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Abstract

Physics at the nanoscale has emerged as a field where discoveries of fundamental physical

effects lead to a greater understanding of the solid state. This area of research is additionally

driven by high hopes for technological relevance and a high pace of experimental achieve-

ments in fabrication and characterization has been witnessed in the last decade. From the

side of theoretical modeling —so successful in solid state physics in general, since the emer-

gence of density functional theory— we must acknowledge a weak connection to state of the

art experimental achievements in the realm of nanostructures. The cause for this partial

disconnect resides in the difficulty of the matter. Nanostructures being small in size but

large in the number of atoms constituting them, and the relevant observables being accessi-

ble only through proper treatment of excitations. The large number of atoms and the need

for excited sate properties makes this a challenging task for theory and modeling.

In this contribution we will outline the framework, based on empirical pseudopoten-

tials and configuration interaction, to obtain quantitative predictions of the excited state

properties of semiconductor nanostructures using their experimental sizes, compositions and

shapes. The methodology can be used to describe colloidal nanostructure of few hundred

atoms all the way to epitaxial structures requiring millions of atoms. The aim is to fill the

size gap existing between ab initio approaches and continuum descriptions. Based on the

pseudopotential idea and the developments of empirical pseudopotentials for bulk materials

in the early 60’s, the method has evolved into a powerful tool where the pseudopotential

construction has lost some of its empirical character and is now based on modern density

functional theory. We will present the construction of these potentials and the way the

ensuing wave functions are used in a subsequent configuration interaction treatment of the

excitation. We will illustrate the available capabilities by recent applications of the method-

ology to unveil new effects in the optics of nanostructures, quantum entanglement and wave

function imaging.
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1 Introduction

The new class of materials formed by semiconductor nanostructures has a large and mostly

unexplored ensemble of possible applications. For instance, colloidal semiconductor

nanostructures are used today in biology and medicine as light-emitting markers that remain

inert in the bio-environment. They can help to resolve structures and processes within the

cells and can tag body substances. In the area of classical information science and technology

they have a strong potential for providing efficient tunable light sources and light detectors. In

general, optoelectronics could profit from the developments of semiconductor nanostructures.

Following a rather long-term goal, in the area of quantum information science and technology

(towards the realization of single-photon sources, sources of entangled photons, or quantum

gates and register all the way to a quantum computer), the use of quantum dots is one of the

most promising concepts and is lead by a world-wide effort.

As a general remark one could note that the field of nanostructure science is driven by a high

pace of experimental achievements. Experimentalists are now able to grow nanostructures of

high quality from diverse semiconductor materials [1] with the ability to dope them [2–9].

The area of characterization reveals increasingly complex behavior, including the appearance

of high-energy excited excitons [10], charged excitons [11], multi excitons [12], exchange-induced

splittings [13], Coulomb blockade in addition spectra [14, 15], spin blockade [16], quantum en-

tanglement [17], enhancement of electron-hole exchange interactions [18], carrier relaxation and

multiplication via Auger processes [19], and the observation of quasiparticle wave functions

through magnetotunneling experiments [20] and scanning tunneling microscopy [3,21,22].

Nanostructures have therefore potential for applications, they cover a diverse set of materials

and structures, and they revel complex behavior revealed through a growing number of char-

acterization methods leading to interesting and fundamental physical effects. At this point

we should emphasize that the nanometer-scale that is the focus of nanotechnology describes

structures with dimensions of several nanometers up to hundreds of nanometers. While these

structures are “small” they do comprise thousands up to hundred thousands of atoms. In short:

nanometer-scale means thousands of atoms. Smaller structures are referred to as clusters

and are often of poor quality, showing broad size and shape distributions, poor surface passiva-

tions and optical properties. We must conclude that to address the relevant size regime and the

relevant physical observables, we need to be able to address a large number of atoms, including

excitations and many-body effects.

The current status of theoretical capabilities for describing the electronic and optical properties

of semiconductor nanostructures is as follows. Optical properties can be calculated from atom-

istic first-principles (Quantum Monte Carlo, time-dependent density functional theory, GW

and Bethe Salpeter,...) for nanosystems containing few to 200 atoms (depending on the level of

approximation). Pending a revolutionary change in our current approach to many body physics,

extensions of these approaches are unlikely to be able to address the size regime described above.

However, the development of first principles ab initio methods is important since it gives many

insights into the physics in strong confinement and can often be used as benchmark. Con-

tinuum models such as effective-mass and k · p [23], can handle macroscopic nano systems

but fail to address nanostructure where atomistic effects become important [24–26]. Empirical
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Tight binding models [27, 28] can presently deal with millions of atoms but lack atomistic

wave functions (since the Hamiltonian is directly parametrized) which constitute the essence of

the many-body problem.

In this contribution we will present the empirical- and semiempirical-pseudopotential meth-

ods that can be used in conjunction with configuration interaction to obtain many-body wave

functions of structures with millions of atoms. More than the bare empirical pseudopotential

construction, we will survey the different steps that can lead to the calculation of the observ-

ables relevant to modern experiments, using the experimental nanostructure geometry. We will

conclude by presenting three recent applications of the developed formalism.

2 Method

A summary of the methodology is given in Figure 1 in the form of a flowchart summarizing the

different components of our current approach. Figure 1 is divided into three logical segments,

labelled as Ground State, Excitations and Observables, feeding into each other. The calculation

of the ground state requires the input of the geometry and relaxation of the atomic positions to

minimize strain. The generation of empirical pseudopotentials is the prerequisite for the con-

struction of the total crystal potential that is subsequently used in the Schrödinger equation.

The ensuing eigenfunctions are fed into a configuration interaction treatment to obtain excita-

tions. Finally, from the many-body wave functions, observables can be obtained through the

use of post processor tools. These different components will be introduced by using Figure 1 as

the thread of the discussion.

2.1 Input geometry and geometry relaxation

In the first step of the flowchart in Fig. 1, Input Geometry, we construct a supercell containing

the nanostructure. The shape, size and composition are taken as initial input from experiments

and the atoms are placed, at first, on a regular grid representing an initial guess for the final

atomic positions to be obtained in the next step. The atoms within the supercell are then allowed

to relax in oder to minimize the strain energy. In most cases, the system of interest is too large

to be handled by standard density functional theory and we make use of a classical atomistic

force field model [29–31], the Valence Force Field (VFF) method, including bond bending, bond

stretching and bond bending-bond stretching interactions:

EV FF =
∑

i

nni∑

j

3

8
[α

(1)
ij ∆d2

ij + α
(2)
ij ∆d3

ij] +
∑

i

nni∑

k>j

3βjik

8d0
ijd

0
ik

[(Rj −Ri) · (Rk − Ri)

− cosθ0
jikd

0
ijd

0
ik]

2 +
∑
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nni∑

k>j

3σijk

d0
ik

∆dij [(Rj − Ri) · (Rk − Ri) − cosθ0
jikd

0
ijd

0
ik] , (1)

where ∆d2
ij =

[
[(Ri −Rj)

2 − d0
ij

2
]/d0

ij

]2
. Here Ri is the coordinate of atom i and d0

ij is the ideal

(unrelaxed) bond distance between the atoms i and j. Also, θ0
jik is the ideal (unrelaxed) angle

of the bond angle j− i− k. The
∑nni denotes summation over the nearest neighbors of atom i.

The bond stretching, bond angle bending, and bond-length/bond-angle interaction coefficients
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Figure 1: Flowchart of the methodology underlying the atomistic calculation of various observables for semicon-

ductor nanostructures. The flowchart is divided into three logical sections: Ground State, Excitations (many-body

part), and Observables. The different computational parts are described in the text.

α
(1)
ij (≡ α), βjik, σjik are directly related to the elastic constants in a pure zincblende structure

[32]. The second-order bond stretching coefficient α(2) is related to the pressure derivative of

the Young’s modulus by dB
dP , where B = (C11 + 2C12)/3 is the Young’s modulus.

An atomic force field is similar to continuum elasticity approaches [30] in that both methods

are based on the elastic constants, {Cij}, of the underlying bulk materials. However, atomistic

approaches are superior to continuum methods in two ways, (a) they can contain anharmonic

effects, and (b) they capture the correct point group symmetry. The calculation of the energy

and forces from expressions such as Eq. (1) can be performed within seconds for millions of

atoms, allowing for a manageable strain minimization of large nanostructure.

