum of the electron. It can therefore account for the different behavior of
a 2s and a 2p electron in oxygen, for instance. The [-dependent potential v; can be written as
Zvnl I‘— Zzujlm Ul ‘I‘— 'L|)<]Dlm(RfL)‘ ) (20)
where R; are the atomic positions and |F},,,(R;)) are projectors of angular momentum Im. In

practice V,;(r) is assumed zero outside a cut-off radius rqy typically around the interatomic
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distance [53,60]. This procedure is perfectly equivalent to the one used in the community
of ab-initio ionic pseudopotentials. There, [-dependent ionic pseudopotentials are generated
based on all-electron density functional theory (DFT) calculations [40-44]. This similarity in
the formalism can be used to connect the total semi-empirical pseudopotentials with the ionic

ab-initio pseudopotentials.

We will describe the necessary steps to the construction of the ionic semiempirical pseudopo-
tentials following the flowchart of Fig. 2. From DFT in the local density approximation (LDA)
the screened local (self-consistent) potential for a set of different crystal structures (zincblende,
wurtzite, B2, ...) at different lattice constants is calculated. The norm-conserving ab initio ionic
pseudopotentials required for the DFT calculations can be obtained from available databases or
constructed with ease. The relevant output of the DF'T calculation is the screened local effective

potential, usually given in real space Vj,c(r). Fourier transformed to G space:
1 .
Viee(G) = = / Viee(r)e™S dr . (21)
Q Jo
For the local real space potential we make the Ansatz:

Vioc Z 'Uanlon -R, + I'()) + Ucation(r -R, - I'()) > (22)

with the Fourier transform

Vioc(G) = _/Uanlon 1G(r o) +'Ucation(1'/)eiG(r,+r0) dI'/ (23)
cos ;ZOG) v (G) — ZSIH(;OG)’U_(G) 7 (24)

using the short form
U-i—(G) - Uanion(G) + vcation(G) 5 'U—(G) - Uanion(G) - vcation(G) . (25)

In Eq.(22) we separated the real space potential into an anion-centered and a cation-centered
contribution, this represents the case of a binary system, e.g. a III-V semiconductor such as
GaAs. If Veation /anion () is assumed to have inversion symmetry then v, (G) and v_(G) are real

and we can write:

Q Q

v4(@) = oy RV @)) . 0-(G) = — ey

cos(roG) S{Voc(G)} - (26)

It is possible to obtain vapion(G) and veation (G) exactly. However, vanion and veation are very well
represented by their spherically averaged counterparts: vanion(|G|) and veation (|G|) and we make
use of this simplification, which represents a pivotal approximation. The DFT results for v; (|G|)
in GaAs calculated for the crystal structures zincblende and B2, each of them at the two lattice
constants 10.658 a.u. and 11.452 a.u. are given as black dots in Figure 3. The inset (Fig 3(b))
is a magnification of the area indicated by black arrows. It can be seen that the discrete points
mostly lie on a smooth curve. The fit through the points in Fig. 3 was done using cubic splines
with an exponential truncation but any other function such as in Eq. (15) can be used. It can
be seen that around G = 2.5 a.u. some points scatter above and below the fitted curve. Indeed,

there is no guarantee that the points lie on a smooth curve and the amount of scatter will depend
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Figure 3: This figure shows one of the steps in the construction of a semiempirical pseudopotential. The points
are the DFT results for the screened effective potential for GaAs at discrete G-vectors. The line is the fit of our

semiempirical pseudopotential through these points.

on the material, the crystal structures and the range of different lattice constants used in the fit.
It is also representative of the degree of transferability of the potential. Up to this point, two
approximations have been made: (1) The spherical approximation, by going from G to |G| and
(2) the average over different crystal structures, by fitting a single curve that passes through
several points at a single |G| value. This procedure turns out to be very accurate for several
semiconductors [60,61] and the overlap of the semi-empirical wave functions, indexed SEPM,
and the LDA wave functions, (P4 [4pSFPM) s larger than 99.9% [60,61].

From the smooth curves fitted through the v (|G|) and v_(|G|) points, we obtain the continuous
atomic semi-empirical pseudopotentials through Eq. (25). Once this potential is known for each
atom type «, we can reconstruct the crystal potential (Calculate the Crystal Potential in Fig. 1)

by the superposition (as in Eq. (10)),

1 .
VEEMG) = 3 vl — Ry ra) = 5 3 [ oG RIS die L o)

a,j,n a, 7,1

To reconstruct the full crystal potential we need to include the non-local part of the ab-initio
ionic pseudopotential \Afnl(r) (Eq. (20)) . This operator is simply added to the local potential
WEEP M(r) (long arrow in Fig. 2) in a fashion very much analogous to the way non-local potentials

are treated in DFT [62].

Before the potential can be used to quantitatively predict the properties of nanostructures, two
modifications are necessary. One is to reduce the energy cut-off used in the DFT calculation
to a value where the quality of the potential /wave functions is not significantly deteriorated
but which allows to numerically handle several hundred thousand atoms. Typically energy
cut-off values of 5 - 8 Ry have been used [60,61] in conjunction with an empirical “Gaussian
correction” [61]. The second modification is to refit to potential slightly to correct for the known

errors of LDA with respect to the bulk band gap and the effective masses. Since these values
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are crucial for quantum dots, we need to make sure they agree well with experiment. These
last two steps probably give the most part of the empirical “flavor” to the overall methodology.
While the first step is of technical nature and for smaller systems (up to ten thousands of atoms
at present computational capabilities) the cut-off could be unchanged, the second step might be
avoidable by using a quasiparticle approach such as GW, instead of LDA, which gives in some

cases very accurate band gaps and effective masses.

