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Abstract

The atom in jellium model describes a single atom interacting with an infinite homogenous

electron gas. It can be thought of as the simplest first principles model which includes all of

the essential physics of the Anderson impurity model, namely one or more localized atomic-

like states hybridized with a continuum of free electron band states. For example in the case

of rare earth elements, such as Ce, one can use the atom in jellium model to examine the

valence state of the atom as a function of the jellium density, or rs. This in turn can be used

to understand in simple terms the valence transitions which might occur in bulk materials,

for example as a function of pressure. In this highlight we present calculations of a Ce atom

in jellium, in which we compare the LSDA results with those of the Local Self-Interaction

Correction (LSIC). The LSIC approximation of density functional theory was introduced

by Lüders et al.[Phys. Rev. B, 71:205109, 2005], and it extends the original self-interaction

correction theory to apply the correction to long-lived resonances as well as to bound states.

Using the atom in jellium model for Ce we show explicitly how this applies to the 4f -like

states of the Ce atom in jellium. The LSIC has solutions which correspond to different

numbers of these f states treated as either SI-corrected or not. This causes these electrons

to localize, which within the effective medium theory (EMT) corresponds to a change in the

valence of cerium metal as a function of Wigner-Seitz radius.

1 Introduction

The atom in jellium model describes a single atom interacting with an infinite electron gas. It is

simply characterized by two parameters, namely the nuclear charge, Z, and the jellium density

n0, or rs, where 4π
3 r3

sn0 = 1. The model has been extensively studied in the past, usually within
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the local spin density approximation (LSDA), as an illustration of chemical bonding of an atom

to a metallic host [1–3]. In this context the key result of the calculation is the immersion energy

Eimm(n0), which is the energy of the atom in jellium system compared to the atom in free space

and the jellium without the atom. This immersion energy is one of the key ingredients in the

semi-empirical Embedded Atom Method (EAM) [4]. Effective medium theory (EMT) provides a

fully first principles theory of total energies of solids, in which each atom is viewed as embedded

in an effective jellium provided by the electron clouds of its neighbours [5]. This theory gives

a very good overall description of the trends in Wigner-Seitz radii across the 3d [6] or 4d [7]

transition metals.

In this highlight we examine the atom in jellium model from a quite different point of view.

Namely, it can be thought of as the simplest first principles model which includes all of the

essential physics of the Anderson impurity model [8]. This model is the central model in “quan-

tum impurity” problems, including the theory of the Kondo effect. It is characterized by one or

more localized atomic states, with an energy ǫf and an on-site repulsion U , which are hybridized

with a free electron band of states ǫk, by the matrix element Vk,

Ĥ =
∑

kσ

ǫkc+
kσckσ + ǫff+

σ fσ + Un̂f↑n̂f↓ +
∑

kσ

Vk

(

c+
kσfσ + h.c.

)

, (1)

where c+
kσ is the usual creation operator for electrons in band states and f+

σ is the creation

operator for the localized state, with n̂fσ = f+
σ fσ. As well as modelling a single atomic impurity

in a metallic host, this model is central to Dynamical Mean Field Theory (DMFT) [9]. In DMFT

the free particle band of states ǫk is replaced with a suitably chosen effective medium, obtained

self-consistently from the many-body solution of the Hamiltonian of Eq. 1. Implemented together

with LDA+U or other means to estimate the Anderson model parameters this is now one of the

most widely used first principles approaches to the theory of d and f -electron metals and their

compounds [10,11].

