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Abstract

We outline the main ideas underlying theCONQUESTcode for first-principles modelling of sys-

tems containing many thousands of atoms, focusing on the algorithms used to achieve linear-scaling

of the cpu and memory requirements with number of atoms, and the strategies for implementing the

algorithms so as to achieve good parallel scaling on parallel computers. We note that the code can

be run at different levels of precision, ranging from empirical tight-binding, throughab initio tight-

binding, to fullab initio. Very recent technical developments implemented in the code are outlined.

We give illustrations of physical systems currently being studied with the code, ranging from biolog-

ically important molecules to Ge hut clusters on Si (001), including structural relaxation on systems

of over 20,000 atoms using electronically self-consistentdensity-functional theory. Arrangements

for obtaining and learning to use the code are also noted.

1 Introduction

It is now over 15 years since the first proposals were made for doing DFT calculations so that the

amount of memory and number of cpu cycles needed are proportional to the number of atoms, rather

than scaling asN2 or worse [1–7]. These ideas stimulated a flurry of activity, and in the middle

1990’s it was more or less obligatory for every condensed-matter electronic-structure conference to

include a section on ‘linear-scaling’ or ‘O(N)’ methods. This activity rather quickly led to efficient

practical codes for linear-scaling tight-binding calculations, but it gradually became clear that there

were many practical difficulties in achieving the same thingfor density functional theory. Not the

least of these difficulties was that of making the calculations run efficiently on large parallel comput-

ers, so that they scaled linearly not only with the number of atoms but (inversely) with the number

of processors. The consequence was that the effort to develop linear-scaling DFT codes died away

to rather a low level, and the subject started to disappear from the conference programmes. Nev-

ertheless, the persistent efforts of a few research groups have recently started to bear fruit, so that
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practical codes for performing DFT calculations on very large complex systems are now becoming

available [8–12].CONQUESTis one of these codes.

We have published many papers over the past 12 years about theprinciples underlyingCON-

QUEST [8,13–18], so the main purpose of this article is to give an update about recent progress, and

particularly about the large-scale practical calculations that are now becoming possible. However,

to make the article self-contained, we start by recalling the main ideas. We will then give a sum-

mary of how the computational effort is distributed across processors on parallel machines. Then we

give some recent practical examples from unpublished or only partially published work, including

exploratory calculations on the important enzyme dihydrofolate reductase, and large-scale structural

relaxation calculations on Ge/Si hut clusters performed onthe Earth Simulator on systems of over

20,000 atoms.

2 Principles of theCONQUESTcode

2.1 Theory

The reasons why traditional DFT calculations scale poorly with N are well known. The number of

occupied Kohn-Sham orbitals must clearly be proportional to N . But each orbitalψn(r) extends

over the entire volume of the system, which is also proportional toN . This means that the amount

of stored information and the number of operations needed tomanipulate it are proportional toN2.

However, all the usual implementations require an operation equivalent to calculating the scalar prod-

uct 〈ψm|ψn〉 of all pairs of occupied orbitals, and the cpu time for this isproportional toN3. The

prefactor is small, but for very large systems thisN3 scaling will dominate. However, Kohn’s ‘near-

sightedness’ principle [19] tells us that it should be possible to do much better than this, and that

O(N) performance should be achievable. The amount of information stored in anN -atom system

is not really proportional toN2; it is just that the usual manner of doing things incurs an enormous

degree of redundancy in the way the information is represented.

With DFT, the near-sightedness principle is expressed by the locality of the Kohn-Sham density

matrix ρ(r, r′). Recall that if the Kohn-Sham occupied orbitals (eigenfunctions of the Kohn-Sham

equation) are already known, thenρ(r, r′) is defined as:

ρ(r, r′) =
∑

n

ψn(r)ψn(r′)⋆ . (1)