2.5 Solving the Schrodinger Equation for the Nanostructure

After having obtained the crystal potential we move on to solve the Schridinger equation in

Fig. 1. The Schrodinger equation is given by
= & SEPM 5 5
Hypi(r) = {=5-+Vige " (r) + Vi + Vso}di(r) = & di(r) . (28)

We know that the spectrum of H has an energy gap and we know approximately from the
pseudopotential construction at which spectral energy this gap develops. Our aim is to find
a dozen of the interior eigenvalues on either side of the gap which determines most of the
properties related to excitations. Our aim is therefore not to calculate all the occupied bands,
as is customary in DF'T approaches, but only a few relevant ones. We therefore have no access
to the total energy of the system which requires a sum over all the occupied bands. Since
our approach is to represent the total potential by a pseudopotential there is no self-consistent
loop to undergo and the Hamiltonian is diagonalized only once. This is another difference to
the ab-initio ionic pseudopotentials where a self-consistent treatment of the valence electrons is

required.

To solve this interior eigenstate problem we use [63] a conjugate gradient (CG) type algorithm
applied with the Folded Spectrum Method (FSM) [64] or other strategies using state-of-the-art
algorithms for the eigenvalue problems at hand, in particular variations of the CG, the locally
optimal block preconditioned CG (LOBPCG) [65], and Jacobi-Davidson methods [66].

Depending on the size of the problem we use two different basis sets for ;. For small enough

structures, up to a few hundred thousand atoms, we use a simple but large plane wave basis set

hi(r) = (G | (29)
G

where G is a reciprocal lattice vector and ¢;(G) are the expansion coefficients to be determined
variationally. The advantage of the plane wave basis set is that it can be increased systematically
and fh/} can be evaluated easily on the fly. The Hamilton matrix is large (dimension can be
several millions) and very sparse. Due to its large size the matrix H is never explicitly computed
and the solver is matrix free with H acting on each vector 1. As usual, we calculate the kinetic
energy part in Fourier space, where it is diagonal, and the potential energy part in real space
where the number of operations required for the matrix-vector product scales as nlogn where

n is the dimension of H. We move between Fourier and real space by three dimensional FFTs.

Another basis set is used for larger nanostructures, such as self-assembled quantum dots, and

is constructed from a linear combination of strained bulk Bloch states (SLCBB [67]), ¢nk, from
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bands, n, and k-points, k,
T;Z)i(rv 6) = Z Cs,)k Ok (I', 6) ) (30)
n,k

taken at a few strain values e. With this basis set, the Hamilton matrix is rather small, typi-
cally n=40,000, but dense and expensive to compute. H is locally stored and solved for a few

eigenvectors and eigenvalues using ARPACK [68].

The plane wave code is parallel and can handle hundred thousands of atoms while the SLCBB code
is serial but can handle up to millions of atoms due to the underlying assumption in the small
basis set used. When it is affordable, the plane wave code is superior because of the possibility to
include the non-local potential \Afnl (while SLCBB can presently only handle local pseudopotentials
except for spin-orbit) and because the basis set can be converged systematically by increasing
the cut-off energy (while the basis set in SLCBB requires a non-trivial choice from the user for

the basis and must be carefully checked for convergence).

2.6 External Constraints and Piezoelectric Field

At this point, a longitudinal external electric fields E can be added to Eq. (28) [69] through the

external potential
Vext(r) = —/E~dl , (31)
C
where C is an arbitrary path connecting the point with zero potential to the point r.

Constrains such as pressure effects can be naturally investigated [70] since we use an atomistic
description and the potentials are constructed to reproduce deformation potentials. The use of a
multi-band approach that is not limited to expansion around certain points of the Brillouin zone
allows us to investigate transitions that are indirect in k-space [70], such as I' to L transitions

in the conduction band with pressure.

Since our method is non-self-consistent and hence does not allow for long ranged charge redis-
tributions, it neglects effects such as piezoelectricity where charge is moved due to strain. In
this case, the piezoelectric potential must be calculated independently [71,72] and added as an
external potential, just like in the case of “truly” external fields. This is a priori difficult for
large structures but through a combination of strain calculations that can be done with empiri-
cal force fields and DFT calculations for the piezoelectric response we can obtain the necessary
potential [71]. It turns out that second order effects in strain need to be taken into account [71]

to obtain reliable results.

2.7 Solution of the many-body problem
2.7.1 Correlations in the Ground State

The word correlation in the context of quantum dots can lead to some confusions that we intend
to prevent by this short section. Correlations are usually defined as the difference between
the Hartree-Fock ground state and the exact many-body solution. In this context, correlations
are purely a ground state property. The conventional quantum chemical methods start from

the Hartree-Fock (HF) single-determinant ground state and use configuration interaction (CI),
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Mpgller Plesset, coupled cluster (CC), among other methods, to add correlations to the ground
state. We, however, do not attempt to solve the many-body problem for the ground state, since it
consists of thousands of electrons. Our approach is purely empirical at this stage: we assume that
the solutions of our Schrédinger equation (Eq. (28)) with the effective empirical pseudopotential
are already fully correlated quasiparticle eigenfunctions and quasiparticle eigenvalues. The fact,
that our pseudopotential is local or semi-local while the true quasiparticle equation is fully

non-local points to the underlying approximation.