Our motivation for studying the atom in jellium model is to find an alternative route to an

effective quantum impurity problem, i.e. without mapping onto the Anderson impurity prob-

lem explicitly, and without invoking an additional parameter, U . Although effective Hubbard

parameters, U , can be estimated from constrained density functional theory [12] our aim is to

solve the atom in jellium model directly without requiring this additional step. For example,

one possible approach is to solve the atom in jellium model directly using quantum Monte Carlo

(QMC). We have recently shown that this approach is feasible, at least for an atom embedded

in a finite size jellium sphere. For a Hydrogen in jellium we were able to obtain reasonable im-

mersion energies, Eimm(n0), using a Variational-QMC approach based on a trial wave function

previously used by Sottile and Balone [13]. Our results [14] show a minimum in Eimm(n0) of

about 1eV at a jellium density of about n0 = 0.0025a−3
B . In contrast the LSDA result for the

same system is a minimum of about 2eV at the same density. We interpret this as evidence for

overbinding in LSDA compared to the more exact QMC results.

Unfortunately the QMC approach is currently too expensive to apply to a more interesting

case, such as rare earth atoms embedded in an electron gas. For these atoms we have applied

the Local Self-Interaction-Correction (LSIC) method, first developed by Lüders et al. [15]. In

particular we have demonstrated explicitly the ability of the LSIC method to self-interaction
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correct both bound states and states within scattering resonances. This then leads to a theory

which can describe valence transitions between different valence states of the rare earth atom as

a function of jellium density, or Wigner-Seitz radius within the EMT theory [5]. The remainder

of this highlight describes the LSIC method, and its application to a Ce atom in jellium.

2 Local Self-interaction Correction (LSIC)

The self-interaction correction (SIC) [16] approximation to density functional theory (DFT) was

proposed by Perdew and Zunger to ensure that the exchange correlation functional becomes

exact for a single electron in a bound state. Other widely used approximations, such as the local

spin density approximation or the generalized gradient approximation (GGA) do not obey this

constraint, and therefore make an error when applied to a single electron. The Perdew-Zunger

SIC adds a correction term to the LSDA, which subtracts the unphysical Hartree self-interaction

of each single electron generalized Kohn-Sham orbital spin density, niσ(r) and the corresponding

erroneous LSDA exchange and correlation energy, Exc[niσ, 0]. The resulting energy functional is

a functional of the generalized Kohn Sham orbital densities, niσ(r), and becomes exact when only

one electron bound state is occupied. The original Perdew-Zunger SIC functional was shown to

improve significantly the descriptions of atoms, for example giving the correct asymptotic −1/r

form of the Kohn Sham potential V (r), and providing improved ionization energies and electron

affinities. For systems where all the Kohn Sham states are extended the SIC correction vanishes

and so the functional again becomes equal to the usual LSDA (or GGA).

The application of SIC to bulk periodic crystals leads to an improved description of systems

with tightly localized electron states, such as 3d transition metal oxides and the lanthanide

and actinide f-electron metals [17]. In these cases the SIC functional allows electronic states to

be either band-like or localized, and both kinds of states are treated together within the same

ab initio approach. In general the self-consistent minimization of the total energy functional

leads to solutions with different numbers of localized states, and the lowest energy solution

found is taken as the global ground state. If no states are found to be localized the method is

equivalent to standard LSDA. These different localization states can be interpreted physically as

representing different chemical valence states of the d or f shell states. In particular for Cerium

it was found that the isostructural transition between the α and γ phases arose naturally from

the SIC methodology as a valence transition between trivalent and tetravalent Ce [18].

An important feature of the original SIC formulation by Perdew and Zunger was that the

SIC should vanish for the case of extended quantum states. However, recently Lüders et al. [15]

proposed an extension of the SIC to strongly bound resonances. They argued that it is reasonable

to apply the SIC for resonances, provided that the time for which the electron is bound in

the resonance (the Wigner delay time) is longer than other characteristic timescales in the

quantum many-body scattering problem. In practice this new formulation of SIC, named local-

SIC (LSIC), has the advantage of being compatible with the multiple scattering KKR approach

to electronic structure calculations. Unlike the original Perdew Zunger formulation of SIC, it

can also be applied for finite temperature calculations, and combined with the coherent potential

approximation (CPA) for disorder and with the disordered local moment (DLM) model of finite-
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temperature magnetism [19]. The LSIC has been successfully applied to a wide range of different

systems, including the α and γ phase transition of Ce [15].