The nearsightedness principle says that there is quantum coherence only between nearby positions,

or, more exactly:ρ(r, r′) → 0 as |r − r
′| → ∞. But the variational principle of DFT can be

formulated in terms of the density matrix [7]: the DFT groundstate is obtained by minimising

the total energyEtot with respect toρ(r, r′), subject to the ‘weak idempotency’ condition that the

eigenvalues ofρ should all lie between 0 and 1. Linear scaling is then obtained by minimisingEtot

with respect toρ, subject to the constraint thatρ(r, r′) = 0 for |r−r
′| > rc, whererc is a chosen cut-

off distance. The amount of information stored inρ(r, r′) is then manifestlyO(N). These ideas are

implemented inCONQUEST, with the additional constraint thatρ(r, r′) be ‘separable’ (the number

of its non-zero eigenvalues is finite), so that:

ρ(r, r′) =
∑

iα,jβ

φiα(r)Kiα,jβφjβ(r′) . (2)

The functionsφiα(r), which we refer to as ‘support functions’, are chosen to be non-zero only within

spherical regions of radiusRreg centred on the atoms (φiα(r) is theαth support function on atomi).

Effectively, the matrixKiα,jβ is the density matrix in the (non-orthogonal)basis of support functions.

In practice, then, the idea is to express the total energy in terms of the density matrix given by

eqn (2), and to minimise it with respect to theK-matrix and theφiα(r) support functions, subject to
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the conditions of (i) weak idempotency, and (ii) constant electron number. In doing this, the support

functions should in principle be freely varied within theirspherical regions, and for this purpose they

need to be represented in terms of some chosen basis functions. Before discussing that, though, we

address the more difficult question of how to ensure weak idempotency. It goes without saying that

we are not allowed to diagonalise the density matrix, because that would be anO(N3) operation, and

we would have achieved nothing. There are several ways of enforcing weak idempotency, but the

present implementation inCONQUESTis a combination of the technique of Li, Nunes and Vanderbilt

(LNV) [33] and Palser and Manolopoulos [34], both of which are related to McWeeny’s ‘purification’

scheme [35]. In the LNV technique, the matrixK is represented in terms of an ‘auxiliary’ density

matrixL as:

K = 3LSL− 2LSLSL , (3)

whereS is the overlap matrix of support functions:Siα,jβ = 〈φiα|φjβ〉. In order to ensureO(N)

scaling, a spatial cut-off is imposed on theL-matrix, so thatLiα,jβ = 0 when the distance between

atoms andi andj exceeds a chosen cut-offRL. Alternative methods for enforcing weak idempotency

could, of course, also be used.

In order to obtain a scheme that is equivalent to standard DFT, we must allow the support func-

tionsφiα(r) to be freely varied within their spherical regions. This means that they must be repre-

sented in terms of some basis set. We have two completely different ways of doing this inCONQUEST,

and which basis set one chooses depends on what one is trying to achieve. If plane-wave precision

is desired, then it is essential to use a basis set that is in some sense equivalent to plane waves. The

obvious difficulty is that the support functions are localised, so if one literally uses plane waves, then

it is undesirable that they should extend over the entire system. The solution we have adopted is

to use a finite-element basis that is quite closely equivalent to plane waves. (It is interesting here to

compare with the plane-wave methods that have been used to solve this same problem in theONETEP

CODE [10].) On the other hand, if plane-wave precision is not needed, the other option onCONQUEST

is to use numerical pseudo-atomic orbitals, as is done in some other codes, notablySIESTA [9, 29]

andPLATO [39,40].

The finite-element scheme we use to obtain plane-wave precision represents theφiα(r) in terms

of piecewise continuous polynomials, using a technique sometimes referred to asB-splines. Full

details of the scheme, with demonstrations of its effectiveness, are presented in a published report

[20], so here we give only a brief summary. Suppose first that we have a continuous functionf(x)

in one dimension, which we wish to represent. TheB-spline basis consists of localised functions

θs(x), centred on the points of a grid, whose nodes are at positionsXs = sa, wherea is the grid

spacing. The basis functions are all images of each other, displaced by an integer number of grid

spacings, so thatθs(x) = θ0(x − Xs). The basis functionθ0(x) vanishes identically outside the

range−2a < x < 2a. Inside this range, it is assembled from cubic polynomials:

θ0(x) =











1 − 3
2
(x/a)2 + 3

4
|x/a|3 if 0 < |x| < a

1
4
(2 − |x|/a)3 if a < |x| < 2a

0 if 2a < |x|

(4)

and has the property that it and its first two derivatives are continuous everywhere. In fact, the only

discontinuities are in the third derivative at the points|x| = 0, a and2a. The representation of a

continuous function

f(x) ≃
∑

s

bsθs(x) (5)

can be made arbitrarily precise by systematically reducingthe grid spacinga. This is exactly anal-

ogous to increasing the plane-wave cut-offGmax when taking a plane-wave calculations to conver-

gence.
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In fact, there is a close relationship betweenB-spline and plane-wave basis sets. Theθs(x) basis

functions can be used to form Bloch-like functionsχk(x) by the unitary transformation:

χk(x) =
∑

s

eikXsθs(x) . (6)

To obtain the full set of distinctχk functions,k should be restricted to the range−π/a < k < π/a.

As |k| → 0, the functions become identical to plane waves, and in fact they rather precisely reproduce

plane waves except near the ends of the interval(−π/a, π/a). This means thatB-splines with grid

spacinga are nearly equivalent to plane waves with cut-offGmax = π/a.

In practice, of course, we work in three dimensions, and the three-dimensionalB-splinesΘs(r)

are defined as Cartesian products:

Θ(r − Rs) = θ(x−Xs)θ(y − Ys)θ(z − Zs) , (7)

where(Xs, Ys, Zs) are the Cartesian components ofRs, and the support functions are represented

as:

φiα(r) =
∑

s

biαsΘs(r − Ris) . (8)

In the current scheme, the blip-grid on which theΘs(r) are sited is defined separately for each atom,

and moves with that atom. To enforce the vanishing ofφiα(r) outside the support region, we include

in eqn (8) only thoseΘs(r) that are non-zero only for points within the region. The reason for making

the blip-grid move with the atom is that this ensures that each φiα(r) is represented always in terms

of the same set of basis functions.

Blip functions therefore give us a scheme that is closely related to plane waves, but at the same

time respects the strict localisation of the support functions. It also shares another feature with plane

waves, and that is that as the blip spacing is decreased, the computational effort grows linearly only

with the number of blip functions. This is because the numberof blip functions that are non-zero at

each point in space does not increase asa decreases.

The alternative basis set of numerical pseudo-atomic orbitals provided inCONQUESTis similar

in spirit to the ones used in theSIESTA [9,29] andPLATO [39,40] codes.

2.2 Implementation

In CONQUEST, the search for the ground-state is organised into three loops. In the innermost loop, the

support functions and electron density are fixed and the ground-state density matrix is found, either

by varyingL or by diagonalisation. In the middle loop, self-consistency is achieved by systematically

reducing the electron-density residual, i.e. the difference between the input and output density in a

given self-consistency cycle. In the outer loop, the energyis minimised with respect to the support

functions,φiα. This organisation corresponds to a hierarchy of approximations: when the inner loop

alone is used, we get the scheme known as non-self-consistent ab initio tight binding (NSC-AITB),

which is a form of the Harris-Foulkes approximation [22–25]; when the inner two loops are used,

we get self-consistentab initio tight binding (SC-AITB); finally, if all loops are used, we have full

ab initio. In this last case, we recover the exact DFT ground state as the region radiusRreg and the

L-matrix cut-offRL are increased. For non-metallic systems, the evidence so far is that accurate

approximations to the ground state are obtained with quite modest values of the cut-offs [9,13]. For

the non-self-consistent ground-state search of the inner loop, as well as operating inO(N) mode,

CONQUESTcan find the ground state directly by diagonalisation, usingthe SCALAPACK package,

which allows efficient parallelisation of the diagonalisation. Since this scales asO(N3), this will

only be appropriate for relatively small systems, but it provides an important tool for testing the outer

parts of the ground-state search, and for exploring the convergence of theO(N) algorithm with the

cut-off on theL-matrix.
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For calculations at the level of fullab initio accuracy, the convergence of the outer loop (op-

timising the support functions with respect to their basis functions) is well-conditioned provided

appropriate pre-conditioning measures are taken; these have been discussed both for blips in the con-

text of CONQUEST [26, 27] and for psinc functions in the context ofONETEP [28]. We note that

CONQUESTcan be run in a mode analagous toSIESTA, where pseudo-atomic orbitals are used and

no optimisation is performed; in this case, the outer loop isnot performed.