2.2 Pseudopotentials

It is advantageous to split the electrons into core and valence electrons. The valence electrons

occupy the outer shells and interact with the potentials of the neighboring atoms. They are

responsible for the interatomic binding, in contrast to the atom-localized core electrons. In the

frozen core approximation, the core electrons are assumed to be unperturbed by their environ-

ment and the Schrödinger equation has to be solved only for the valence electrons. The assump-

tion that the core electrons are independent of their surroundings is poorly fulfilled [33], but the

change in energy vanishes in the first order of density change [33,34] making this approximation

practical. The frozen core approximation is the founding assumption of pseudopotentials.
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The Pauli principle requires from the valence wave functions to be orthogonal to the core wave

functions leading to valence wave functions that are fast oscillating in the core region with high

kinetic energy. This behavior can be pictured with a virtual repulsive potential at the ion cores.

It turns out that this repulsion is nearly perfectly compensated by the attractive core potential,

both effects leading to a weak effective potential acting on the valence electrons1.

Following the formulation of Phillips and Kleinman [35] the formal justification of pseudopoten-

tials can be given as follows. |ψ〉 represents the valence wave functions and {|χn〉} the core wave

functions with eigenvalues {En}. The aim is to construct a node-free pseudo–wave function |φ〉.

Initially, we assume:

|ψ〉 = |φ〉 +
∑

n

cn|χn〉 . (2)

From the orthonormality relation we obtain:

〈χn|ψ〉 = 0 = 〈χn|φ〉 + cn −→ cn = −〈χn|φ〉 (3)

and

|ψ〉 = |φ〉 −
∑

n

|χn〉〈χn|φ〉 . (4)

This expression for the valence wave functions is used in the Schrödinger equation Ĥ|ψ〉 = E|ψ〉:

Ĥ|ψ〉 = Ĥ|φ〉 −
∑

n

Ĥ|χn〉〈χn|φ〉 = Ĥ|φ〉 −
∑

n

En|χn〉〈χn|φ〉 = E|ψ〉 (5)

= E|φ〉 −
∑

n

E|χn〉〈χn|φ〉 , (6)

and the terms are rearranged:

Ĥ|φ〉 +
∑

n

(E − En)|χn〉〈χn|φ〉 = E|φ〉 . (7)

The node-free pseudo–wave functions fulfill a Schrödinger equation with an additional energy

dependent non-local pseudopotential V̂nl:

T̂|φ〉 +
{

V̂ +
∑

n

(E − En)|χn〉〈χn|

︸ ︷︷ ︸
bVnl

}
|φ〉 = E|φ〉 , (8)

where Ĥ has been split into kinetic T̂ and potential V̂ terms. The expression in curly brackets

is the pseudopotential, which is made of a positive attractive part V̂ and a negative repulsive

part V̂nl. The eigenvalues of the Schrödinger equation for the real– and the pseudopotential are

identical since Eq. (7) can be rewritten as:

〈ψ|H|φ〉 +
∑

n

(E − En)〈ψ|χn〉〈χn|φ〉 = E〈ψ|φ〉 , (9)

and the core and valence states must be orthogonal: 〈ψ|χn〉 = 0.

The pseudopotential at this point is not necessarily soft since V̂nl includes core states but it is not

unique, since (E−En) can be arbitrarily replaced. This non-uniqueness will be used to generate

1This compensation is only effective when electrons with the angular momentum of the valence electrons are

present in the core. A lack of thereof lead to strong (or hard) pseudopotentials.
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soft pseudopotentials. The pseudopotential is also non-local since the projector |χn〉〈χn| applied

on the pseudo-wave functions yields a volume integration |χn〉〈χn|φ〉. The pseudopotential also

depends on energy and acts mainly in the core region.

At this point where we have established the partial cancellation of attractive and repulsive parts

of the potential [35, 36] and given a formal derivation for weak pseudopotentials, there are two

possible routes.

• The construction of ionic pseudopotentials where the interaction of valence electrons is ex-

plicitly taken into account. This route has been very successful, especially when ab initio

calculations for the atom have been used to construct transferable and accurate pseudopoten-

tials. One of the requirements for such pseudopotentials is to deliver pseudo-wave functions

identical to the real all-electron wave functions outside of a certain cut-off radius. This

guarantees to obtain accurate binding properties. There are several implementations of ionic

pseudopotentials starting with norm-conserving pseudopotentials where the generalized eigen-

value problem of Eq. (8) (the pseudo-wave function are not orthogonal, Eq. (4)) is transformed

to a standard eigenvalue problem where the pseudo-eigenfunctions satisfy the orthonormality

condition. The norm conservation guarantees that the important scattering properties only

change in second order with a change in energy [37–40] which is the key ingredient for the

good transferability of these potentials. The most common construction procedures are due

to Vanderbilt [41], Hamann, Schlüter and Chiang [40,42] , Troullier and Martins [43], and von

Kerker [44]. Another type of ionic pseudopotentials are ultrasoft pseudopotentials (US) [45,46]

where the norm-conservation is not explicitly required for the pseudo valence wave functions

at the expense of introducing an auxiliary function acting at the ionic cores. Yet another

type of ionic pseudopotentials are used in the projector augmented waves (PAW) [47] method.

Like for ultrasoft pseudopotentials, projectors and auxiliary functions are introduced but the

all-electron wave function is kept. This involves in the calculation of the integrals smooth func-

tions extending outside the core region and functions localized inside of muffin-tin spheres.

• The construction of total pseudopotentials that include the interaction of not only the core

electrons but of all electrons. This is the route taken in the construction of empirical and

semiempirical pseudopotentials, as described in the next section.

2.3 Empirical pseudopotentials and their construction

The empirical pseudopotential method (EPM) (see Ref. [48] and references therein for a more

detailed review of the method and a historical introduction) involves a fit of the reciprocal space

pseudopotential V (G) to experimentally known quantities, such as certain points of the band

structure. The first assumption is that the self-consistent effective pseudopotential of the crystal

(we use capital V for crystal potentials and lower-case v for atomic potentials) can be written

as a sum of atom-centered pseudopotentials:

V (r) =
∑

α,j,n

vα(r − Rn − rα,j) , (10)

where n is the index for the primitive unit cells and Rn the corresponding lattice vector. α

stands for the atom type and j is the atom index. rα,j is therefore the basis vector for the atom
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j of type α. Simplifying, at first, to a crystal with only one type of atoms (e.g. Si), v, we can

write the potential in reciprocal space as

V (r) =
∑

G

v(G)S(G)eiGr , (11)

with the structure factor

S(G) =
1

n

∑

j

e−iGrj , (12)

where n is the number of basis atoms. The structure factor only depends on the geometry. The

potential v(G), also called the form factor, is treated in the EPM as disposable parameter.

To illustrate the practical implications of this formalism, we take the example of Si in the

diamond structure. The lattice vectors in real and reciprocal space are given by A and B and

the vectors of the two basis atoms by r and −r:

A =
a0

2




1 1 0

0 1 1

1 0 1



 , B =
2π

a0




1 1 −1

−1 1 1

1 −1 1



 , r =
a0

8




1

1

1



 . (13)

In this case, the structure factor from Eq. (12) simplifies to

S(G) = cos(G · r) . (14)

A few reciprocal lattice vectors sorted according to their length are given in Table 1. According

Table 1: Reciprocal lattice vectors G with smallest length in diamond structure with lattice

constant a0.

a0

2πG
(

a0

2πG
)2

G · r

000 0 0

{111} 3 3π/4

{200} 4 π/2

{220} 8 π

{311} 11 5π/4

to Eq. (14) and Table 1 the structure factor for G2 = 4(2π/a0)
2 vanishes. It turns out that for

Si and most conventional group IV, and III-V semiconductors the potential G becomes week

for reciprocal vectors larger than G2 = 11(2π/a0)
2, so that truncating the expansion at this

point turns out to be a reasonable approximation. The G=0 component of the form factor

simply gives the averaged potential and shifts the band structure rigidly along the energy axis.