2.7.2 Correlations in the excitation: Configuration Interaction

Once the quasiparticle eigenfunctions have been calculated we follow the configuration inter-
action (CI) method (see Fig. 1) to obtain the excitations (such as an exciton) of the system.
At this point, the correlations of the ground state are assumed to be decoupled from the cor-
relations of the excitation. This is justified by the Brillouin theorem which states that there
is no coupling between the Hartree-Fock (HF) ground state and the single-exciton (“singles”)
excitation |®y, ..). Note that we are not starting from the HF ground state, as in the Brillouin
theorem, but from the solution of the quasiparticle equation. It can still be shown [27] that
|®h,e;) and |@g) are decoupled. There is, however, coupling between the higher excitations such
as double-exciton excitation (“doubles”) and the ground state. These are neglected in our ap-
proach, which can be justified by the fact that doubles are energetically remote from the ground

state.

The correlations in the excitation are treated at the level of “singles” only, i.e., only single-
exciton excitation where one hole in the valence band and one electron in the conduction band
are created, are allowed to interact. Formally, the correlated exciton wave function can be

constructed from a set of Slater determinants [73,74]:
[@hie,) = Bk, |20} (32)

where b};i is the creation operator for holes and clj the creation operator for electrons. The
Slater determinants |®p, ..) can be calculated from anti-symmetrized products of single-particle

wave functions v; from equation (28).

The exciton wave functions |¥) are expanded in terms of this determinental basis set:

O) = > Alhi e)|®n,e,) (33)

hi,ej

where A are the expansion coefficients and we use ¢ to index hole states and j to index electron
states. The Slater rules [73] allow us to express the matrix elements between Slater determinants

in terms of one— and two—center integrals:
(Phie; [ H|Phyy e, ) = (Ee; = €ni)Onshy Oejey + (ehirlvlhiej) — (ejhalvlejhi) (34)

with the two center integrals

<€jhz'!v!hi'€j'>=/ V5 (re) )y (rp)v(re, vh)thy (ve )by (rp) dre dry, (35)
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using v(re,rp) for the screened Coulomb interaction described in the next section. The last
term in Eq. (34) describes the direct Coulomb integrals and the one before last the exchange
integrals. The formalism described from Eq. (32) to Eq. (35) can be generalized to the case
of an arbitrary number of electrons and holes and is not limited to the case of excitons. For
the case of multiexcitons or charged excitons, the subspace of Slater determinants included in
Eq. (32) has been restricted to excitations that conserve the number of electrons and the number
of holes. For instance, a biexciton state has been constructed from Slater determinants with
two electrons and two holes (double excitation), neglecting the coupling to Slater determinants
with one electron and one hole (singles). This coupling is non zero, but rather small since the
energy difference between the single and the double excitations is approximately given by the
band gap. This generalization from the exciton case to an arbitrary number of electrons and
holes, represents one of the advantages of this approach. In our numerical treatment, equations
such as (34) are not directly implemented but rather the action of creation and annihilation

operators in a general second quantization form.

2.7.3 Screening

In quantum chemistry, configuration interaction is often treated at the level of triples, quadru-
ples, all the way to full CI which exactly solves the electronic Schrodinger equation within the
space spanned by the one-particle basis set. In these calculations, the integrals (35) are the bare
unscreened (v(re,rp) = 1/(|Jre — rp|)) Coulomb integrals. For excitations in a nanostructure,
such an approach is computationally not feasible using an atomistic description and we have to
limit ourselves in the one-particle basis set to only few states close to the band gap and to single
excitations only. To neglect the coupling of singles to higher excitations is a poor approximation.
However, it can be shown that the effect of higher order excitations can be folded back onto the
considered subspace of single excitations [27,75]. The effect of this procedure is to renormalize
(screen) the Coulomb interactions, as we already indicated in Eq. (35) by v(re,rp). There was,
and partly still is, some debate about the screening of the electron-hole exchange terms that
was recently addressed via field theory arguments [75]. It was argued [75] that in the limiting
case where transitions are considered over a wide energy range the electron-hole exchange term
should be unscreened while in the limiting case where only the few lowest energy transitions are

considered (usually our case) the interaction should be screened by the full dielectric function.

Besides this rather fundamental issue of whether to screen or not screen the interactions, the
choice of the dielectric function is another important and developing theme. The screened

Coulomb potential from Eq. (35) can be generally written as
v(re,rp) = ez/e_l(re,r)|r —rp|tdr (36)

with the inverse dielectric function e~!(r.,r). For large nanostructures, the screening function
used has been directly taken from the literature for bulk systems. We used [76] the phenomeno-
logical isotropic and uniform (e(re,rp) =~ €(|re — rp|)) model proposed by Resta [77] for the elec-
tronic screening and by Haken [78] (for the case of the exciton) for the ionic part: e~ = €' +¢;,1,
with

k% + ¢? sin(kpeo) / (€sokpoo) 11 1/2 1/2
-1 k) = 00 oovPoo -1 B = [ — — 37
€el ( ) k2 + q2 ’ Ewn( ) €0 €oo 14 p%k2 + 1+ pgk2 ’ ( )
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with ¢ the Thomas-Fermi wave vector, ps, is the solution of sinh(gpe)/(¢poc) = €so and pp e =
(h/2mj, wro)Y/?, with mj, . the hole and electron effective masses and wr,o the bulk LO-phonon

frequency.

