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Abstract

A brief review of the ‘disordered local moment’ (DLM) theory of magnetism at finite tem-

peratures is given. This has recently been enhanced so that it includes relativistic (R) effects

such as spin-orbit coupling. The relevance of the R-DLM theory for providing an ab-initio

account of the temperature dependence of magnetic properties including magnetotransport

is stressed. Magnetic anisotropy is discussed in particular. In this context a new magnetic

torque based method is described and demonstrated with an application to iron nanoclusters

on a platinum substrate. The R-DLM theory is illustrated by a study of the temperature

dependence of the magnetic anisotropy of the technologically important FePt alloy in both

its magnetically hard L10-ordered and soft cubic compositionally disordered phases.
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1 Introduction

In principle, relativistic density functional theory [5] (R-DFT) can describe a magnetic material

completely, providing a free energy, F , ab initio. F is a functional of the magnetisation, M(r).

For a ferromagnetic material the magnetisation is often characterised in terms of Ms, the satura-

tion magnetisation and a direction n = (nx, ny, nz) which is assumed to vary over length scales

long compared with atomic ones, i.e. M(r) = Msn(r). F can now be approximated by the

familiar micromagnetic sum of an exchange term with exchange constant A, an anisotropy term

involving K, a magnetocrystalline anisotropy constant, a term describing the interaction with

an applied magnetic field and finally a magnetostatic ‘shape anisotropy’ term [6]. Materials are

typically characterised by a set of Ms, A and K constants combined into two important length

quantities, an ‘exchange length’, lex =
√

(A/M2
s ) and a domain wall thickness lw =

√
(A/2K).
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In nanostructured systems however, such as nanoparticles and thin films, the free energy can no

longer be parameterised by three such constants. A, Ms and K all vary profoundly with com-

position, dimensionality and shape. The relativistic effect, spin-orbit coupling, is particularly

influential.

For low temperatures, calculations of the characteristics of the free energy (ground state en-

ergy) of a magnetic material are all based on an electronic band structure which has a fixed

spin-polarisation e.g. a uniform spin-polarisation for a ferromagnet and fixed sublattice spin po-

larisations for an antiferromagnet. With increasing temperature, spin fluctuations are induced

which eventually destroy the long-range magnetic order and hence the overall spin polarization

of the system’s electronic structure. These collective electron modes interact as the tempera-

ture is raised and are dependent upon and affect the underlying electronic structure. For many

materials the magnetic excitations can be modelled by associating local spin-polarisation axes

with all lattice sites and the orientations vary very slowly on the time-scale of the electronic

motions. [7] These ‘local moment’ degrees of freedom produce local magnetic fields on the lat-

tice sites which affect the electronic motions and are self-consistently maintained by them. By

taking appropriate ensemble averages over the orientational configurations the system’s mag-

netic properties can be determined. In this article we review our recent work on incorporating

relativistic effects into the ‘disordered local moment’ (DLM) DFT-based theory which is used in

this context to describe the onset and type of magnetic order in many magnetic systems [8,9].

In particular inclusion of relativistic effects into DLM theory produces an ab-initio description

of the temperature dependence of magnetic anisotropy of metallic ferromagnets which agrees

well with experimental results and deviates qualitatively from simple, widely used models [2,3].

It is well-known that a description of magnetic anisotropy, K, can be provided once relativistic

effects such as the spin-orbit coupling on the electronic structure of materials are considered.

Over recent years ‘first-principles’ R-DFT work has been quite successful in describing trends in

K for a range of magnetic materials in bulk, film and nanostructured form [5,10,11] at T = 0K,

e.g. [12–17]. As well as pinning down the K constants of micromagnetic models which describe

phenomena such as magnetisation reversal processes in magnetic recording materials [18], a

careful treatment of spin-orbit coupling also has implications for electronic transport effects

such as anisotropic magnetoresistance (AMR) [19]. Until only very recently [2,3], however, little

attention was paid to how these relativistic consequences might be influenced by the thermally

excited ‘local moment’ fluctuations. Instead the temperature dependence of K and associated

quantities are related without justification to single ion anisotropy models developed by Callen

and Callen and others over 40 years ago [20]. In this article we review our ab-initio theory for

the temperature dependence of magnetic anisotropy which challenges this simple outlook.

This consideration is rather topical. In the search for magnetic data storage media with densities

well in excess of TBytes/in2, assemblies of increasingly smaller magnetic nanoparticles are being

fabricated. [21,22] Thermally driven demagnetisation and loss of data over a reasonable storage

period threatens, however, if a particle size limit is breached. A way of fending off this limit is to

use materials with high magnetocrystalline anisotropy, K, since the superparamagnetic diameter

of a magnetic particle is proportional to (kBT/K)
1
3 , where kBT is the thermal energy. [6] Writing

to media of very high K material can be achieved by temporary heating. [23, 24] K is reduced

significantly during the magnetic write process and the information is locked in as the material
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cools. Modelling this process and improving the design of high density magnetic recording media

therefore requires an understanding of how K varies with temperature. This consideration also

affects estimates of the related blocking temperatures of nanoparticles [25].