We first show that the LSIC functional proposed and developed by Lüders et al. [15] can be

readily adapted to the case of an atom in jellium. In the original formulation of SIC, the

correction would be applied to all the bound states, but not to any extended states, as for

example in the embedded atom calculations of Puska and Nieminen [20]. However, demonstrably

within the model, the electron density due to a resonance in the continuum states is just as well-

localized as the density due to a discrete state. Therefore it is reasonable to assume that the

self-interaction for such a resonance does not vanish, and so the corresponding self-interaction

energy terms for this density should also be subtracted from the LSDA energy functional. In

what follows we shall demonstrate this with explicit calculations.

3 LSDA solution of an atom in jellium

We consider an atom of atomic number Z, embedded in a uniform jellium of background electron

density n0. Within the LSDA the ground-state solution is obtained by solving the self-consistent

Kohn-Sham (KS) equations

(

−
1

2
∇2 + V σ(r)

)

φσ
i (r) = Eσ

i φσ
i (r) (2)

where, assuming spherical symmetry, the potentials are

V σ(r) =

∫

∆n(r′)

|r′ − r|
dr′ −

Z

r
+ V σ

xc(n
↑(r), n↓(r)) − Vxc(

n0

2
,
n0

2
). (3)

where ∆n(r) = n(r) − n0 is the atom induced electron density. In principle the Kohn-Sham

potentials, V σ(r), and spin-densities, nσ(r), may become non-spherical, however in the work

described below we have imposed spherical symmetry on the spin densities, and hence the

KS equations reduce to the radial Schrödinger equations. The final term in Eq. 3 defines the

potential energy to be zero far from the ion.

The total energy of the atom in jellium is defined by

Etot =
∑

n,l,σ

(2l + 1)Eσ
nl +

∫ EF

0
E∆n(E)dE −

∑

σ

∫

nσ(r)V σ(r)dr +

∫
(

1

2

∫

(∆n(r′))

|r− r′|
dr′ −

Z

r

)

(∆n(r)) dr +

Exc

[

n↑(r), n↓(r)
]

− Exc

[n0

2
,
n0

2

]

(4)

where the Eσ
nl are the KS eigenvalues of the atom induced bound states (Eσ

nl < 0 ) of quantum

numbers n and l, and ∆n(E) is the atom-induced density of states in the continuum (0 < E <

EF , where EF is the Fermi energy of the jellium). The Hartree and exchange-correlation energy

terms are defined to subtract out the (infinite) energy of the jellium background, ensuring that
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Etot = 0 in the absence of the atom. Note that the continuum eigenvalue energy term above can

be re-written in terms of the scattering phase-shifts, δσ
l (E) for angular momentum channels l,

∫ EF

E=0
E∆n(E)dE =

1

π

∑

σ,l

(2l + 1)EF δσ
l (EF ) −

1

π

∑

σ,l

(2l + 1)

∫ EF

0
δσ
l (E)dE. (5)

4 LSIC solution for an atom in jellium

In the LSIC formalism, we minimize the energy functional

Etot =
∑

l,m,σ

Eσ
l +

1

π

∑

σ,l

(2l + 1)EF δσ
l,m(EF ) −

1

π

∑

σ,l,m

∫ EF

E=0
δσ
l,m(E)dE −

∑

σ

∫

nσ(r)V σ(r)dr +

∫
(

1

2

∫

(n(r) − n0)

|r − r′|
dr′ −

Z

r

)

(n(r) − n0) dr +

Exc

[

n↑(r), n↓(r)
]

− Exc[
n0

2
,
n0

2
] −

∑

α

(

1

2

∫ Rα

r=0

∫ Rα

r′=0

nα
SIC(r)nα

SIC(r′)

|r− r′|
drdr′ + Exc[n

α
SIC(r), 0]

)

(6)

where nα
SIC is the density of the channel α, which in this case is one of the l = 3, m, σ channels

for which the SI-correction is applied. α denotes the spin and angular momentum quantum

numbers, and in the case of bound states also the principal quantum number. In this functional,

the radii Rα are either set equal to the neutral sphere radius [5], or are set by the condition

∫ Rα

r=0
nα

SIC(r)dr = 1 (7)

We show below that our results are independent of this choice.