If we further assume that v(r) is spherically symmetric the form factor takes the form v(G)

and only three different form factors remain. These three factors, v111, v220 and v311 are used

as adjustable parameters to reproduce experimental results, such as the band structure. Early

applications of the method were done for Si and Ge [49, 50] and soon extended to fourteen

different semiconductors [51] with surprisingly accurate results, considering the limited input.

The band structure of most semiconductors can be fitted to high accuracy using this procedure
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giving us the hint that a local potential V (r) can be used as a mean field to describe the complex

many-body electronic interactions in the crystal.

The application of this idea to calculate the electronic properties of nanostructures requires a

continuous form of v(G) since the few discrete points, v111, v220 and v311, fail to address a large

structure with a dense mesh of G vectors. The continuous empirical pseudopotential can be

represented, for instance, by a function with 4 parameters a1,a2,a3,a4 [52] or by a sum of N

Gaussians with parameters ai, ci, bi [53]:

vEPM(q) =
a1(q

2 − a2)

a3ea4q2 − 1
or vEPM(q) =

N∑

i=1

aie
−ci(q−bi)

2

. (15)

From the empirical atomic pseudopotentials v(q) we construct the bulk crystal empirical pseu-

dopotential V (r) from the sum given in Eq. (10). We solve the Schrödinger equation

Ĥψi(r) = {−
∇2

2
+ V EPM

loc (r) + V̂SO}ψi(r) = εi ψi(r) , (16)

using a basis set of plane waves with a low energy cut-off (e.g., 4.5 Ry for Si in Ref. [52]). At this

point, the parameters from Eqs. (15) are fitted to reproduce known experimental quantities such

as the bulk band structure at high symmetry points, the effective masses for different bands at

different k-points and along different reciprocal space directions, the deformation potentials, the

surface work function [32,52,53]. The nonlocal spin-orbit interaction can be written as [54,55]

V̂SO =
∑

iα

V̂ SO
α (Ri) =

∑

iα

∑

lm

V SO
l,α (r −Ri)|Plm(Ri)〉L · S〈Plm(Ri)| , (17)

where |Plm(Ri)〉 is a projector of angular momentum lm centered at the atomic position Ri,

L is the spatial angular momentum operator, S is the spin operator with components given by

Pauli matrices, and V SO
l,α (r) is a potential describing the spin-orbit interaction. The functional

form of V SO
l,α (r) was set to a Gaussian and only the effect of p states (l=1) was included in most

recent works [31, 56]. In practice this approach leads to a single spin-orbit parameter for each

atom type α.

There have been several modifications to the approach from Eq. (16). The most prominent ones

are (i) The strain dependence of the potential through the local hydrostatic strain Tr(ǫ) [31]:

vEPM
α (r; ǫ) = vEPM

α (r)[1 + γαTr(ǫ)] , (18)

where γα is a fitting parameter. The explicit strain dependence of the potential helps to capture

effects that would enter the picture only through a self-consistent charge rearrangement in

response to compression or expansion, which is absent in the conventional EPM framework.

More sophisticated strain dependences have been introduced for nitride pseudopotentials [57].

(ii) The rescaling of the kinetic energy. In Eq. (16), the kinetic energy of the electrons has been

scaled [31, 56] by a fitting parameter β: −β∇2/2. This procedure can be seen as the attempt

to correct for the lack of non-locality in the potential. The introduction of β enables to fit both

the band gap and the effective masses with the same set of few parameters.

(iii) The environment dependence of the potential. If the EPM is used to describe common-anion

or common-cation alloys of semiconductors the question of environment dependence needs to

47
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Figure 2: Flowchart describing the steps necessary to generate a semi-empirical pseudopotential (SEPM).

be addressed. For a common anion semiconductor (e.g., InxGa1−xAs) each anion is surrounded

by n cations of type 1 (e.g., Ga) and 4 − n cations of type 2 (e.g. In). The pseudopotentials

are always constructed from independent binaries (e.g, InAs and GaAs) so that there are two,

likely different, pseudopotentials for the same anion (e.g. As). This is legitimate since the

pseudopotential describes not only the bare atom but also the interaction with its neighbors.

However, the potentials should remain similar enough to guarantee some degree of transferability.

The simplest expression for an As atom surrounded by n Ga and (4−n) In atoms, is a weighted

sum of the type:

vAs(nGa, (4 − n)In) =
1

4

(
n vGaAs

As + (4 − n) vInAs
As

)
, (19)

where v
InAs(GaAs)
As represents the As pseudopotentials derived from InAs (GaAs). With this

approximation, the parameters in Eqs. (15,17,18) can be slightly modified to correctly reproduce

alloy properties, such as band gap bowing [53,58].

2.4 Semi-Empirical Pseudopotentials and their Construction

The EPM framework we described uses a fully local description of the potential, besides the

spin-orbit term in Eq. (17). It was soon recognized [59] that this approach can be improved by

using non-local potentials. The non-locality is introduced by making the potential dependent

on the angular momentum of the electron. It can therefore account for the different behavior of

a 2s and a 2p electron in oxygen, for instance. The l-dependent potential vl can be written as

V̂nl(r) =
∑

Ri

v̂nl(r − Ri) =
∑

Ri

∑

lm

|Plm(Ri)〉vl(|r − Ri|)〈Plm(Ri)| , (20)

where Ri are the atomic positions and |Plm(Ri)〉 are projectors of angular momentum lm. In

practice v̂nl(r) is assumed zero outside a cut-off radius rcut typically around the interatomic
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distance [53, 60]. This procedure is perfectly equivalent to the one used in the community

of ab-initio ionic pseudopotentials. There, l-dependent ionic pseudopotentials are generated

based on all-electron density functional theory (DFT) calculations [40–44]. This similarity in

the formalism can be used to connect the total semi-empirical pseudopotentials with the ionic

ab-initio pseudopotentials.

We will describe the necessary steps to the construction of the ionic semiempirical pseudopo-

tentials following the flowchart of Fig. 2. From DFT in the local density approximation (LDA)

the screened local (self-consistent) potential for a set of different crystal structures (zincblende,

wurtzite, B2, ...) at different lattice constants is calculated. The norm-conserving ab initio ionic

pseudopotentials required for the DFT calculations can be obtained from available databases or

constructed with ease. The relevant output of the DFT calculation is the screened local effective

potential, usually given in real space Vloc(r). Fourier transformed to G space:

Vloc(G) =
1

Ω

∫

Ω
Vloc(r)e

irG d3r . (21)

For the local real space potential we make the Ansatz:

Vloc(r) =
∑

n

vanion(r − Rn + r0) + vcation(r − Rn − r0) , (22)

with the Fourier transform

Vloc(G) =
1

Ω

∫

Ω
vanion(r′)eiG(r′−r0) + vcation(r′)eiG(r′+r0) dr′ (23)

=
cos(r0G)

Ω
v+(G) − i

sin(r0G)

Ω
v−(G) , (24)

using the short form

v+(G) = vanion(G) + vcation(G) , v−(G) = vanion(G) − vcation(G) . (25)

In Eq.(22) we separated the real space potential into an anion-centered and a cation-centered

contribution, this represents the case of a binary system, e.g. a III-V semiconductor such as

GaAs. If vcation/anion(r) is assumed to have inversion symmetry then v+(G) and v−(G) are real

and we can write:

v+(G) =
Ω

cos(r0G)
ℜ{Vloc(G)} , v−(G) = −

Ω

sin(r0G)
ℑ{Vloc(G)} . (26)

It is possible to obtain vanion(G) and vcation(G) exactly. However, vanion and vcation are very well

represented by their spherically averaged counterparts: vanion(|G|) and vcation(|G|) and we make

use of this simplification, which represents a pivotal approximation. The DFT results for v+(|G|)

in GaAs calculated for the crystal structures zincblende and B2, each of them at the two lattice

constants 10.658 a.u. and 11.452 a.u. are given as black dots in Figure 3. The inset (Fig 3(b))

is a magnification of the area indicated by black arrows. It can be seen that the discrete points

mostly lie on a smooth curve. The fit through the points in Fig. 3 was done using cubic splines

with an exponential truncation but any other function such as in Eq. (15) can be used. It can

be seen that around G = 2.5 a.u. some points scatter above and below the fitted curve. Indeed,

there is no guarantee that the points lie on a smooth curve and the amount of scatter will depend
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Figure 3: This figure shows one of the steps in the construction of a semiempirical pseudopotential. The points

are the DFT results for the screened effective potential for GaAs at discrete G-vectors. The line is the fit of our

semiempirical pseudopotential through these points.

on the material, the crystal structures and the range of different lattice constants used in the fit.