For small nanostructures the approximation of bulk screening is not appropriate since the effect
of the interface plays an increasing role. A screening function depending on the radius of

a spherical nanostructure was used for colloidal quantum dots [74]. The high frequency bulk

dot

o obtained from a modified

dielectric constant €4, from Eq. (37) was replaced [74] by a constant €
Penn model where the size dependence enters the equation through the value of the optical band

gap of the dot [74]. The low frequency dielectric constant of the dot eSOt was obtained simply

by keeping edot — edot

= €9 — €. In this approach, the dielectric function remains dependent
on the distance |[r —r’| but is independent of the position r, i.e., screening is modified (typically

reduced) throughout the nanostructure.

More recently, truly position dependent dielectric functions have been derived from tight binding
calculations [79] and from density functional theory [80] for nanostructures. The screening
function is obtained from the induced response of the system to an external perturbation, such
as a delta-function or Coulomb-like perturbation of the potential. These calculations suggest
that the screening function remains “bulk-like” inside the core of the structure and changes only

in the close proximity of the interface.

2.7.4 Dielectric Mismatch and Polarization Charges

In the discussion of the screening function and the single-particle Schrodinger equation we did
not mention the fact that the nanostructures are usually surrounded by a material with different
dielectric properties. In this case, polarization charges appear on the surface of the nanostructure
which have effects on the self-energy [81] and on the two particle binding energy [82]. Indeed,
the dielectric mismatch leads to a surface polarization potential which corresponds to the classic
electrostatic potential caused by a point charge inside an object, similarly to the image potential
created by a point charge close to a dielectric medium. Quantum mechanically, the effect can
be treated as an additional on-site potential P(r) in the Schrodinger equation Eq. (28) [81]:

~ V2 ~ ~

Hypi(r) = {=— + Vige (1) + Vi + Vo + P(0)}(x) = & vi(r) (38)
This additional potential leads to a modification of the quasiparticle eigenvalues that we label
as 3% for the conduction band and X5 for the valence band. The terms Ei‘fgf vanish for
€in = €out and are positive for the conduction band and negative for the valence band in case

€in > €out, 1.€. both contribute to an increase of the quasiparticle gap.

The dielectric mismatch and the ensuing surface polarization has an effect on the screened
Coulomb interaction between the two quasi-particles. In addition to the direct Coulomb in-
teraction we discussed previously, there is an additional interaction between one of the quasi-
particles and the image surface charge of the other. This effect results in a modification of the
direct Coulomb interaction J4* by a surface polarization term JP°'. It can be shown [27,83]
that for spherical nanocrystals the contributions from the surface self-energy terms to the ex-
citon Y5 4 33wt mostly cancel the surface polarization contribution to the Coulomb term

JPol Tt is therefore a common approximation [23,74], when dealing with excitons in nearly
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spherical colloidal quantum dots, to neglect the effects of polarization charges altogether, i.e.,
in the quasiparticle picture by using a simplified Schrédinger equation such as Eq. (28) and
in the exciton problem, by neglecting the surface polarization term. On the other hand, for
non-spherical nanostructures but with small dielectric mismatch, such as in self-assembled em-
bedded quantum dots, the polarization terms Efj‘f,ﬁf ,Ei‘}ff and JP°' are often assumed to be
small [76]. For non-spherical colloidal nanostructures such as tetrapods [84] or dumbbells [85],
where dielectric mismatch is usually large, the polarization terms must be explicitly taken into
account [27,84]. Also in the calculation of charging energies or charged excitons, where the
cancellation of self-energy and surface polarization is not given, effects of dielectric mismatch
must be included [83].

2.7.5 Discussion

Before we move on to the next step where the many-body wave functions will be used to calculate
observables, we will summarize in a qualitative and rather schematic manner the computational
scheme used so far. In Fig. 4 we give an overview of the different energetic contributions to
the band gap of a semiconductor or insulator. The left side of the Figure [a) LDA] corresponds
to the band gap obtained with a single-particle description of the ground state such as density
functional theory in the local density approximation (LDA). The band gap €2 — ¥ is typically
underestimated. The error in the band gap is mainly due to a missing or incorrect description
of the self-energy ch;’uhlk. In Hedin’s GW approximation [86], at the quasiparticle level, this
contribution is properly accounted for and the band-gap opens up [b) GW]. The next column
[c) LDA] describes the situation in a nanostructure where in the single-particle case, the band
gap opens up by Ece(’)};f because of confinement. Eceé};f depends on the size of the nanostructure,

the band structure ( effective mass) of the material, the strain and deformation potentials. In

the next column [d) GW], at the GW level, the contributions of ch;’uhlk add up but also the
e,h
surf
Our empirical pseudopotential method enters the picture at the level given in “e) EPM” where

the self-energy contributions to the bulk Ecl;’uhlk are taken into account but not the ones of surface

contributions due to surface polarization effects X described in the previous section 2.7.4.