Minimizing the energy functional with respect to the orbitals gives the following generalized KS

equations for the SI-corrected electrons:

(

−
1

2
∇2 + V α

SIC(r)

)

φ
α,(b.s)
SIC (r) = Eα

SICφ
α,(b.s)
SIC (r) (8)

for the bound-state solution, and

(

−
1

2
∇2 + V α

SIC(r)

)

φ
α,(s.s)
SIC (k, r) =

k2

2
φ

α,(s.s)
SIC (k, r) (9)

for the scattering-state solutions. The quantity nα
SIC(r) is then obtained as the density contri-

butions from the bound and scattering state SIC solutions,

nα
SIC(r) = |Ylm(θ, φ)|2Rα(r)2 +

1

2π2
|Ylm(θ, φ)|2

∫ kf

0
k2Rα(k, r)2dk, (10)
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where φα
SIC(r) = Ylm(θ, φ)Rα(r) for both bound and scattering states in a given SIC angular

momentum channel, lmσ. As illustrated in Fig. 1, the first term refers to the negative energy

contribution while the second one accounts for positive energy contributions within a given SIC

channel. In the case of a partially filled sub-shell, we spherically average the corresponding SIC

densities nα
SIC(r).

For the non-SI-corrected electrons we obtain the LSDA KS equations

(

−
1

2
∇2 + V σ(r)

)

φσ
i (r) = Eσ

i φσ
i (r) (11)

which also contain bound and scattering state solutions.

5 Self-interaction correction of scattering resonances for Ce in

jellium

In order to test whether the above generalization of SIC adds useful physical insight, we consider

the case of a cerium atom embedded in a jellium host. Cerium is an interesting case because

of its mixed valency, having different valence states depending on the 4f orbital occupation. In

a jellium host the LSIC formalism allows the 4f state of Ce to be either bound or a scattering

state. In fact we find both possibilities occur as we vary the jellium density n0. This is illustrated

in Fig. 1 which shows the phase-shifts δσ
lm(ǫ) for a cerium atom in jellium, with one electron

SI-corrected, for two background densities of the jellium. For the low density of n0 = 0.0014a−3
B

(rs ∼ 5.5aB ), the SIC potential generates a bound-state, whereas for a high density n0 = 0.04a−3
B

(rs ∼ 1.8aB ) the SIC potential generates a resonance in the continuum. The figure shows that

in both cases the f -wave phase shift jumps by π in the SI-corrected channel, lm. In Fig. 1 one

can see that the phase shifts for the non-SI-corrected f channels show a sharp resonance located

just above the Fermi energy, while the d channels show a broad resonance above ǫF and the s

and p channels are non-resonant. In a pure LSDA calculation all of the f states would have been

resonant above ǫF , corresponding to a pinning of the partially filled 4f shell states at the Fermi

energy. The SIC allows one (or more) of the f states to become pulled below the Fermi energy,

giving a full electron charge in a 4f pseudo-atomic state. It is this ability to treat localized and

extended states with different orbital dependent effective potentials, V α
SIC(r), which is at the

heart of the success of SIC in treating narrow band materials [17]. One can see from Fig. 1 that

the LSIC also has this ability, treating some of the Ce 4f states as atomic-like and SI-corrected,

while treating the remaining 4f states in the same way as standard LSDA.

The key feature of the LSIC is that it treats bound states and resonances on an equal footing.