It is also representative of the degree of transferability of the potential. Up to this point, two

approximations have been made: (1) The spherical approximation, by going from G to |G| and

(2) the average over different crystal structures, by fitting a single curve that passes through

several points at a single |G| value. This procedure turns out to be very accurate for several

semiconductors [60, 61] and the overlap of the semi-empirical wave functions, indexed SEPM,

and the LDA wave functions, 〈ψLDA
i |ψSEPM

i 〉, is larger than 99.9% [60,61].

From the smooth curves fitted through the v+(|G|) and v−(|G|) points, we obtain the continuous

atomic semi-empirical pseudopotentials through Eq. (25). Once this potential is known for each

atom type α, we can reconstruct the crystal potential (Calculate the Crystal Potential in Fig. 1)

by the superposition (as in Eq. (10)),

V SEPM
loc (r) =

∑

α,j,n

vα(r − Rn − rα,j) =
1

Ω

∑

α,j,n

∫

Ω
vα(|G|)e−i(r−Rn−rα,j)G d3G . (27)

To reconstruct the full crystal potential we need to include the non-local part of the ab-initio

ionic pseudopotential V̂nl(r) (Eq. (20)) . This operator is simply added to the local potential

V SEPM
loc (r) (long arrow in Fig. 2) in a fashion very much analogous to the way non-local potentials

are treated in DFT [62].

Before the potential can be used to quantitatively predict the properties of nanostructures, two

modifications are necessary. One is to reduce the energy cut-off used in the DFT calculation

to a value where the quality of the potential/wave functions is not significantly deteriorated

but which allows to numerically handle several hundred thousand atoms. Typically energy

cut-off values of 5 - 8 Ry have been used [60, 61] in conjunction with an empirical “Gaussian

correction” [61]. The second modification is to refit to potential slightly to correct for the known

errors of LDA with respect to the bulk band gap and the effective masses. Since these values
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are crucial for quantum dots, we need to make sure they agree well with experiment. These

last two steps probably give the most part of the empirical “flavor” to the overall methodology.

While the first step is of technical nature and for smaller systems (up to ten thousands of atoms

at present computational capabilities) the cut-off could be unchanged, the second step might be

avoidable by using a quasiparticle approach such as GW, instead of LDA, which gives in some

cases very accurate band gaps and effective masses.

2.5 Solving the Schrödinger Equation for the Nanostructure

After having obtained the crystal potential we move on to solve the Schrödinger equation in

Fig. 1. The Schrödinger equation is given by

Ĥψi(r) = {−
∇2

2
+ V SEPM

loc (r) + V̂nl + V̂SO}ψi(r) = εi ψi(r) . (28)

We know that the spectrum of Ĥ has an energy gap and we know approximately from the

pseudopotential construction at which spectral energy this gap develops. Our aim is to find

a dozen of the interior eigenvalues on either side of the gap which determines most of the

properties related to excitations. Our aim is therefore not to calculate all the occupied bands,

as is customary in DFT approaches, but only a few relevant ones. We therefore have no access

to the total energy of the system which requires a sum over all the occupied bands. Since

our approach is to represent the total potential by a pseudopotential there is no self-consistent

loop to undergo and the Hamiltonian is diagonalized only once. This is another difference to

the ab-initio ionic pseudopotentials where a self-consistent treatment of the valence electrons is

required.

To solve this interior eigenstate problem we use [63] a conjugate gradient (CG) type algorithm

applied with the Folded Spectrum Method (FSM) [64] or other strategies using state-of-the-art

algorithms for the eigenvalue problems at hand, in particular variations of the CG, the locally

optimal block preconditioned CG (LOBPCG) [65], and Jacobi-Davidson methods [66].

Depending on the size of the problem we use two different basis sets for ψi. For small enough

structures, up to a few hundred thousand atoms, we use a simple but large plane wave basis set

ψi(r) =
∑

G

ci(G)eiG·r , (29)

where G is a reciprocal lattice vector and ci(G) are the expansion coefficients to be determined

variationally. The advantage of the plane wave basis set is that it can be increased systematically

and Ĥψ can be evaluated easily on the fly. The Hamilton matrix is large (dimension can be

several millions) and very sparse. Due to its large size the matrix H is never explicitly computed

and the solver is matrix free with Ĥ acting on each vector ψ. As usual, we calculate the kinetic

energy part in Fourier space, where it is diagonal, and the potential energy part in real space

where the number of operations required for the matrix-vector product scales as n log n where

n is the dimension of H. We move between Fourier and real space by three dimensional FFTs.

Another basis set is used for larger nanostructures, such as self-assembled quantum dots, and

is constructed from a linear combination of strained bulk Bloch states (SLCBB [67]), φnk, from
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bands, n, and k-points, k,

ψi(r, ǫ) =
∑

n,k

c
(i)
n,k φnk(r, ǫ) , (30)

taken at a few strain values ǫ. With this basis set, the Hamilton matrix is rather small, typi-

cally n=40,000, but dense and expensive to compute. H is locally stored and solved for a few

eigenvectors and eigenvalues using ARPACK [68].

The plane wave code is parallel and can handle hundred thousands of atoms while the SLCBB code

is serial but can handle up to millions of atoms due to the underlying assumption in the small

basis set used. When it is affordable, the plane wave code is superior because of the possibility to

include the non-local potential V̂nl (while SLCBB can presently only handle local pseudopotentials

except for spin-orbit) and because the basis set can be converged systematically by increasing

the cut-off energy (while the basis set in SLCBB requires a non-trivial choice from the user for

the basis and must be carefully checked for convergence).

2.6 External Constraints and Piezoelectric Field

At this point, a longitudinal external electric fields E can be added to Eq. (28) [69] through the

external potential

Vext(r) = −

∫

C

E · dl , (31)

where C is an arbitrary path connecting the point with zero potential to the point r.

Constrains such as pressure effects can be naturally investigated [70] since we use an atomistic

description and the potentials are constructed to reproduce deformation potentials. The use of a

multi-band approach that is not limited to expansion around certain points of the Brillouin zone

allows us to investigate transitions that are indirect in k-space [70], such as Γ to L transitions

in the conduction band with pressure.

Since our method is non-self-consistent and hence does not allow for long ranged charge redis-

tributions, it neglects effects such as piezoelectricity where charge is moved due to strain. In

this case, the piezoelectric potential must be calculated independently [71,72] and added as an

external potential, just like in the case of “truly” external fields. This is a priori difficult for

large structures but through a combination of strain calculations that can be done with empiri-

cal force fields and DFT calculations for the piezoelectric response we can obtain the necessary

potential [71]. It turns out that second order effects in strain need to be taken into account [71]

to obtain reliable results.

2.7 Solution of the many-body problem

2.7.1 Correlations in the Ground State

The word correlation in the context of quantum dots can lead to some confusions that we intend

to prevent by this short section. Correlations are usually defined as the difference between

the Hartree-Fock ground state and the exact many-body solution. In this context, correlations

are purely a ground state property. The conventional quantum chemical methods start from

the Hartree-Fock (HF) single-determinant ground state and use configuration interaction (CI),
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Møller Plesset, coupled cluster (CC), among other methods, to add correlations to the ground

state. We, however, do not attempt to solve the many-body problem for the ground state, since it

consists of thousands of electrons. Our approach is purely empirical at this stage: we assume that

the solutions of our Schrödinger equation (Eq. (28)) with the effective empirical pseudopotential

are already fully correlated quasiparticle eigenfunctions and quasiparticle eigenvalues. The fact,

that our pseudopotential is local or semi-local while the true quasiparticle equation is fully

non-local points to the underlying approximation.

2.7.2 Correlations in the excitation: Configuration Interaction

Once the quasiparticle eigenfunctions have been calculated we follow the configuration inter-

action (CI) method (see Fig. 1) to obtain the excitations (such as an exciton) of the system.