In the next section we describe and illustrate briefly our magnetic torque-based method for

carrying out ab-initio studies of the magnetic anisotropy of nanoparticles, films, multilayers and

bulk materials restricted to 0K. This is rather precise and versatile. We then review the well-

tried and tested fluctuating local moment picture of magnetism at finite temperatures and go

on to show how relativistic effects can be incorporated into it. The next section has results of an

application of this theory to the important magnetic material FePt where we demonstrate the

profound effect of geometrical structure upon magnetic anisotropy. The final section mentions

some ongoing and future developments.

2 Ab-initio theory of magnetic anisotropy via the magnetic torque

Magnetocrystalline anisotropy (MAE) is caused largely by spin-orbit coupling and receives an

ab-initio description from the relativistic generalisation of spin density functional (R-DFT) the-

ory. [5] Spin-orbit coupling effects are either treated perturbatively or with a fully relativistic

theory [12, 26]. Typically the total energy, or the single-electron contribution to it (if the force

theorem is used), is calculated for two or more magnetisation directions, n̂1 and n̂2 separately,

and then the MAE is obtained from the difference, ∆F . ∆F is typically small ranging from

meV to µeV and high precision in calculating the energies is required. For example, we used this

rationale with a fully relativistic theory to study the MAE of magnetically soft, compositionally

disordered binary and ternary component alloys [26,27] and the effect upon it of short-range [12]

and long range chemical order [28] in harder magnets such as CoPt and FePt.

Experimentally, measurements of magnetocrystalline anisotropy constants of magnets can be

obtained from torque magnetometry [6]. From similar considerations of magnetic torque, ab-

initio calculations of MAE can be also made. There are obvious advantages in that a single

calculation only is needed and reliance is not placed on the accurate extraction of a small

difference between two energies. In particular the torque method has been used to good effect

by Freeman and co-workers [29] in conjunction with their state-tracking method to study the

MAE of a range of uniaxial magnets including layered systems. Recently we described how

to calculate the torque directly and obtain the MAE using spin-polarised, relativistic multiple

scattering theory [3]. This scattering theoretical basis makes the approach very versatile and

precise, relevant to the study of nanoclusters and thin films [1,4,30] as well as bulk systems [3].

We describe the method briefly here and illustrate it with a calculation of Fe clusters on Pt

substrates before proceeding to the finite temperature extension. Full details can be found in

ref. [3].

If the free energy of a material magnetised along a direction specified by

n̂ = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) (2)

is F (n̂), then the torque is

~T (n̂) = −
∂F (n̂)

∂n̂
. (3)
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The contribution to the torque from the anisotropic part of F (n̂) leads to a direct link between

the gap in the spin wave spectrum and the MAE by the solution of the equation [31]

dn̂

dt
= γ(n̂ ∧ ~T (n̂)). (4)

where γ is the gyromagnetic ratio. Closely related to ~T (n̂) is the variation of F (n̂) with respect

to ϑ and ϕ, i.e. Tϑ(ϑ,ϕ) = −∂F (n̂)

∂ϑ and Tϕ(ϑ,ϕ) = −∂F (n̂)

∂ϕ . As shown by Wang et al. [29], for

most uniaxial magnets, which are well approximated by a free energy of the form

F (n̂) = Fiso + K2 sin2 ϑ + K4 sin4 ϑ, (5)

(where K2 and K4 and magnetocrystalline anisotropy constants and Fiso is the isotropic part

of the free energy), Tϑ(ϑ = π/4, ϕ = 0) = −(K2 + K4). This is equal to the MAE, ∆F =

F (1,0,0) − F (0,0,1). For a magnet with cubic symmetry so that

F (n̂) ≈ Fiso + K1(sin
4 ϑ sin2 2ϕ + sin2 2ϑ), (6)

a calculation of Tϕ(ϑ = π/2, ϕ = π/8) gives −K1/2, the leading MAE constant.

The derivation of our formalism for ~T starts from the single electron energy sum part of the

free energy from R-DFT. In terms of the integrated electronic density of states, N (n̂) (ε), for a

system magnetised along a direction (n̂), this is

F (n̂) = −

∫ ε
(n̂)
F

dε N (n̂) (ε) . (7)

In multiple scattering theory the integrated density of states is written particularly succinctly

using the Lloyd formula [32]

N (n̂) (ε) = N0 (ε) −
1

π
Im ln det

(
t (n̂; ε)−1 − G

0
(ε)
)

, (8)

where t (n̂; ε) describes an array of single site scattering t-matrices (combined into a super matrix

in site and angular momentum space) and G
0
(ε) specifies the structure constants which contain

all the information as to where the scatterers are spatially located. At this point we restrict the

discussion to all scatterers being determined by spin-only magnetic fields aligned with a single

direction n̂.

At a site i the t-matrix describing the scattering from a scalar potential and vector magnetic

field, located in the unit cell surrounding the site, is obtained from the solution of the Dirac

equation. Following a Gordon decomposition of the 4-current and neglect of diamagnetic effects,

the magnetic field B(r) n̂ couples only to the spin-only current. This means that fields V (r)1̃

and β̃σ̃zB(r) are included in the Dirac equation [33] where the z-axis of the local coordinate

frame is aligned with n̂. (1̃, β̃ and σ̃ are the usual 4 × 4 matrices). A simple transformation

produces a t-matrix for the general coordinate frame,

ti (n̂; ε) = R (n̂) ti (ẑ; ε) R (n̂)+ (9)

where R (n̂) = exp iαm̂(m̂ ·~J) where αm̂ is the angle of rotation about an axis m̂ = (ẑ∧ n̂)/|ẑ∧ n̂|

and ~J is the total angular momentum. The torque quantity T
(n̂)
αû

= −∂F (n̂)