polarization Zzl’ﬁf. In the right column [f) Exciton], the optical band gap is given, where the

Coulomb interaction, Jgé‘l, and Jgﬁect, contribute to reduce the band gap. Jgé‘l, and Jjﬁect have
been artificially split into two parts J. Eh’1’2, and Jgﬁ’elcf to be able to visually include the two-

ol
particle excitonic description of the rIi)ght column within the single-particle and quasiparticle
description of columns a)-e). As discussed in section 2.7.4 the terms ST + 359 tend to cancel
JS& = J;Zl’l + J;Zf for spherical nanostructures. In the case of no dielectric mismatch between
the nanostructure and the environment, the terms Zzurf, Zzurf and Jggl vanish.

2.8 Post-Processor Tools

After we have calculated the many-body wave function we have access to observables through

the use of post-processor tools as shown in the last step of the flowchart in Fig. 1 .
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Qualitative Discussion of the treatment of Excitations

Bulk Nanostructures
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Figure 4: Qualitative description of the position of the conduction band minimum (or LUMO) and valence band

maximum (or HOMO) in different theoretical approaches. See section 2.7.5.

2.8.1 Optics

The optical properties of semiconductor nanostructures are among the most relevant observables.
The optical transition of an excitonic complex y to the excitonic complex (x — 1), where one
electron-hole pair has been annihilated, is characterized by both the transition energy between

the initial state ¢ and the final state f, w;¢(x), and the optical transition dipole matrix element
M) = (8D (x ~ e plr (1)) (39)

with the momentum operator p and the polarization vector of the electromagnetic field & [87,88].

The oscillator strength for the exciton complex y and for polarization € is given by

o® (W, T5x) o S |ME 0 T3 x) 6w — wig(x)) (40)
if
where
P(T;x) = N exp{—[ED (x) — EO(x)]/kp T} (41)

is the occupation probability of the initial state [¥()(y)) at temperature 7' and A is a normaliza-
tion constant. The delta function can be replaced by a Gaussian to account for size distribution
(inhomogeneous broadening) or by a Lorentzian to account for intrinsic sources of broadening
(homogeneous broadening). We can define a radiative lifetime, 7;¢(x), that is specific to the

transition between states 7 and j as:

Xt X MPeol (42

e=1,y,2

where, e and mg are the charge and mass of the electron, respectively, ¢ is the velocity of light in
vacuum and n is the refractive index of the dot material. The underlying assumption in Eq. (42)

that guarantees a simple linear dependence of 1/7;¢(x) on refractive index is a similar dielectric

o7



constant inside and outside the nanostructure, as is the case of many embedded self-assembled

quantum dots. In a more general case, more complicated dependences have been proposed [89].

Note that the “specific” radiative lifetime defined in Eq. (42) does not depend on temperature
nor on the occupation probabilities of the states while the actual (measured) radiative lifetime
7(x) depends non-trivially on occupation probabilities. To obtain the actual lifetime, the time
dependent Schrodinger equation has to be solved. This can be done by reducing the problem to

a few level system and by solving a set of master equations [88,90].

2.8.2 Quantum Entanglement

With our CI results we have access to quantum mechanical quantities related to correlations,
such as quantum entanglement. Entanglement is one of the most important quantities for
successful quantum gate operations and it is interesting to quantify the amount of entanglement
present, or achievable, given a certain system. The degree of entanglement of distinguishable
particles can be calculated from the von Neumann-entropy formulation [91,92]. For example for

a two component system (A, B), it is defined as, [91-93]

S = —Trpalogy pa = —Trpplogy p , (43)

where, py and pp are the reduced single-particle density matrices of the subsystems A and B.
However, there are some subtleties for defining the degree of entanglement for indistinguishable
particles, since it is impossible to separate the subsystems A and B. Recently, we have derived
a generalization of the von Neumann definition [94,95] for identical particles through a Slater
decomposition [96,97] where the maximum entanglement of a two-electron system is S = log, IV,
where N is the number of available single-particle states. Our definition reduces to Eq. (43)

when the two-electrons are far from each other [94,95].

2.8.3 Tunneling Experiments

From the many-body wave functions we can obtain informations relevant to tunneling and opti-
cal experiments such as scanning tunneling microscopy (STM), magnetotunneling spectroscopy
(MTS) or near-field scanning optical microscopy (NSOM or SNOM). For the case of STM and
MTS, we calculate [20] the transition probability of an electron or hole from an emitter in state x
to a quantum dot containing N particles from the expression 22| M, n|*n(er) [98] where n(cp)
is the enegy of the final quantum dot states. The transition matrix elements M, y for the
transfer of one particle from the emitter in state x to the quantum dot state |N), filled by N
electrons, can be factorized [99] as M, y «x T,.M, y where T does not depend on N, nor on
the coordinates in-plane, x,y (if z is the tunneling direction). The relevant matrix element is

therefore M, n and is given by:

MH,N:/gb:(x)\I’QD(X)dX . (44)

Here, ¢} (r) is the probing or emitter wave function and Uqp(x) is the quasi-particle excitation
between the N — 1 particle states |V — 1) and the N particle states |N), i.e.,

Uop(x) = > (N = 1&|N) vi(x) . (45)

7
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1;(x) is the atomistic ith single-particle wave function and ¢&; is an electron (hole) annihila-
tion operator. The correlated many-body states are obtained, as described in section 2.7, by

configuration interaction:

ZO (I)ﬁ X1yt 7XN—17XN) ) (46)

and

Myon =Y (N = 1| N) (0x]v3) —ZZC’”“ M (@NDa]05) (dalv)  (47)

with
i oY) = &lefY
(@M Vgl = ¢ —1 if\cpgN—”>: éilo ),

0 otherwise.

where ¢ indexes the single particle states obtained from the solution of Eq. (28).