At this point, the correlations of the ground state are assumed to be decoupled from the cor-

relations of the excitation. This is justified by the Brillouin theorem which states that there

is no coupling between the Hartree-Fock (HF) ground state and the single-exciton (“singles”)

excitation |Φhi,ej
〉. Note that we are not starting from the HF ground state, as in the Brillouin

theorem, but from the solution of the quasiparticle equation. It can still be shown [27] that

|Φhi,ej
〉 and |Φ0〉 are decoupled. There is, however, coupling between the higher excitations such

as double-exciton excitation (“doubles”) and the ground state. These are neglected in our ap-

proach, which can be justified by the fact that doubles are energetically remote from the ground

state.

The correlations in the excitation are treated at the level of “singles” only, i.e., only single-

exciton excitation where one hole in the valence band and one electron in the conduction band

are created, are allowed to interact. Formally, the correlated exciton wave function can be

constructed from a set of Slater determinants [73,74]:

|Φhi,ej
〉 = b†hi

c†ej
|Φ0〉 (32)

where b†hi
is the creation operator for holes and c†ej the creation operator for electrons. The

Slater determinants |Φhi,ej
〉 can be calculated from anti-symmetrized products of single-particle

wave functions ψi from equation (28).

The exciton wave functions |Ψ〉 are expanded in terms of this determinental basis set:

|Ψ〉 =
∑

hi,ej

A(hi, ej)|Φhi,ej
〉 , (33)

where A are the expansion coefficients and we use i to index hole states and j to index electron

states. The Slater rules [73] allow us to express the matrix elements between Slater determinants

in terms of one– and two–center integrals:

〈Φhi,ej
|H|Φhi′ ,ej′

〉 = (εej
− εhi

)δhihi′
δejej′

+ 〈ejhi′ |v|hiej′〉 − 〈ejhi′ |v|ej′hi〉 , (34)

with the two center integrals

〈ejhi|v|hi′ej′〉 =

∫∫
ψ⋆

j (re)ψ
⋆
i (rh)v(re, rh)ψi′(re)ψj′(rh) dre drh , (35)
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using v(re, rh) for the screened Coulomb interaction described in the next section. The last

term in Eq. (34) describes the direct Coulomb integrals and the one before last the exchange

integrals. The formalism described from Eq. (32) to Eq. (35) can be generalized to the case

of an arbitrary number of electrons and holes and is not limited to the case of excitons. For

the case of multiexcitons or charged excitons, the subspace of Slater determinants included in

Eq. (32) has been restricted to excitations that conserve the number of electrons and the number

of holes. For instance, a biexciton state has been constructed from Slater determinants with

two electrons and two holes (double excitation), neglecting the coupling to Slater determinants

with one electron and one hole (singles). This coupling is non zero, but rather small since the

energy difference between the single and the double excitations is approximately given by the

band gap. This generalization from the exciton case to an arbitrary number of electrons and

holes, represents one of the advantages of this approach. In our numerical treatment, equations

such as (34) are not directly implemented but rather the action of creation and annihilation

operators in a general second quantization form.

2.7.3 Screening

In quantum chemistry, configuration interaction is often treated at the level of triples, quadru-

ples, all the way to full CI which exactly solves the electronic Schrödinger equation within the

space spanned by the one-particle basis set. In these calculations, the integrals (35) are the bare

unscreened (v(re, rh) = 1/(|re − rh|)) Coulomb integrals. For excitations in a nanostructure,

such an approach is computationally not feasible using an atomistic description and we have to

limit ourselves in the one-particle basis set to only few states close to the band gap and to single

excitations only. To neglect the coupling of singles to higher excitations is a poor approximation.

However, it can be shown that the effect of higher order excitations can be folded back onto the

considered subspace of single excitations [27,75]. The effect of this procedure is to renormalize

(screen) the Coulomb interactions, as we already indicated in Eq. (35) by v(re, rh). There was,

and partly still is, some debate about the screening of the electron-hole exchange terms that

was recently addressed via field theory arguments [75]. It was argued [75] that in the limiting

case where transitions are considered over a wide energy range the electron-hole exchange term

should be unscreened while in the limiting case where only the few lowest energy transitions are

considered (usually our case) the interaction should be screened by the full dielectric function.

Besides this rather fundamental issue of whether to screen or not screen the interactions, the

choice of the dielectric function is another important and developing theme. The screened

Coulomb potential from Eq. (35) can be generally written as

v(re, rh) = e2
∫
ǫ−1(re, r)|r − rh|

−1 dr , (36)

with the inverse dielectric function ǫ−1(re, r). For large nanostructures, the screening function

used has been directly taken from the literature for bulk systems. We used [76] the phenomeno-

logical isotropic and uniform (ǫ(re, rh) ≃ ǫ(|re − rh|)) model proposed by Resta [77] for the elec-

tronic screening and by Haken [78] (for the case of the exciton) for the ionic part: ǫ−1 = ǫ−1
el +ǫ−1

ion

with

ǫ−1
el (k) =

k2 + q2 sin(kρ∞)/(ǫ∞kρ∞)

k2 + q2
, ǫ−1

ion(k) =

(
1

ǫ0
−

1

ǫ∞

)(
1/2

1 + ρ2
hk

2
+

1/2

1 + ρ2
ek

2

)
, (37)
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with q the Thomas-Fermi wave vector, ρ∞ is the solution of sinh(qρ∞)/(qρ∞) = ǫ∞ and ρh,e =

(~/2m∗
h,eωLO)1/2, with m∗

h,e the hole and electron effective masses and ωLO the bulk LO-phonon

frequency.

For small nanostructures the approximation of bulk screening is not appropriate since the effect

of the interface plays an increasing role. A screening function depending on the radius of

a spherical nanostructure was used for colloidal quantum dots [74]. The high frequency bulk

dielectric constant ǫ∞ from Eq. (37) was replaced [74] by a constant ǫdot
∞ obtained from a modified

Penn model where the size dependence enters the equation through the value of the optical band

gap of the dot [74]. The low frequency dielectric constant of the dot ǫdot
0 was obtained simply

by keeping ǫdot
0 − ǫdot

∞ = ǫ0 − ǫ∞. In this approach, the dielectric function remains dependent

on the distance |r− r′| but is independent of the position r, i.e., screening is modified (typically

reduced) throughout the nanostructure.

More recently, truly position dependent dielectric functions have been derived from tight binding

calculations [79] and from density functional theory [80] for nanostructures. The screening

function is obtained from the induced response of the system to an external perturbation, such

as a delta-function or Coulomb-like perturbation of the potential. These calculations suggest

that the screening function remains “bulk-like” inside the core of the structure and changes only

in the close proximity of the interface.

2.7.4 Dielectric Mismatch and Polarization Charges

In the discussion of the screening function and the single-particle Schrödinger equation we did

not mention the fact that the nanostructures are usually surrounded by a material with different

dielectric properties. In this case, polarization charges appear on the surface of the nanostructure

which have effects on the self-energy [81] and on the two particle binding energy [82]. Indeed,

the dielectric mismatch leads to a surface polarization potential which corresponds to the classic

electrostatic potential caused by a point charge inside an object, similarly to the image potential

created by a point charge close to a dielectric medium. Quantum mechanically, the effect can

be treated as an additional on-site potential P (r) in the Schrödinger equation Eq. (28) [81]:

Ĥψi(r) = {−
∇2

2
+ V SEPM

loc (r) + V̂nl + V̂SO + P (r)}ψi(r) = εi ψi(r) . (38)

This additional potential leads to a modification of the quasiparticle eigenvalues that we label

as Σsurf
c for the conduction band and Σsurf

v for the valence band. The terms Σsurf
c,v vanish for

ǫin = ǫout and are positive for the conduction band and negative for the valence band in case

ǫin > ǫout, i.e. both contribute to an increase of the quasiparticle gap.