∂αû
, describing the
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variation of the total energy with respect to a rotation of the magnetisation about a general axis

û, is

T (n̂)
αû

= −
1

π

∫ ε
(n̂)
F

dε Im
∂

∂αû

[
ln det

(
t (n̂; ε)−1 − G

0
(ε)
)]

(10)

which can be written

T (n̂)
αû

= −
1

π

∫ ε
(n̂)
F

dε Im
∑

i

tr

(
τ

(n̂)
ii (ε)

∂

∂αû

(
R (n̂) t (n̂; ε)−1 R (n̂)+

))
(11)

where the KKR scattering path operator [34] is

τ (n̂) =

((
t(n̂)
)−1

− G
0

)−1

. (12)

Since ∂R(n̂)
∂αû

= i(~J · û)R (n̂) and ∂R(n̂)+

∂αû
= −i(~J · û)R (n̂), we obtain the key expression

T (n̂)
αû

=
1

π

∫ ε
(n̂)
F

dε Im i
∑

i

tr
(
τ

(n̂)
ii (ε)

[
(~J · û)t (n̂; ε)−1 − t (n̂; ε)−1 (~J · û)

])
. (13)

For T
(n̂)
ϑ(ϕ), (~J · û) is just Jy(z).

As an illustration of this approach we show in Figure 1 results of an investigation of the magnetic

anisotropy of iron dimers and trimers on an Pt surface [1]. It is evident that the torque Tϑ and

hence the MAE drop significantly when going from the dimer to the trimer. Adding the Pt

decoration to the three atom cluster, however, restores a high MAE. With the inner Fe3 part

of the Fe3Pt3 cluster surrounded the variation of the MAE with ϕ is strongly reduced.

The magnetic anisotropy of a system diminishes rapidly as the temperature is raised from 0K

and the rapidity of this decrease is, like magnetic anisotropy itself, strongly affected by the

system’s geometrical structure - typically the higher the symmetry the faster the collapse. In

the next section we show how this effect emerges from a simple ‘spin’ model and then, later

on, from a fully ab-initio interacting electron description of a magnetic material. We will see,

however, how the latter is sometimes qualitatively different from the former.

3 Magnetic anisotropy of a single ion model

For a crystal of a magnet the symmetry connection can be made explicit by writing its magnetic

anisotropy as K =
∑

γ Kγgγ(n̂) where the Kγ ’s are coefficients, n̂ is the magnetisation direction

and gγ ’s are polynomials (spherical harmonics) of the angles ϑ, ϕ. The gγ ’s belong to the fully

symmetric representation of the crystal point group - particular examples for uniaxial and cubic

magnets have already been used in the last section. As the temperature rises, K decreases

rapidly. The key features of the results of the theoretical work carried out over 40 years ago on

this effect [20] come from simple classical spin models of magnetic insulators. Here magnetic

moments are associated with the lattice sites of the material. The anisotropic behaviour of such

a set of localised ‘spins’ is given by a term in the hamiltonian Han =
∑

i

∑
γ kγgγ(êi) with êi a

unit vector denoting the spin direction on the site i. As the temperature is raised, the ‘spins’

sample the energy surface over a small angular range about the magnetisation direction n̂ and
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Figure 1: From ref. [1]. Top panel: Structure of a Fe trimer on Pt(111) without (left) and with (right)

decoration by three Pt atoms. Bottom panel: torque component Tθ(θ, φ) for Fe2 (circles), Fe3 (triangles)

and Pt3Fe3 (squares) for θ = π
4

as a function of the azimuth angle φ.
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the anisotropy energy is given from the difference between averages taken for the magnetisation

along the easy and hard directions. If the coefficients kγ are assumed to be rather insensitive to

temperature, the dominant thermal variation of K for a ferromagnet is given by K(T )/K(0) =

〈gl(ê)〉T /〈gl(ê)〉0 The averages 〈· · · 〉T are taken such that 〈ê〉T = m(T ), the magnetisation of the

system at temperature T , and l is the order of the spherical harmonic describing the angular

dependence of the local anisotropy i.e. l = 2 for a uniaxial system and 4 for a cubic one.

At low temperatures K(T )/K(0) ≈ (m(T )/m(0))l(l+1)/2 and near the Curie temperature Tc,

K(T )/K(0) ≈ (m(T )/m(0))l.

It is helpful for later discussion of the ab-initio theory to show where these results come from in

a little more detail. Consider a classical spin hamiltonian for, say, a uniaxial ferromagnet.