Therefore there is no discontinuity in the generalized KS potentials V α
SIC(r) when a bound state

becomes a scattering resonance. This is confirmed in Fig. 2 where we plot the f resonance energy

for a single LSIC corrected state in Ce as a function of jellium density n0. The range of densities

corresponds to typical metallic values of rs. At low densities the f state is bound, crossing over

smoothly to a sharp resonance which moves up and gradually broadens as the jellium density

increases. However, at some jellium density the total energy corresponding to a delocalised f

electron, i.e. the LSD energy, becomes more favourable and hence the ground state.
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Figure 1: Phase-shifts for cerium in jellium with one electron SI-corrected. The two background

densities are: (a) 0.0014a−3
B , and (b) 0.032a−3

B . In the first case the SIC potential binds an

electron and in the second the SI-corrected state appears as a resonance in the scattering states.

Here the solid lines are f channel phase shifts (both SI-corrected and not corrected), the dashed

lines are d-channels, and the dot-dashed lines are s and p channels. Splitting of up and down

spin states is also visible in the d and the non SI-corrected f channels.
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Figure 2: Position of the bound-state/resonance generated by the SIC potential as a function of

the background density of the jellium. The system is a cerium atom in jellium with one electron

SI-corrected.
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Figure 3: The SIC corrected orbital density nα
L(r) is plotted for a cerium atom in jellium with

one electron SI-corrected for two background densities, 0.0055a−3
B (a) and 0.04a−3

B (b). The

straight lines indicate the neutral sphere radius (furthest left) and the radius at which the total

integrated SIC charge equals one (as defined by Eq. 7).
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The physical justification of LSIC requires that the orbital density nα
SIC(r) contains one electron

within the atomic radius Rα, as expressed in Eq. 7. To demonstrate that this is indeed the case

we show in Fig. 3 the orbital density, spherically symmetrized, for the case of a bound or resonant

SI-corrected 4f channel, for two jellium densities 0.0055a−3
B and 0.04a−3

B . For the lower of the

two densities the SIC potential localizes a bound-state, while for the higher of the two the SIC

potential generates a resonance, as can be seen from Fig. 2. One can see that the orbital density

is similar whether the SIC corrected channel contains a bound state or a scattering resonance.

Hence the self-interaction for the case of the resonance is just as large as for the bound-state,

therefore demonstrating the need for an energy functional which can include scattering states

in the SI- correction.

Fig. 3 also shows two possible definitions of the atomic sphere R for the Ce in jellium. One can

take either the “neutral sphere radius” of Effective Medium Theory (EMT) [5], defined as the

radius for which the atom-induced electron density ∆n(r) integrates to the nuclear charge Z, or

define a radius Rα for which Eq. 7 is satisfied exactly for the SI-corrected f channel. In practice

it is clear from Fig. 3 that these two definitions give essentially identical results. It is also clear

from the figure that the total channel density nα
SIC(r) for r < Rα contains the localized atomic-

like part of the density and very little of the extended jellium-like part. Therefore it does not

matter in detail whether one includes only the part of the density associated with the bound

state or resonance, or includes all of the density up to ǫF within that L = lm channel, as given

in Eq. 7.

6 Effective Medium Theory of Ce metal

In the EMT, each atom in a solid is regarded as sitting in an electron density set up by the density

tails of all of the other atoms in the solid. The only input parameter in the EMT is the atomic

number, Z. The theory has been successfully put to use in the calculation of cohesive properties

of solids, amongst other uses. In particular, the theory reproduces trends in the experimental

lattice constants, bulk moduli and cohesive energies across the periodic table [5, 6, 20].

In the EMT, the cohesive energy of the solid is written as

∆E[n, v] =
∑

i

Ec(n̄i) + ∆E1−el (12)

where

Ec(n̄) = Eimm(n̄) + n̄

∫ r=s

r=0

(
∫

∆n(r′)

|r− r′|
dr′ −

Z

r

)

dr (13)

Here ∆n(r) is the atom-induced density. The second term is attractive and has the effect of

lowering Ec(n̄). It can be viewed as the attraction of the sum of the density tails from all other

cells (n̄) with the Hartree potential from cell ai.