The dielectric mismatch and the ensuing surface polarization has an effect on the screened

Coulomb interaction between the two quasi-particles. In addition to the direct Coulomb in-

teraction we discussed previously, there is an additional interaction between one of the quasi-

particles and the image surface charge of the other. This effect results in a modification of the

direct Coulomb interaction Jdir by a surface polarization term Jpol. It can be shown [27, 83]

that for spherical nanocrystals the contributions from the surface self-energy terms to the ex-

citon Σsurf
e + Σsurf

h mostly cancel the surface polarization contribution to the Coulomb term

Jpol. It is therefore a common approximation [23, 74], when dealing with excitons in nearly
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spherical colloidal quantum dots, to neglect the effects of polarization charges altogether, i.e.,

in the quasiparticle picture by using a simplified Schrödinger equation such as Eq. (28) and

in the exciton problem, by neglecting the surface polarization term. On the other hand, for

non-spherical nanostructures but with small dielectric mismatch, such as in self-assembled em-

bedded quantum dots, the polarization terms Σsurf
e,h ,Σsurf

e,h and Jpol are often assumed to be

small [76]. For non-spherical colloidal nanostructures such as tetrapods [84] or dumbbells [85],

where dielectric mismatch is usually large, the polarization terms must be explicitly taken into

account [27, 84]. Also in the calculation of charging energies or charged excitons, where the

cancellation of self-energy and surface polarization is not given, effects of dielectric mismatch

must be included [83].

2.7.5 Discussion

Before we move on to the next step where the many-body wave functions will be used to calculate

observables, we will summarize in a qualitative and rather schematic manner the computational

scheme used so far. In Fig. 4 we give an overview of the different energetic contributions to

the band gap of a semiconductor or insulator. The left side of the Figure [a) LDA] corresponds

to the band gap obtained with a single-particle description of the ground state such as density

functional theory in the local density approximation (LDA). The band gap ε0c − ε0v is typically

underestimated. The error in the band gap is mainly due to a missing or incorrect description

of the self-energy Σe,h
bulk. In Hedin’s GW approximation [86], at the quasiparticle level, this

contribution is properly accounted for and the band-gap opens up [b) GW]. The next column

[c) LDA] describes the situation in a nanostructure where in the single-particle case, the band

gap opens up by Ee,h
conf because of confinement. Ee,h

conf depends on the size of the nanostructure,

the band structure ( effective mass) of the material, the strain and deformation potentials. In

the next column [d) GW], at the GW level, the contributions of Σe,h
bulk add up but also the

contributions due to surface polarization effects Σe,h
surf described in the previous section 2.7.4.

Our empirical pseudopotential method enters the picture at the level given in “e) EPM” where

the self-energy contributions to the bulk Σe,h
bulk are taken into account but not the ones of surface

polarization Σe,h
surf . In the right column [f) Exciton], the optical band gap is given, where the

Coulomb interaction, Jeh
pol, and Jeh

direct, contribute to reduce the band gap. Jeh
pol, and Jeh

direct have

been artificially split into two parts Jeh,1,2
pol , and Jeh,1,2

direct to be able to visually include the two-

particle excitonic description of the right column within the single-particle and quasiparticle

description of columns a)-e). As discussed in section 2.7.4 the terms Σsurf
e + Σsurf

h tend to cancel

Jeh
pol = Jeh,1

pol + Jeh,2
pol for spherical nanostructures. In the case of no dielectric mismatch between

the nanostructure and the environment, the terms Σsurf
e , Σsurf

h and Jeh
pol vanish.

2.8 Post-Processor Tools

After we have calculated the many-body wave function we have access to observables through

the use of post-processor tools as shown in the last step of the flowchart in Fig. 1 .
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Qualitative Discussion of the treatment of Excitations
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Figure 4: Qualitative description of the position of the conduction band minimum (or LUMO) and valence band

maximum (or HOMO) in different theoretical approaches. See section 2.7.5.

2.8.1 Optics

The optical properties of semiconductor nanostructures are among the most relevant observables.

The optical transition of an excitonic complex χ to the excitonic complex (χ − 1), where one

electron-hole pair has been annihilated, is characterized by both the transition energy between

the initial state i and the final state f , ωif (χ), and the optical transition dipole matrix element

M
(ê)
if (χ) = 〈Ψ(f)(χ− 1)|ê · p|Ψ(i)(χ)〉 , (39)

with the momentum operator p and the polarization vector of the electromagnetic field ê [87,88].

The oscillator strength for the exciton complex χ and for polarization ê is given by

α(ê)(ω, T ;χ) ∝
∑

i,f

∣∣M (ê)
if (χ)

∣∣2 Pi(T ;χ) δ(ω − ωif (χ)) , (40)

where

Pi(T ;χ) = N exp{−[E(i)(χ) − E(0)(χ)]/kB T} (41)

is the occupation probability of the initial state |Ψ(i)(χ)〉 at temperature T and N is a normaliza-

tion constant. The delta function can be replaced by a Gaussian to account for size distribution

(inhomogeneous broadening) or by a Lorentzian to account for intrinsic sources of broadening

(homogeneous broadening). We can define a radiative lifetime, τif (χ), that is specific to the

transition between states i and j as:

1

τif (χ)
∝ nωif (χ)

∑

ê=x̂,ŷ,ẑ

∣∣M(ê)
if (χ)

∣∣2 , (42)

where, e and m0 are the charge and mass of the electron, respectively, c is the velocity of light in

vacuum and n is the refractive index of the dot material. The underlying assumption in Eq. (42)

that guarantees a simple linear dependence of 1/τif (χ) on refractive index is a similar dielectric

57



constant inside and outside the nanostructure, as is the case of many embedded self-assembled

quantum dots. In a more general case, more complicated dependences have been proposed [89].

Note that the “specific” radiative lifetime defined in Eq. (42) does not depend on temperature

nor on the occupation probabilities of the states while the actual (measured) radiative lifetime

τ(χ) depends non-trivially on occupation probabilities. To obtain the actual lifetime, the time

dependent Schrödinger equation has to be solved. This can be done by reducing the problem to

a few level system and by solving a set of master equations [88,90].

2.8.2 Quantum Entanglement

With our CI results we have access to quantum mechanical quantities related to correlations,

such as quantum entanglement. Entanglement is one of the most important quantities for

successful quantum gate operations and it is interesting to quantify the amount of entanglement

present, or achievable, given a certain system. The degree of entanglement of distinguishable

particles can be calculated from the von Neumann-entropy formulation [91,92]. For example for

a two component system (A,B), it is defined as, [91–93]

S = −Tr ρA log2 ρA = −Tr ρB log2 ρB , (43)

where, ρA and ρB are the reduced single-particle density matrices of the subsystems A and B.

However, there are some subtleties for defining the degree of entanglement for indistinguishable

particles, since it is impossible to separate the subsystems A and B. Recently, we have derived

a generalization of the von Neumann definition [94, 95] for identical particles through a Slater

decomposition [96,97] where the maximum entanglement of a two-electron system is S = log2N ,

where N is the number of available single-particle states. Our definition reduces to Eq. (43)

when the two-electrons are far from each other [94,95].

2.8.3 Tunneling Experiments

From the many-body wave functions we can obtain informations relevant to tunneling and opti-

cal experiments such as scanning tunneling microscopy (STM), magnetotunneling spectroscopy

(MTS) or near-field scanning optical microscopy (NSOM or SNOM). For the case of STM and

MTS, we calculate [20] the transition probability of an electron or hole from an emitter in state κ

to a quantum dot containing N particles from the expression 2π
~
|Mκ,N |2n(εF) [98] where n(εF)

is the enegy of the final quantum dot states. The transition matrix elements Mκ,N for the

transfer of one particle from the emitter in state κ to the quantum dot state |N〉, filled by N

electrons, can be factorized [99] as Mκ,N ∝ TκMκ,N where T does not depend on N , nor on

the coordinates in-plane, x,y (if z is the tunneling direction). The relevant matrix element is

therefore Mκ,N and is given by:

Mκ,N =

∫
φ∗κ(x)ΨQD(x)dx . (44)

Here, φ∗κ(r) is the probing or emitter wave function and ΨQD(x) is the quasi-particle excitation

between the N − 1 particle states |N − 1〉 and the N particle states |N〉, i.e.,

ΨQD(x) =
∑

i

〈N − 1|ĉi|N〉ψi(x) . (45)
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ψi(x) is the atomistic ith single-particle wave function and ĉi is an electron (hole) annihila-

tion operator. The correlated many-body states are obtained, as described in section 2.7, by

configuration interaction:

|N〉 =
∑

β

C
(N)
β Φβ(x1, · · · ,xN−1,xN ) , (46)

and

Mκ,N =
∑

i

〈N − 1|ĉi|N〉〈φκ|ψi〉 =
∑

i

∑

α,β

C∗(N−1)
α C

(N)
β 〈Φ(N−1)

α |ĉi|Φ
(N)
β 〉 〈φκ|ψi〉 (47)

with

〈Φ(N−1)
α |ĉi|Φ

(N)
β 〉 =






1 if |Φ
(N−1)
α 〉 = ĉi|Φ

(N)
β 〉,

−1 if |Φ
(N−1)
α 〉 = −ĉi|Φ

(N)
β 〉,

0 otherwise.

where i indexes the single particle states obtained from the solution of Eq. (28).