H = −
1

2

∑

i,j

Jij êi · êj − k
∑

i

(n̂0 · êi)
2 (14)

where êi describes the orientation of a classical spin at site i and Jij and k are exchange and

anisotropy parameters. n̂0 is a unit vector along the magnetic easy axis. A mean field description

of the system is given by reference to a hamiltonian
∑

i
~h·êi where the orientation of Weiss field ~h,

i.e. ~h = hn̂, determines the direction of the magnetisation of the system and has direction cosines

(sin ϑ cos ϕ, sin ϑ sinϕ, cos ϑ). Within this mean field approximation the magnetisation m is

~m(T ) =
∫

ê P (ê)dê where the probability of a spin being orientated along ê is P (ê) = e−βhn̂·ê/Z0

with Z0 =
∫

e−βhn̂·êdê. The free energy difference per site between the system magnetised along

two directions n̂1 and n̂2 is

K(T ) = −
k

Z0

∫
((n̂0 · ê)

2e−βhn̂1·ê − (n̂0 · ê)
2e−βhn̂2·ê)dê (15)

If n̂1 and n̂2 are parallel and perpendicular to the magnetic easy axis n̂0 respectively then

K(T ) = −
k

Z0

∫
g2(n̂0 · ê)e

−βhn̂0·êdê (16)

where g2 is the Legendre polynomial (3(n̂0 · ê)2 − 1)/2. As a function of the magnetisation

m(T )/m(0), K(T )/K(0) varies as specified above, i.e. quadratically near the Curie temperature

Tc and cubically at low T . The same dependence can be shown for this simple spin model for

the rate of variation of magnetic anisotropy with angle ϑ that the magnetisation makes with the

system’s easy axis, namely the magnetic torque [6] Tϑ = −∂K/∂ϑ.

Of course in a real magnetic system with itinerant electrons it is not correct to apportion electrons

among the sites at which the material’s nuclei are positioned. Instead it is necessary to return

to the fundamentals of R-DFT and to see how a tractable finite temperature generalisation can

be worked out.

4 Magnetism at finite temperatures - ‘Disordered Local Mo-

ments’

In principle the extension of electronic density functional theory to finite temperatures was

carried out by Mermin [35] soon after the pioneering papers of Hohenberg, Kohn and Sham [36].
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The single particle entropy is included and the effective one-electron fields involve Ωxc, the

exchange-correlation part of the Gibbs Free Energy functional of particle and magnetisation

densities. Formally this can be expressed in terms of spin-dependent pair correlation functions

gλ(σ, σ′; r, r′), i.e.

Ωxc[n,m] =
e2

2

∫ 1

0
dλ

∫
dr

∫
dr′
∑

σ,σ′

nσ(r)nσ′(r′)

|r − r′|
gλ(σ, σ′; r, r′) (17)

where nσ(r) is the spin resolved density.

It would seem logical then simply to make the finite temperature extension of the LDA (or GGA)

that is successfully exploited in applications on the ground state of magnetic materials. So,

for example, Ωxc[n,m] is replaced by
∫

drn(r)Ω0
xc(n(r)) where Ω0

xc is the exchange-correlation

part of the Gibbs Free Energy of a homogeneous electron gas. This assumption allows the

thermally averaged magnetisation, M̄ , along with the spin splitting of the electronic structure

to decrease only by the excitation of particle-hole, ‘Stoner’ excitations across the Fermi surface.

However, it severely underestimates the effects of the thermally induced spin-wave excitations.

The calculated Curie temperatures are often up to an order of magnitude too high, there is no

obvious mechanism for moments in the paramagnetic state and the uniform static paramagnetic

susceptibility does not follow a Curie-Weiss behaviour as found for many metallic systems.

Evidently, part of the pair correlation function gλ(σ, σ′; r, r′) should be related by the fluctuation

dissipation theorem to the magnetic susceptibilities harbouring information about spin waves.

These spin fluctuations interact as temperature is increased and so Ωxc[n,m] should deviate

significantly from the local approximation with a consequent impact upon the form of the effec-

tive single electron states. Indeed accounts of modern electronic structure theory for magnetic

systems [10, 11] have large sections devoted to work which is concerned with the of modelling

spin fluctuation effects whilst maintaining the spin-polarised single electron basis.

Most of this work is based on a rather simple, pervasive picture of fluctuating ‘local moments’

which stems from the belief of a time scale separation of the electronic degrees of freedom. An

electron travels from site to site on a much faster timescale than that of the spin waves. So the

dominant thermal fluctuation of the magnetisation which the straightforward finite temperature

extension of spin-polarised band theory misses can be pictured quite simply as orientational

fluctuations of ‘local moments’. These entities are the magnetisations within each unit cell

of the underlying crystal lattice which are set up by the collective behaviour of all the elec-

trons. Their orientations persist on timescales long compared to electronic ‘hopping’ times. At

low temperatures, their long wavelength, slow spin wave dynamics can be directly extracted

from the transverse part of the magnetic susceptibility. At higher temperatures the more com-

plex behaviour can be described with a classical treatment. The energy is considered of the

many interacting electron system constrained so that its local magnetisations are oriented along

prescribed directions, i.e. a ‘local moment’ configuration. Averages over such orientational con-

figurations are subsequently taken to determine the equilibrium properties of the system. M̄

can now vanish as the disorder of the ‘local moments’ grows. There remains, however, the issue

as to which fluctuations are the most important.

Formally R-DFT [5, 8] specifies the ‘generalised’ grand potential, Ω(n̂)({ê}), of an itinerant

electron system which is constrained in such a way that the site by site spin polarisation axes
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are configured according to {ê} = {ê1, ê2, . . . , êN} where N is the number of sites (moments) in

the system. The {ê}, classical unit vectors, are thus the degrees of freedom describing the local

moment orientations and Ω(n̂)({ê}) is the ‘local moment’ hamiltonian. With relativistic effects

such as spin-orbit coupling included, magnetic anisotropy can be described. This means that

orientations of the local moments with respect to a specified direction n̂ within the material are

relevant.