There are different techniques to probe the quasi-particle excitations. For example, in scanning
tunneling microscopy experiments, the probing wave function ¢,(x) can be represented by a
d-function at a given real space point, ¢(x) ~ §(x), in which case the transition rate is given by

~ WQD(X)\2 and maps out the square of the quasi-particle excitations in real space.

An alternative approach is taken in MTS where the quasiparticle excitations are mapped out in
reciprocal space. Using an atomistic description, the probing wave functions can be written as

a Bloch function ux modulated by a plane wave:
P (x) = T (x)e K> (48)

The atomistic wave functions for the quantum dot states can be written as:

Np Ny

= Z Z Cnk Un k(X) kX (49)
n k

where u,, x(x) are Bloch wave functions with band index n and k-points k [20,100] so that the
product (¢,|1;) in Eq. (47) is given by:

Np
(D) =3 _(nclunpdenge - (50)
n
The overlap (uk|u, k) is largest at the interface and since we do not know the exact form of
the Bloch part of the probing wave function, we have to resort to certain approximations. We
assumed [20,100] a constant (uk|u, k) in which case M, n in Eq. (47) is a function of k and N
that can be directly calculated.

2.9 Charging Energies

The charging energy p(N) is the energy necessary to add one more carrier to the dot already
charged by N — 1 carriers:
W(N) = E(N)—E(N - 1) | (51)
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where E(N) are the correlated many-body total energies of the ground states of the N-particle
dot. The addition energy A(N — 1, N) indicates how much more energy is needed to add the
Nth carrier compared to the energy needed to add the (N — 1)th carrier:

A(N —1,N) p(N) = p(N = 1)

= E(N)-2BE(N-1)+EN -2) . (52)

The charging and addition energies are therefore directly obtained from the many-body energy
calculated using the configuration interaction approach described in section 2.7 and can directly

be compared to experiment.

3 Applications

Extensive work has been done recently using the empirical pseudopotential methodology on
the material system InAs and GaAs [20, 26, 56, 6972, 76, 88, 93-95, 100-104] and CdSe [74,
104-110]. Beyond these materials —in the focus of attention because of the wide availability
of experimental results— potentials for InAs/InSb [111], PbSe [112,113], InP/GaP [74, 114],
nitrides [58,115], among others, have been developed for embedded structures and for colloidal
nanocrystals with adequate surface passivations. We will not attempt to review these many
results but will rather select a few examples that should emphasize the generality of the method

and its accuracy, able to predict new and unexpected physics.

3.1 Optics and Fine Structure

The term fine structure has been used in the realm of nanostructure physics to describe the
small splittings due to the electron-hole exchange interaction. In the simplest case when the
electron and hole states are derived from a single Kramers doublet, four possible electron-hole
state combinations emerge due to the particle’s pseudospins (indicated with arrows): |el hT),
leT hl), |el hT), |el hl). The electron-hole exchange integrals are special cases of the integrals

given in Eq. (35) and can be rewritten as:

Kij’,ji’:/ Vi (re) Y5 (v)v(re, th)hj (e )by (rp,) dre dry, (53)

where we have kept the notation that 7,7’ indexes hole states and 7, 7' indexes electron states.
The “exchange” of particle can be seen from Eq. (53) through the fact that at position r. a hole
wave function is on the left of v but an electron wave function on the right. These integrals lead
to the splitting of the four electron-hole pairs and to the appearance of the fine structure. The
integrals given in Eq. (53) require knowledge about the details of the Bloch part of the wave
function which is naturally given by an atomistic description [76] but not readily available in
envelope function theories. The integrals from Eq. (53) are sensitive to the effects of spin-orbit
interaction, the atomistic symmetry, band mixing and to the full range of screening (long- and
short-range) [76].

The atomistic calculation of fine structure splittings [72, 76, 88,116, 117] and the comparison

of the results with experiments [116] is an excellent benchmark for the theory and leads to
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an understanding of the experimental results otherwise difficult or impossible to obtain. To
illustrate the physical insight that can be obtained, we choose the example of the fine structure
of the X2~ charged exciton shown in Fig. 5. On the left side (Fig. 5 a)) we show the initial
configuration that consists of three electrons and one hole and the final configuration, after the
recombination of one electro-hole pair, which consists of two electrons. Four many-body levels
can be constructed from the limited set of one hole state hy and two electron states ey and
e1. Since the electrons in state ey must be paired, only the configurations |(eg] eol)eil hol),
|(eql eal)eil hol), |(eol eol)eil hdl), |(eol eol)eil hol), are possible, much like in the case of a single
electron-hole pair mentioned previously. Note that this is only a simplifying model that helps
us to understand the results which do take many more configurations into account. Indeed, the

number of configurations included in the CI treatment (section 2.7.2) is given by

be! b,!
Ne!(be — ne)! npl(by — np)!