There are different techniques to probe the quasi-particle excitations. For example, in scanning

tunneling microscopy experiments, the probing wave function φκ(x) can be represented by a

δ-function at a given real space point, φ(x) ∼ δ(x), in which case the transition rate is given by

∼ |ψQD(x)|2 and maps out the square of the quasi-particle excitations in real space.

An alternative approach is taken in MTS where the quasiparticle excitations are mapped out in

reciprocal space. Using an atomistic description, the probing wave functions can be written as

a Bloch function ūk modulated by a plane wave:

φk(x) = ūk(x)ei k·x . (48)

The atomistic wave functions for the quantum dot states can be written as:

ψ(x) =

NB∑

n

Nk∑

k

cn,k un,k(x) eik·x (49)

where un,k(x) are Bloch wave functions with band index n and k-points k [20,100] so that the

product 〈φκ|ψi〉 in Eq. (47) is given by:

〈φk|ψi〉 =

NB∑

n

〈ūk|un,k〉cn,k . (50)

The overlap 〈ūk|un,k〉 is largest at the interface and since we do not know the exact form of

the Bloch part of the probing wave function, we have to resort to certain approximations. We

assumed [20,100] a constant 〈ūk|un,k〉 in which case Mκ,N in Eq. (47) is a function of k and N

that can be directly calculated.

2.9 Charging Energies

The charging energy µ(N) is the energy necessary to add one more carrier to the dot already

charged by N − 1 carriers:

µ(N) = E(N) − E(N − 1) , (51)
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where E(N) are the correlated many-body total energies of the ground states of the N -particle

dot. The addition energy ∆(N − 1, N) indicates how much more energy is needed to add the

Nth carrier compared to the energy needed to add the (N − 1)th carrier:

∆(N − 1, N) = µ(N) − µ(N − 1)

= E(N) − 2E(N − 1) + E(N − 2) . (52)

The charging and addition energies are therefore directly obtained from the many-body energy

calculated using the configuration interaction approach described in section 2.7 and can directly

be compared to experiment.

3 Applications

Extensive work has been done recently using the empirical pseudopotential methodology on

the material system InAs and GaAs [20, 26, 56, 69–72, 76, 88, 93–95, 100–104] and CdSe [74,

104–110]. Beyond these materials —in the focus of attention because of the wide availability

of experimental results— potentials for InAs/InSb [111], PbSe [112, 113], InP/GaP [74, 114],

nitrides [58,115], among others, have been developed for embedded structures and for colloidal

nanocrystals with adequate surface passivations. We will not attempt to review these many

results but will rather select a few examples that should emphasize the generality of the method

and its accuracy, able to predict new and unexpected physics.

3.1 Optics and Fine Structure

The term fine structure has been used in the realm of nanostructure physics to describe the

small splittings due to the electron-hole exchange interaction. In the simplest case when the

electron and hole states are derived from a single Kramers doublet, four possible electron-hole

state combinations emerge due to the particle’s pseudospins (indicated with arrows): |e↑ h↑〉,

|e↑ h↓〉, |e↓ h↑〉, |e↓ h↓〉. The electron-hole exchange integrals are special cases of the integrals

given in Eq. (35) and can be rewritten as:

Kij′,ji′ =

∫∫
ψ⋆

i (re)ψ
⋆
j′(rh)v(re, rh)ψj(re)ψi′(rh) dre drh , (53)

where we have kept the notation that i, i′ indexes hole states and j, j′ indexes electron states.

The “exchange” of particle can be seen from Eq. (53) through the fact that at position re a hole

wave function is on the left of v but an electron wave function on the right. These integrals lead

to the splitting of the four electron-hole pairs and to the appearance of the fine structure. The

integrals given in Eq. (53) require knowledge about the details of the Bloch part of the wave

function which is naturally given by an atomistic description [76] but not readily available in

envelope function theories. The integrals from Eq. (53) are sensitive to the effects of spin-orbit

interaction, the atomistic symmetry, band mixing and to the full range of screening (long- and

short-range) [76].

The atomistic calculation of fine structure splittings [72, 76, 88, 116, 117] and the comparison

of the results with experiments [116] is an excellent benchmark for the theory and leads to
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an understanding of the experimental results otherwise difficult or impossible to obtain. To

illustrate the physical insight that can be obtained, we choose the example of the fine structure

of the X2− charged exciton shown in Fig. 5. On the left side (Fig. 5 a)) we show the initial

configuration that consists of three electrons and one hole and the final configuration, after the

recombination of one electro-hole pair, which consists of two electrons. Four many-body levels

can be constructed from the limited set of one hole state h0 and two electron states e0 and

e1. Since the electrons in state e0 must be paired, only the configurations |(e0↑ e0↓)e1↑ h0↑〉,

|(e0↑ e0↓)e1↑ h0↓〉, |(e0↑ e0↓)e1↓ h0↑〉, |(e0↑ e0↓)e1↓ h0↓〉, are possible, much like in the case of a single

electron-hole pair mentioned previously. Note that this is only a simplifying model that helps

us to understand the results which do take many more configurations into account. Indeed, the

number of configurations included in the CI treatment (section 2.7.2) is given by

Nconf =
bc!

ne!(bc − ne)!

bv!

nh!(bv − nh)!
, (54)

where nh and ne are the number of holes and electrons, respectively, distributed among bv and

bc valence and conduction band states, counting spin. For the initial state of Fig. 5 a) with a

configuration space of 10 electron and 10 hole states (i.e., counting spin, bc = bv = 20) we have

22800 mixing configurations. However, an analysis such as the one in Fig. 5 a) describes most

of the physics properly in this case. Some striking deviations of the simple model have been

addressed in Ref. [117]. The electron-hole exchange interaction splits the four levels of X2− into

a doublet and two singlets in the initial state and the electron-electron exchange interaction

splits the final state into a singlet and a triplet state. The magnitude of the electron-electron

and the electron-hole interaction is significantly different, the latter being more than an order

of magnitude smaller than the former, with splittings in the order of tens of µeV . From the

initial to the final many-body states we can anticipate six transitions as marked in Fig. 5 a), 1-3

are split from 4-6 by electron-electron exchange, while 1-3 and 4-6 are themselves split by the

small electron-hole exchange interaction. The optical transitions that connect initial and final

states can be calculated using the formalism described in section 2.8.1. The theoretical results

for the oscillator strength for a lens shaped InAs self-assembled quantum dot embedded in GaAs

are given in Fig. 5 b) and the corresponding experimental results in Fig. 5 c). The transition

“1” from Fig. 5 a) has vanishing oscillator strength and therefore dark. The transitions are

also polarized along certain crystallographic directions giving us a useful tool to clearly identify

transitions and their origin [116,117].

3.2 Entanglement

The field of nanostructure science is increasingly driven by efforts aimed at using the electrons

in confined geometries to realize different schemes of quantum information science, where the

physical information is held in the state of the quantum system. This represents an area of

science where quantitative theories able to predict many-body properties of realistic systems

are important. Some prominent examples are the proposal to use two vertically [118, 119] or

laterally [120] coupled quantum dots containing two electrons [17], or an exciton [121] to perform

some basic gate operations. The carrier of quantum informations, the qubits, can be realized by

either the spin of the electron [17] or by the location of an electron or hole [121]. Our methodology
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Figure 5: Fine structure of the X2− charged exciton in a self-assembled InAs quantum dot. a) Analysis of the

results in a simplified picture where only few many-body states for the initial and final states are considered. Note

that the splitting of the initial states is given in µeV while the splitting of the final states in meV . b) Theoretical

results for the oscillator strength in arbitrary units. c) Experimental results. Figure adapted from Ref. [116].

gives us access to some of the relevant quantities such as the degree of entanglement between

the two electrons [94,95] or between the electron and the hole [69,93,101], or the singlet-triplet

splitting [95]. These quantities are sensitive to the geometry of the system, spin-orbit interaction,

the amount of strain, and only a methodology that takes these effects into account can give a

quantitative prediction.