One way forward from this point is to carry out calculations of Ω(n̂)({ê}) for a selection of

configurations (‘spin’ spirals, 2 impurities in a ferromagnet, magnetically ordered supercells

etc.) by making some assumptions about the most dominant fluctuations. One then fits the

set of Ω(n̂)({ê})’s to a simple functional form. For the non-relativistic limit typically a classical

Heisenberg model, Ω(n̂)({ê}) = −1
2

∑
ij Jij êi · êj is set up and various statistical mechanics

methods (e.g. Monte Carlo) are used to produce the desired thermodynamic averages. Many

useful studies have been carried out in this way but there is a risk that a bias is produced so

that some of the physics is missed. The spin polarised electronic structures of the restricted set

of constrained systems are not guaranteed to generate magnetic correlations that are consistent

with the chosen sampling of the orientational configurations. In other words the electronic and

magnetic structures are not necessarily mutually consistent. When spin-orbit coupling effects

are included these worries grow - there is the question about what form the anisotropy of

the effective spin model should take. Should it, perhaps, be a classical isotropic Heisenberg

model with a single site anisotropy term that was illustrated in the last section or will this be

inconsistent with the underlying electronic behaviour? In the following we summarise the main

points of our ‘disordered local moment’ (DLM) theory which avoids these problems. Full details

can be found in references [8,9] and in references [2,3] for the relativistic extension. In particular

its description of the temperature dependent magnetic anisotropy can be qualitatively different

from that of simple spin models as we will show later.

The ‘disordered local moment’ (DLM) picture is implemented within a multiple-scattering

(Korringa-Kohn-Rostoker, KKR) [37–39] formalism. Some applications include the descrip-

tion of the experimentally observed local exchange splitting and magnetic short-range order in

both ultra-thin Fe films [40] and bulk Fe [8], the damped RKKY-like magnetic interactions in

the compositionally disordered CuMn ’spin-glass’ alloys [41] and the onset of magnetic order in

a range of alloys [42,43]. By combining it with the local self-interaction correction (L-SIC) [44]

for strong electron correlation effects, we have also recently used it to account quantitatively for

the magnetic ordering in the heavy rare earths [45].

5 Relativistic Disordered Local Moment (R-DLM) Theory

We consider a collinear magnetic system magnetised with reference to a single direction n̂ at

a temperature T . (A non-collinear generalisation can be made by making the notation more

complicated.) The orientational probability distribution is denoted by P (n̂) ({ê}) , and its average

〈êi〉 =

∫
. . .

∫
êiP

(n̂) ({ê}) dê1 . . . dêN = n̂ . (18)
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is aligned with the magnetisation direction n̂. The canonical partition function and the proba-

bility function are defined as

Z(n̂) =

∫
. . .

∫
e−βΩ(n̂)({ê}) dê1 . . . dêN , (19)

and

P (n̂) ({ê}) =
e−βΩ(n̂)({ê})

Z(n̂)
, (20)

respectively. The thermodynamic free-energy which includes the entropy associated with the

orientational fluctuations as well as creation of electron-hole pairs, is given by

F (n̂) = −
1

β
ln Z(n̂) . (21)

By choosing a trial Hamiltonian function, Ω
(n̂)
0 ({ê}) with Z

(n̂)
0 =

∫
. . .
∫

e−βΩ
(n̂)
0 ({ê}) dê1 . . . dêN ,

P
(n̂)
0 ({ê}) =

e−βΩ
(n̂)
0 ({ê})

Z
(n̂)
0

(22)

and F
(n̂)
0 = − 1

β ln Z
(n̂)
0 the Feynman-Peierls Inequality [46] implies an upper bound for the free

energy, i.e.,

F (n̂) ≤ F
(n̂)
0 +

〈
Ω(n̂) − Ω

(n̂)
0

〉0
, (23)

where the average refers to the probability P
(n̂)
0 ({ê}). By expanding Ω

(n̂)
0 ({ê}) as

Ω
(n̂)
0 ({ê}) =

∑

i

ω
1(n̂)
i (êi) +

1

2

∑

i6=i

ω
2(n̂)
i,j (êi, êj) + . . . , (24)

the ‘best’ trial system is found to satisfy [8, 9]

〈
Ω(n̂)

〉0

êi

−
〈
Ω(n̂)

〉0
=
〈
Ω

(n̂)
0

〉0

êi

−
〈
Ω

(n̂)
0

〉0
, (25)

〈
Ω(n̂)

〉0

êi,êj

−
〈
Ω(n̂)

〉0
=
〈
Ω

(n̂)
0

〉0

êi,êj

−
〈
Ω

(n̂)
0

〉0
, (26)

and so on, where 〈 〉êi
or 〈 〉êi,êj

denote restricted statistical averages with êi or both êi and

êj kept fixed, respectively. (In the following we shall omit the superscript 0 from the averages.)