Neonf = (54)
where nj, and n. are the number of holes and electrons, respectively, distributed among b, and
b. valence and conduction band states, counting spin. For the initial state of Fig. 5 a) with a
configuration space of 10 electron and 10 hole states (i.e., counting spin, b. = b, = 20) we have
22800 mixing configurations. However, an analysis such as the one in Fig. 5 a) describes most
of the physics properly in this case. Some striking deviations of the simple model have been
addressed in Ref. [117]. The electron-hole exchange interaction splits the four levels of X2~ into
a doublet and two singlets in the initial state and the electron-electron exchange interaction
splits the final state into a singlet and a triplet state. The magnitude of the electron-electron
and the electron-hole interaction is significantly different, the latter being more than an order
of magnitude smaller than the former, with splittings in the order of tens of peV. From the
initial to the final many-body states we can anticipate six transitions as marked in Fig. 5 a), 1-3
are split from 4-6 by electron-electron exchange, while 1-3 and 4-6 are themselves split by the
small electron-hole exchange interaction. The optical transitions that connect initial and final
states can be calculated using the formalism described in section 2.8.1. The theoretical results
for the oscillator strength for a lens shaped InAs self-assembled quantum dot embedded in GaAs
are given in Fig. 5 b) and the corresponding experimental results in Fig. 5 c¢). The transition
“1” from Fig. 5 a) has vanishing oscillator strength and therefore dark. The transitions are
also polarized along certain crystallographic directions giving us a useful tool to clearly identify

transitions and their origin [116,117].

3.2 Entanglement

The field of nanostructure science is increasingly driven by efforts aimed at using the electrons
in confined geometries to realize different schemes of quantum information science, where the
physical information is held in the state of the quantum system. This represents an area of
science where quantitative theories able to predict many-body properties of realistic systems
are important. Some prominent examples are the proposal to use two vertically [118,119] or
laterally [120] coupled quantum dots containing two electrons [17], or an exciton [121] to perform
some basic gate operations. The carrier of quantum informations, the qubits, can be realized by

either the spin of the electron [17] or by the location of an electron or hole [121]. Our methodology
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Figure 5: Fine structure of the X?>~ charged exciton in a self-assembled InAs quantum dot. a) Analysis of the
results in a simplified picture where only few many-body states for the initial and final states are considered. Note
that the splitting of the initial states is given in peV while the splitting of the final states in meV. b) Theoretical

results for the oscillator strength in arbitrary units. ¢) Experimental results. Figure adapted from Ref. [116].

gives us access to some of the relevant quantities such as the degree of entanglement between
the two electrons [94,95] or between the electron and the hole [69,93,101], or the singlet-triplet
splitting [95]. These quantities are sensitive to the geometry of the system, spin-orbit interaction,
the amount of strain, and only a methodology that takes these effects into account can give a

quantitative prediction.

In Figure 6 we present the results obtained for an InGaAs quantum dot molecule with dimensions
and composition taken from experiment [121] as 12 nm in diameter and 2 nm height with a
graded In-composition profile [69]. The two dots are vertically stacked, around 8 nm apart.
A fully entangled electron-hole pair can be represented by the the maximally entangled Bell
state |erhr) + |ephp), where e and h stand for the electron and the hole (the two qubits) and
T and B for their localizations in top or bottom dot (the state of the qubits). The entropy
of entanglement is calculated according to Eq. (43) where A is the reduced density matrix for
qubit A (the electron) and B is the reduced density matrix for qubit B (the hole). The density
matrices are calculated from the correlated CI exciton density which requires a projection of the
exciton wave functions on the dot localized basis set [69]. From the right side of Fig. 6 we can
see that the degree of entanglement as a function of electric field is peaked at a certain electric
field achievable experimentally [122-126] (5.4 kV/cm in our specific case) and can reach 80%.
The left side of Fig. 6 shows that at this specific electric field the peaks in oscillator strength
originating from the exciton states |1) and |2) anticross and |1) becomes dark. This optical
signature may be used by experimentalists in the future to identify the electric field needed to

achieve maximum entanglement in specific dot molecules. The theoretical results can be further
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analyzed to understand, in terms of electron and hole localization on either one of the two dots,
the way the particles conspire to create entangled states and what are the limiting and driving
factors [69, 101] such as the effect of geometry, composition, dot-separation and the ensuing
strain on tunneling and Coulomb interactions. From this understanding we could construct a

simplified model hamiltonian with few and well defined parameters [93].
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Figure 6: Electric field dependence of the oscillator strength (left) and the entropy of entanglement (right) of
the two exciton states |1) and |2) in an InGaAs self assembled quantum dot embedded in GaAs. At the critical
field of 5.4 kV /cm, applied in growth direction, the entanglement is maximized and the two peaks in the oscillator
strength originating from |1) and |2) anticross and |1) becomes dark. Figure adapted from Ref. [69].