The ∆E1−el term is the sum of the change of the one-electron energy eigenvalues when we go

from the homogeneous electron gas to the real host. This change occurs because of covalent

bonding, hybridisation and effects due to wavefunction orthogonalisation. A number of ways
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Figure 4: Total energy per atom plotted against the Wigner-Seitz radius (EMT neutral sphere

radius) for different choices of the exchange-correlation functional. SI-correcting two electrons,

which corresponds to a valence of two in the full solid, gives the lowest energy.

have been proposed to include this term [21–25], however in our calculations we will neglect this

term. With this term neglected, Ec(n̄) is the cohesive energy per atom.

The procedure in EMT is to solve for some arbitrarily chosen n̄, the self-consistent problem of an

atom in a homogeneous gas in order to obtain ∆n(r) and then evaluate Ec(n̄). One then varies

n̄ in order to minimise Ec(n̄). This minimum value of Ec(n̄) is then the cohesive energy per

atom of the solid, and the corresponding value of neutral sphere radius, Rα, is the Wigner-Seitz

radius as predicted by the theory.

Fig. 4 shows our results for the total energy of a bulk Ce metal calculated using the effective

medium theory (EMT) from our LSIC atom in jellium results. The different curves correspond

to: standard LSDA with no SIC correction (tetravalent Ce), one f state SIC corrected (trivalent

Ce), two f states corrected (divalent Ce) and three states corrected (monovalent Ce). The curves

are plotted as a function of the effective Wigner Seitz atomic radius, obtained within the EMT

theory. The fcc-γ phase of Ce is believed to be trivalent, [18] corresponding to one localized f

state. Our calculations predict the minimum energy Wigner Seitz radius for trivalent Ce to be

1.99 Å, in very good agreement with the Wigner-Seitz radius of 2.02 Å fcc-γ phase Ce.

One can see in Fig. 4 a series of crossings between the different valence states as a function of the

Wigner-Seitz radius. At the smallest Wigner-Seitz radius the LSDA tetravalent state is lowest

in energy, crossing over to trivalent and then divalent at the radius is increased. In terms of the

phase diagram of Ce this would imply a series of valence state transitions under pressure. If the

α-γ transition in bulk Ce is viewed as a crossing between trivalent and tetravalent states, then

our EMT results give a small volume “collapse” of a few % in volume, but one which is much

smaller than found experimentally or in previous SIC calculations [15,18]. Nevertheless the SI-

corrected calculation appears to capture the essential physics of the valence transition. However

our global minimum energy state is the divalent one, with a larger radius of about 2.09Å, rather

than the expected trivalent state. It is most likely that this discrepancy arises from the omission

of the covalent terms in the EMT theory, ∆E1−el. The spherical symmetrization of the LSDA

and SIC-charge densities is also a possible problem, since recent results of Stengel and Spaldin
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show a substantial contribution to the energy from the non-spherical terms. [26] We leave further

investigation of these important questions to future work.

7 Conclusions

We have demonstrated that the LSIC approach is necessary to correctly treat the self-interaction

of resonances in the system of an atom in jellium. We have shown that the electron density

corresponding to a resonance is just as localized as that due to a bound-state, and therefore this

resonance should also be corrected for in the LSIC energy functional. Using the LSIC, we have

shown that as we increase the background density of the jellium, a bound-state of the LSIC

potential will increase in energy and will eventually become a scattering state resonance. This

resonance will continue to increase in energy as the background density is increased further.

This is in contrast with the Perdew-Zunger SIC approach. In this approach, when the electron

in the SIC channel enters the continuum of scattering states, it will no longer be treated for its

self-interaction and so will become extended and will not form a resonance.
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