If we set Ω
(n̂)
0 ({ê}) as a sum of mean field Weiss terms

Ω
(n̂)
0 ({ê}) =

∑

i

~h
(n̂)
i · êi (27)

where ~h
(n̂)
i = h

(n̂)
i n̂ with

h
(n̂)
i =

∫
3

4π
(êi · n̂)

〈
Ω(n̂)

〉

êi

dêi . (28)

the probability distribution is

P
(n̂)
i (êi) =

exp
(
−β~h

(n̂)
i · êi

)

Z
(n̂)
i

=
βh

(n̂)
i

4π sinhβh
(n̂)
i

exp
(
−β~h

(n̂)
i · êi

)
. (29)
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and the average alignment of the local moments, proportional to the magnetisation, is

~m
(n̂)
i =

∫
êi P

(n̂)
i (êi) dêi = m

(n̂)
i n̂ (30)

and

m
(n̂)
i = −

d ln Z
(n̂)
i

d
(
βh

(n̂)
i

) =
1

βh
(n̂)
i

− coth βh
(n̂)
i = L

(
−βh

(n̂)
i

)
(31)

follows, where L(x) is the Langevin function. Moreover the free energy of the system is

F (n̂) =
〈
Ω(n̂)

〉
+

1

β

∑

i

∫
P

(n̂)
i (êi) ln P

(n̂)
i (êi) dêi . (32)

This is the key expression for the evaluation of the magnetic anisotropy energy.

Another way of writing the Weiss field is [8]

h
(n̂)
i = S

1,(n̂)
i =

∂
〈
Ω(n̂)

〉

∂m
(n̂)
i

(33)

Using equations (29) and (31), this is shown to be equivalent to solving the equation of state

∂F (n̂)

∂m
(n̂)
i

= 0. (34)

Note that an identical Weiss field ~h(n̂) associated with every site corresponds to a description of

a ferromagnetic system magnetised along n̂ with no reference to an external field.

The paramagnetic state is given by the Weiss fields being zero so that the probabilities, P
(n̂)
i = 1

4π

and on any site a moment has an equal chance of pointing in any direction. This means the

magnetisations, m
(n̂)
i vanish. The magnetic transition temperature, onset and type of magnetic

order can be extracted by studying the effects of a small inhomogeneous magnetic field on this

high T paramagnetic state [8, 9]. From the equation of state when the effects of the external

magnetic field are included the paramagnetic susceptibility can be obtained [8]

χij =
β

3

∑

k

S
2,(n̂)
ik χkj +

β

3
δij (35)

where

S
2,(n̂)
ik =

δ2
〈
Ω(n̂)

〉

δm
(n̂)
i δm

(n̂)
k

=
9

16π2

∫ ∫
(êi · n̂)

〈
Ω(n̂)

〉

êi,ê′k

(
ê′k · n̂

)
dêi dê′k (36)

5.1 The role of the CPA

In our work we carry out the averaging over local moment configurations using Coherent Po-

tential Approximation (CPA) [38,39,47] technology. The electronic charge density and also the

magnetisation density, which sets the magnitudes, {µ}, of the local moments, are determined

from a self-consistent field (SCF)-KKR-CPA [39] calculation. For a given set of (self-consistent)

potentials, electronic charge and local moment magnitudes the orientations of the local moments

are accounted for by the similarity transformation of the single-site t-matrices [48],

ti (êi) = R (êi) ti (ẑ) R (êi)
+ , (37)
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where for a given energy (not labelled explicitly) ti (ẑ) stands for the t-matrix with effective field

pointing along the local z axis [33] and R (êi), as before, is a unitary representation of the O (3)

transformation that rotates the z axis along êi.

The CPA determines an effective medium through which the motion of an electron mimics the

motion of an electron on the average. In a system magnetised along a direction n̂, the medium

is specified by t-matrices, t
(n̂)
i,c , which satisfy the condition [38],

〈
τ

(n̂)
ii ({ê})

〉
=

∫ 〈
τ

(n̂)
ii

〉

êi

P
(n̂)
i (êi) dêi = τ

(n̂)
ii,c , (38)

where the site-diagonal matrices of the multiple scattering path operator [34] are defined as,
〈
τ

(n̂)
ii

〉

êi

= τ
(n̂)
ii,cD

(n̂)
i (êi) , (39)

D
(n̂)
i (êi) =

(
1 +

[
(ti (êi))

−1 −
(
t
(n̂)
i,c

)−1
]

τ
(n̂)
ii,c

)−1

, (40)

and

τ (n̂)
c

=

((
t(n̂)
c

)−1
− G

0

)−1

. (41)

Eq. (38) can be rewritten in terms of the excess scattering matrices,

X
(n̂)
i (êi) =

([(
t
(n̂)
i,c

)−1
− (ti (êi))

−1

]−1

− τ
(n̂)
ii,c

)−1

, (42)

in the form ∫
X

(n̂)
i (êi)P

(n̂)
i (êi) dêi = 0 . (43)

Thus, for a given set of Weiss fields, h
(n̂)
i , and corresponding probabilities,P

(n̂)
i (êi) Eq.(43) can

be solved by iterating together with Eqs.(42) and (41) to obtain the matrices, t
(n̂)
i,c [3].