3.3 Wave Function Imaging

In section 2.8.3 we described the formalism used to calculate tunneling amplitudes from corre-
lated many-body wave functions. We will illustrate it by an application to magnetotunneling
spectroscopy (MTS) of self-assembled InAs quantum dots grown by the Stranskii-Krastanov
method [127,128]. We choose this system because of recent measurements on this system [20].
The experimental method is based on capacitance-voltage (C-V) spectroscopy [15,99,129-132]
where the energy of the quantum dot states can be shifted by an applied out of plane voltage
to allow electron (or hole) to tunnel into the dots controllably. Additionally, a magnetic field

B is applied in-plane. The tunneling rate can be measured and compared to the theoretical
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calculations [20]. Figure 7 a) shows the theoretical results for the tunneling amplitude of holes
mapped out in k-space for an InAs lens-shaped quantum dot with an elliptical base of 26 nm in
[110] and 25 nm in [110] direction and 3.5 nm height. The labels nh — mh describes the process
of tunneling the mth hole into the dot already filled with n holes. The arrows with labels [110]
and [110] describe the crystallographic directions in real-space. From the Figure it is clear that
tunneling of the first and second hole occurs into an S-like state. We can quantitatively analyze
the orbital momentum character of the final state and it is indeed to more than 95% [ = 0. The
tunneling of the third and fourth holes occurs into P-like states. For the fifth hole, 4h — 5h
the situation is interesting since it is the signature of the tunneling into the D state. Indeed
82% of the final state, in which the hole tunnels, is given by a configuration with dominant D
character. In Figure 7 b) we show that the filling sequence expected from the Aufbau principle
would lead to a tunneling into a second P state (labelled P2 in Figure 7 b)) and not into a
D-state, as given by the many-body calculation. The holes 5 and 6 therefore entirely skip the
P2 shell to tunnel directly into the D-shell, in contrast to the expectation from the Aufbau
principle. This result is confirmed by a side-by-side comparison of experiment and theory [20].
In Figure 7 c¢) we show a contour plot for the experimental MTS result for the tunneling of the
first hole along with theoretical results for a dot with circular base of 25 nm diameter and for a
dot with ellipsoidal base of 24x26 nm?. The comparison of theory and experiment shows a better
fit for the elongated dot. These results should illustrate the capability to draw conclusions on

dot morphology, difficult to get by other means, and on unexpected many-body effects.
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Figure 7: a) Calculated quasi-particle tunneling probability densities for 1 to 6 holes in reciprocal space [20]
b) Two possible charging scenarios for holes. c) Quasi-particle tunneling probability density for the first hole
from experiment (left), a calculation for a dot with circular base (middle), and a calculation for an elliptical base
(right).

4 Summary and Outlook
We have described an approach to obtain accurate properties, including excitations, of semi-

conductor nanostructures of realistic and relevant sizes. The approach is based on empirical or

semi-empirical pseudopotentials and configuration interaction. The critical steps that allow us
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to treat million atom systems are (i) we forgo the calculation of total energies and solve an inner
eigenvalue problem around the band gap for a few states only, (ii) the constructed empirical
potentials are total effective potentials that include the effect of valence electrons. There is no
self-consistent procedure and the Hamilton matrix is solved for few eigenvalues only once. (iii)
For the largest structures we use a basis set made of Bloch functions of the underlying strained
bulk matrix, leading to a dense but manageable eigenvalue problem. The ensuing quasiparticle
eigenfunctions can be directly used to calculate correlated few-particle states, with N electrons
and M holes, by a configuration interaction treatment. This give access to observables that
can be calculated using post-processor tools. The accuracy and applicability of the method was
illustrated by three different applications in the area of optics, quantum entanglement and wave

function imaging.

One of the appeals of the method, besides the fact that it can address a large number of atoms,
may come from the fact that, for the semi empirical potentials, the construction is directly
tied to ab initio methods. The results from density functional theory (DFT) are fed into the
semi-empirical pseudopotentials in a controllable fashion during construction. Applications of
the method are, however, seamless in the sense that no more interface between SEPM and DFT
exists, unlike multi-scale approaches where this interface represents the crux of the methods.
The most fundamental limitation of the method originates from one of its strength and is the
lack of self-consistency. Indeed, effects related to long range charge transfer, well captured by
self-consistent methods such as DFT, are absent in the SEPM framework. These effects can
be sometimes included a posteriori as external fields, as in the case of piezoelectricity, but this

represents a complication.

The solid foundation of the framework presented here, allows us to envision some interesting
extensions for the coming years. A natural and useful development would be the inclusion of
dynamical processes where electron-phonon coupling could be treated perturbatively or non-
perturbatively. This would enable us to predict the effect of temperature on the observables
described previously and give us access to processes forbidden in the absence of phonons, such
as spin-relaxation times. These are fundamentally interesting effects, relevant to the world of
technology. Another interesting avenue is the effect of magnetic fields on nanoscopic systems
treated almost exclusively at continuum level until now. An accurate prediction of magnetic
properties, such as g-factors, would be useful, e.g., to the area of spintronics. Yet another
valuable developments would be the creation of a link between the potential construction and
the modern theories beyond LDA, such as GW. Such a link could help removing some of the
empirical steps in the construction and may lead to a more automatic way of pseudopotential
generation, ideally close to the ones used commonly in DFT. Finally, improving the numerics
and algorithms is a never ending and often surprising task that can open the way to applications

and developments not easy to foresee.
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