In Figure 6 we present the results obtained for an InGaAs quantum dot molecule with dimensions

and composition taken from experiment [121] as 12 nm in diameter and 2 nm height with a

graded In-composition profile [69]. The two dots are vertically stacked, around 8 nm apart.

A fully entangled electron-hole pair can be represented by the the maximally entangled Bell

state |eThT 〉 + |eBhB〉, where e and h stand for the electron and the hole (the two qubits) and

T and B for their localizations in top or bottom dot (the state of the qubits). The entropy

of entanglement is calculated according to Eq. (43) where A is the reduced density matrix for

qubit A (the electron) and B is the reduced density matrix for qubit B (the hole). The density

matrices are calculated from the correlated CI exciton density which requires a projection of the

exciton wave functions on the dot localized basis set [69]. From the right side of Fig. 6 we can

see that the degree of entanglement as a function of electric field is peaked at a certain electric

field achievable experimentally [122–126] (5.4 kV/cm in our specific case) and can reach 80%.

The left side of Fig. 6 shows that at this specific electric field the peaks in oscillator strength

originating from the exciton states |1〉 and |2〉 anticross and |1〉 becomes dark. This optical

signature may be used by experimentalists in the future to identify the electric field needed to

achieve maximum entanglement in specific dot molecules. The theoretical results can be further
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analyzed to understand, in terms of electron and hole localization on either one of the two dots,

the way the particles conspire to create entangled states and what are the limiting and driving

factors [69, 101] such as the effect of geometry, composition, dot-separation and the ensuing

strain on tunneling and Coulomb interactions. From this understanding we could construct a

simplified model hamiltonian with few and well defined parameters [93].
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Figure 6: Electric field dependence of the oscillator strength (left) and the entropy of entanglement (right) of

the two exciton states |1〉 and |2〉 in an InGaAs self assembled quantum dot embedded in GaAs. At the critical

field of 5.4 kV/cm, applied in growth direction, the entanglement is maximized and the two peaks in the oscillator

strength originating from |1〉 and |2〉 anticross and |1〉 becomes dark. Figure adapted from Ref. [69].

3.3 Wave Function Imaging

In section 2.8.3 we described the formalism used to calculate tunneling amplitudes from corre-

lated many-body wave functions. We will illustrate it by an application to magnetotunneling

spectroscopy (MTS) of self-assembled InAs quantum dots grown by the Stranskii-Krastanov

method [127, 128]. We choose this system because of recent measurements on this system [20].

The experimental method is based on capacitance-voltage (C-V) spectroscopy [15, 99, 129–132]

where the energy of the quantum dot states can be shifted by an applied out of plane voltage

to allow electron (or hole) to tunnel into the dots controllably. Additionally, a magnetic field

B is applied in-plane. The tunneling rate can be measured and compared to the theoretical
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calculations [20]. Figure 7 a) shows the theoretical results for the tunneling amplitude of holes

mapped out in k-space for an InAs lens-shaped quantum dot with an elliptical base of 26 nm in

[11̄0] and 25 nm in [110] direction and 3.5 nm height. The labels nh→ mh describes the process

of tunneling the mth hole into the dot already filled with n holes. The arrows with labels [110]

and [11̄0] describe the crystallographic directions in real-space. From the Figure it is clear that

tunneling of the first and second hole occurs into an S-like state. We can quantitatively analyze

the orbital momentum character of the final state and it is indeed to more than 95% l = 0. The

tunneling of the third and fourth holes occurs into P -like states. For the fifth hole, 4h → 5h

the situation is interesting since it is the signature of the tunneling into the D state. Indeed

82% of the final state, in which the hole tunnels, is given by a configuration with dominant D

character. In Figure 7 b) we show that the filling sequence expected from the Aufbau principle

would lead to a tunneling into a second P state (labelled P2 in Figure 7 b)) and not into a

D-state, as given by the many-body calculation. The holes 5 and 6 therefore entirely skip the

P2 shell to tunnel directly into the D-shell, in contrast to the expectation from the Aufbau

principle. This result is confirmed by a side-by-side comparison of experiment and theory [20].

In Figure 7 c) we show a contour plot for the experimental MTS result for the tunneling of the

first hole along with theoretical results for a dot with circular base of 25 nm diameter and for a

dot with ellipsoidal base of 24x26 nm2. The comparison of theory and experiment shows a better

fit for the elongated dot. These results should illustrate the capability to draw conclusions on

dot morphology, difficult to get by other means, and on unexpected many-body effects.
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Figure 7: a) Calculated quasi-particle tunneling probability densities for 1 to 6 holes in reciprocal space [20]

b) Two possible charging scenarios for holes. c) Quasi-particle tunneling probability density for the first hole

from experiment (left), a calculation for a dot with circular base (middle), and a calculation for an elliptical base

(right).

4 Summary and Outlook

We have described an approach to obtain accurate properties, including excitations, of semi-

conductor nanostructures of realistic and relevant sizes. The approach is based on empirical or

semi-empirical pseudopotentials and configuration interaction. The critical steps that allow us
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to treat million atom systems are (i) we forgo the calculation of total energies and solve an inner

eigenvalue problem around the band gap for a few states only, (ii) the constructed empirical

potentials are total effective potentials that include the effect of valence electrons. There is no

self-consistent procedure and the Hamilton matrix is solved for few eigenvalues only once. (iii)

For the largest structures we use a basis set made of Bloch functions of the underlying strained

bulk matrix, leading to a dense but manageable eigenvalue problem. The ensuing quasiparticle

eigenfunctions can be directly used to calculate correlated few-particle states, with N electrons

and M holes, by a configuration interaction treatment. This give access to observables that

can be calculated using post-processor tools. The accuracy and applicability of the method was

illustrated by three different applications in the area of optics, quantum entanglement and wave

function imaging.

One of the appeals of the method, besides the fact that it can address a large number of atoms,

may come from the fact that, for the semi empirical potentials, the construction is directly

tied to ab initio methods. The results from density functional theory (DFT) are fed into the

semi-empirical pseudopotentials in a controllable fashion during construction. Applications of

the method are, however, seamless in the sense that no more interface between SEPM and DFT

exists, unlike multi-scale approaches where this interface represents the crux of the methods.

The most fundamental limitation of the method originates from one of its strength and is the

lack of self-consistency. Indeed, effects related to long range charge transfer, well captured by

self-consistent methods such as DFT, are absent in the SEPM framework. These effects can

be sometimes included a posteriori as external fields, as in the case of piezoelectricity, but this

represents a complication.

The solid foundation of the framework presented here, allows us to envision some interesting

extensions for the coming years. A natural and useful development would be the inclusion of

dynamical processes where electron-phonon coupling could be treated perturbatively or non-

perturbatively. This would enable us to predict the effect of temperature on the observables

described previously and give us access to processes forbidden in the absence of phonons, such

as spin-relaxation times. These are fundamentally interesting effects, relevant to the world of

technology. Another interesting avenue is the effect of magnetic fields on nanoscopic systems

treated almost exclusively at continuum level until now. An accurate prediction of magnetic

properties, such as g-factors, would be useful, e.g., to the area of spintronics. Yet another

valuable developments would be the creation of a link between the potential construction and

the modern theories beyond LDA, such as GW. Such a link could help removing some of the

empirical steps in the construction and may lead to a more automatic way of pseudopotential

generation, ideally close to the ones used commonly in DFT. Finally, improving the numerics

and algorithms is a never ending and often surprising task that can open the way to applications

and developments not easy to foresee.
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Pu. Phys. Rev. B, 26:4199, 1982.

[43] N. Troullier and J. L. Martins. A straightforward method for generating soft transferable

pseudopotentials. Solid State Comm., 74:613, 1990.

68



[44] G. P. Kerker. Non-singular atomic pseudopotentials for solid-state applications. J. Phys.

C: Solid St. Phys., 13:L189, 1980.

[45] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.

Phys. Rev. B, 41:7892, 1990.
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