Using the magnetic force theorem again the single-particle energy part of the R-DFT Grand

Potential gives

Ω(n̂) ({ê}) ≃ −

∫
dε fFD

(
ε; ν(n̂)

)
N (n̂) (ε; {ê}) , (44)

as an effective ‘local moment’ Hamiltonian. where ν(n̂) is the chemical potential, fFD

(
ε; ν(n̂)

)
is

the Fermi-Dirac distribution, and N (n̂) (ε; {ê}) denotes the integrated density of states for the

orientational configuration, {ê}. From the Lloyd formula [32] N (n̂) (ε; {ê}) ,

N (n̂) (ε; {ê}) = N0 (ε) −
1

π
Im ln det

(
t(n̂) (ε; {ê})−1 − G

0
(ε)
)

, (45)

(N0 (ε) being the integrated DOS of the free particles) and properties of the CPA effective

medium, the partially averaged electronic Grand Potential is given by

〈
Ω(n̂)

〉

êi

= −

∫
dε fFD

(
ε; ν(n̂)

)
N (n̂)

c (ε) +
1

π

∫
dε fFD

(
ε; ν(n̂)

)
Im ln det M

(n̂)
i (ε; êi) ,

+
∑

j 6=i

1

π

∫
dε fFD

(
ε; ν(n̂)

)
Im
〈
ln detM

(n̂)
j (ε; êj)

〉
, (46)
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Figure 2: The magnetisation of FePt versus temperature [2]. The filled squares/open circles refer to a

magnetisation along n̂ = (0, 0, 1)/(1, 0, 0). In the inset, near Tc, the lower intercept shows what Tc would

be with the system constrained to become magnetically ordered along (1, 0, 0) .

and the Weiss field, h
(n̂)
i , can be expressed, using Eq.(28), as

h
(n̂)
i =

3

4π

∫
(êi · n̂)

[∫
dε fFD

(
ε; ν(n̂)

) 1

π
Im ln det M

(n̂)
i (ε; êi)

]
dêi . (47)

where M
(n̂)
i (ε; êi) =

(
1 +

[
(ti (êi))

−1 −
(
t
(n̂)
i,c

)−1
]

τ
(n̂)
ii,c

)
and

N
(n̂)
c (ε) = − 1

π Im ln det
(
t(n̂)
c

(ε)−1 − G
0
(ε)
)
.

The solution of Eqs.(47) and (31) produces the variation of the magnetisation m
(n̂)
i with tem-

perature T with m
(n̂)
i going to zero at T = T

(n̂)
c . When relativistic effects are included, the

magnetisation direction n̂ for which T
(n̂)
c is highest indicates the easy direction for the onset of

magnetic order. We can define a temperature range ∆Taniso = T
(n̂e)
c − T

(n̂h)
c where n̂e and n̂h

are the system’s high temperature easy and hard directions respectively, which is related to the

magnetic anisotropy of the system at lower temperatures. In Figure 2 we show the example of

the hard magnet L10-ordered-FePt. Tc is at 935K with the easy axis, (0, 0, 1). This mean field

approximation is in reasonable agreement with the experimental value of 750K. (An Onsager

cavity field technique could be used to improve this estimate, see [9], without affecting the

quality of the following results for the MAE.) The full line shows the mean field approximation

to a classical Heisenberg model for comparison.
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6 A torque-based formula for the magnetisation dependence of

magnetic anisotropy

We return to Eq.(32) for the expression for the free energy F (n̂) of a system magnetised along

a direction n̂ = ( sin ϑ cos ϕ, sin ϑ sinϕ, cos ϑ ) and consider how it varies with change in

magnetisation angles ϑ and ϕ, i.e. Tϑ = −∂F (n̂)

∂ϑ , Tϕ = −∂F (n̂)

∂ϕ . Since the single site entropy

term in Eq.(32) is invariant with respect to the angular variations we can write

Tϑ(ϕ) = −
∂

∂ϑ(ϕ)

[
∑

i

∫
P

(n̂)
i (êi)

〈
Ω(n̂)

〉

êi

dêi

]
. (48)

By using Eq.(46) together with properties of the CPA effective medium [3], we find directly

Tϑ(ϕ) = −
Im

π

∫
dε fFD

(
ε; ν(n̂)

) [∑

i

∫
∂P

(n̂)
i (êi)

∂ϑ(ϕ)
ln detM

(n̂)
i (ε; êi) dêi

]

(49)

According to the form of P
(n̂)
i (êi) given in Eq. (29) the principal expression for the magnetic

torque at finite temperature is thus

Tϑ(ϕ) =
Im

π

∫
dε fFD

(
ε; ν(n̂)

) [∑

i

∫
βhiP

(n̂)
i (êi)

(
∂n̂

∂ϑ(ϕ)
· êi

)
ln det M

(n̂)
i (ε; êi) dêi

]
. (50)

For a uniaxial ferromagnet such as a L10 3d-4d/5d transition metal magnet or a magnetic

thin film, the performance of a single CPA calculation for appropriate values of the energy ε

is carried out at fixed values of the βhi products (and therefore a chosen magnetisation m)

and for the system magnetised along n̂ = (sin π/4, 0, cos π/4). Subsequent evaluation of our

torque expression, Eq.(50), i.e −Tϑ(ϑ = π/4, ϕ = 0) yields the sum of the first two magnetic

anisotropy constants K2 and K4. Similarly −Tϕ(ϑ = π/2, ϕ = π/8) gives an estimate of the

leading constant K1/2 for a cubic system. It can be shown [3] that the expression we found for

Tϑ(ϕ) for a magnet at T = 0K, Eq.(13), is equivalent to Eq.(49) for the limit βh → ∞, i.e. when

T → 0K.

7 Ferromagnets with tetragonal and cubic crystal symmetry

We compare the MAE of FePt in both its ordered L10 phase with tetragonal symmetry and in

its compositionally disordered Fe50Pt50 cubic phase in figures 3 and 4 respectively.

Figure 3 shows the magnetic anisotropy energy, ∆F ((0, 0, 1), (1, 0, 0)) = −(K2 + K4) versus the

square of the magnetisation. For all temperatures the magnetic easy axis is perpendicular to

the layering in the L10 ordered structure in line with experiment [49,50]. The approximate m2

variation of ∆F is a clear consequence of the itinerant nature of the magnetism in this system.

Notably the magnetisation dependence agrees well with experiment [23, 51] and differs signifi-

cantly from that produced by the single ion model, also shown in the figure. With hindsight, as

shown in the figure, we find our the ab-initio results fit quite well to those of classical anisotropic

Heisenberg model

H = −
1

2

∑

i,j

(J‖(ex,iex,j + ey,iey,j) + J⊥ez,iez,j) (51)
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where J‖ − J⊥ = -1.835meV.
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Figure 3: The magnetic anisotropy of L10-FePt as a function of the square of magnetisation. The filled

circles show the calculations from the ab-initio theory, the full line the pair-wise anisotropic exchange

model K0(m(T )/m(0))2 and the dashed line the single-ion model function K0 < g2(ê) >T / < g2(ê) >0

with K0 = -1.835meV.

Mryasov et al. [52] have also described the magnetic anisotropy of L10-FePt using a local moment

model Hamiltonian with exchange anisotropy, dipolar and single ion anisotropy terms. The

parameters were found from with T = 0K electronic structure calculations.

Crystal structure has a profound effect upon the magnetic anisotropy. Magnetic anisotropy

within a single ion anisotropy model decreases according to ml(l+1)/2 at low T , (m ≈ 1) and

proportional to ml for small m at higher T . For materials with tetragonal symmetry, l = 2, as

shown in Fig.3. On this basis a cubic magnet’s MAE should possess an m dependence where

l = 4, i.e. m10 at low T and m4 at higher T . This single ion pattern is not manifested in our

ab-initio results of disordered Fe50Pt50 shown in Figure 4 [3]. In this system the lattice sites

of the f.c.c. lattice are occupied at random by either Fe or Pt atoms. The cubic symmetry

causes this alloy to be magnetically very soft. Indeed the overall scale of the MAE is some three

orders of magnitude smaller than its L10-ordered counterpart shown in Fig.3. Ordering into a

tetragonal L10 structure of layers of predominantly Fe atoms stacked alternately with Pt layers

along the (1, 0, 0) direction causes a significant increase of K. Okamoto et al [51] have measured

K of FePt carefully as a function of compositional order and the trend, for T = 0K, has been

successfully reproduced in ab-initio calculations [28,53].
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Figure 4: The magnetic anisotropy constant K1 of the cubic magnet Fe50Pt50 as a function of the fourth

power of the magnetisation, m4. The filled circles show the calculations from the ab-initio theory, the

dashed line from the single-ion anisotropy model k
∑

i(e
2

x,ie
2

y,i + e2

y,ie
2

z,i + e2

z,ie
2

y,i) and the dot-dashed

line from the anisotropic exchange two ion model 1

2
∆J

∑
i,j(e

2

x,ie
2

y,j + e2

y,ie
2

z,j + e2

z,ie
2

x,j) with k = ∆J =

8.4µeV.

We find a Curie temperature of disordered f.c.c. Fe50Pt50 of 1085K, again a mean field value

which is in reasonable agreement with the experimental value of 750K [51]. Figure 4 shows our

calculations [3] of the magnetisation dependence of the leading magnetic anisotropy constant K1

(Eq.6). As expected K1 decreases rapidly with temperature - Fig. 4 depicts K1 versus the fourth

power of the magnetisation. At low T , K1 varies approximately as m7 whereas this dependence

becomes m4 for smaller M and higher T . Fig.4 also shows the behaviour of the single ion model

for a cubic system for comparison. As with the uniaxial metallic magnets already investigated,

the ab-initio R-DLM results differ significantly. Again with hindsight an interpretation of the

ab-initio results can be given by a model which includes both two site anisotropic exchange and

single site anisotropy.

It is interesting to note that in some recent work on thin films we have found that thermally

induced magnetisation reorientation transitions we calculated for itinerant magnetic thin films

can be interpreted as a trade off between single ion and exchange anisotropy aspects [4].

8 Conclusions

In this article we have shown how the account of fluctuating local moments provided by the

R-DLM describes well the temperature dependence of magnetic anisotropy. There is work in

progress to look at the magnetic structures of thin films and multilayers and also the blocking

temperatures of magnetic nanoparticles. Strongly correlated electron effects are also currently
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being included via the Local Self-Interaction Correction (L-SIC) method [44] so that gamut

of magnetic materials can be investigated. At the heart of the R-DLM theory is the fully

relativistic electronic structure which is affected by and sustains the fluctuating moments. As the

temperature of a material is increased the fluctuations grow and the electronic structure changes

in consequence. This means that a quantitative theory for the T -dependence of spectroscopic

measurements is possible. Indeed an early prediction [8] of the DLM theory was the local

exchange splitting in b.c.c. Fe observed above Tc. Significantly and of relevance to spintronics

the temperature dependence of transport properties can be covered- ‘spin’-disorder scattering

can be carefully considered. The evolution of the resistivity of materials which are inferred to

be half-metallic at T = 0K are rather pertinent examples. A quantative theory of anisotropic

magnetoresistivity is another promising project.
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