We have recently found that the self-consistency search (the middle loop described above) can be

accelerated by use of the Kerker preconditioning. This idea, which is well-known in the plane-wave

community, removes long wavelength changes in the charge density during mixing. It is applied in

reciprocal space, as a prefactor:

f(q) =
q2

q2 + q20
(9)

Then the charge is mixed using a Pulay or Broyden (or related)scheme [21] with the prefactor

applied to the residual or output charge after transformation to reciprocal space. The mixing includes

a parameter, A, which determines how aggressive the mixing is (with the input charge density for

iterationn+ 1 given byρn+1
in = ρn

in +Af(q)Rn, withRn the residual from iterationn).

While performing the search for self-consistency, we must monitor the residual. We define the

following dimensionless parameter which is used to monitorthe search:

d =
〈|R(r)|

2
〉1/2

ρ̄
, (10)

〈|R(r)|
2
〉 =

1

V

∫

dr |R(r)|
2
, (11)

whereV is the simulation cell volume and we use the usual definition of residual,R(r) = ρout(r)−

ρin(r), the difference between the output and input charge densities. The quantityd is then the RMS

value ofR(r) normalised by dividing by theaverage charge density in the system,ρ̄. Note that, for

systems containing large amounts of vacuum, the criterion for convergence will need to be altered

when compared to bulk-like environments. This criterion may be coupled with a monitor on the

largest value of residual on an individual grid pointrl,Rmax = maxl |R(rl)|

The scheme we have outlined is closely related to the methodsused inSIESTA [9, 29], OpenMX

[11] andONETEP[10]. The main differences are: (i) the basis sets chosen (SIESTA uses fixed PAOs,

while OpenMX uses optimized orbitals andONETEP psinc functions); (ii) the method of finding

the ground state density matrix (Siesta uses the constrained search technique [3–5], OpenMX the

divide-and-conquer [30] or BOP [31] andONETEPeither penalty functional [19, 32] or LNV [33]);

(iii) the technique of ‘neutral-atom potentials’ [9, 29], used bySIESTA and OpenMX, which allows

calculation of matrix elements to be performed very efficiently for localised, atomic-like basis sets.

2.3 Forces on the ions

In order to perform structural relaxation or molecular dynamics of materials with an electronic struc-

ture technique, the algorithms for calculating the forcesFi on the ions must be the exact derivatives

of the total ground state energy,EGS, with respect to the positions,ri, such thatFi = −∇iEGS. One

of the advantages of DFT, within the pseudopotential approximation, is that it is easy, in principle, to

achieve this relationship between the forces and the energy. Since the CONQUESTformalism allows

the calculation of the total energy at different levels of accuracy, some care is needed in the formula-

tion of the forces to develop a scheme that works at all levelsof this hierarchy. It is also important to

ensure that it works equally well (and accurately) for both the diagonalisation andO(N) modes of

operation implemented in CONQUEST.

We recall the Harris-Foulkes expression [22,23] for the total energy, which is often applied when

self-consistency is not sought, but which at self-consistency is identical to the standard Kohn-Sham

expression for total energy. The expression is:
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EGS = EBS + ∆EHar + ∆Exc + EC, (12)

with EC the Coulomb energy between the ionic cores, and the band-structure energy, the double-

counting Hartree and exchange-correlation energies defined as:

EBS = 2
∑

n

fnǫn (13)

= 2Tr[KH ] (14)

∆EHar = −
1

2

∫

drnin(r)V in
Har(r)

∆Exc =

∫

drnin(r)
(

ǫxc(n
in(r)) − µxc(n

in(r))
)

. (15)

Here,nin(r) is theinput charge density used (normally a superposition of atomic charge densities if a

non-self-consistent scheme is used, or the self-consistent charge density if self-consistency is used).

This expression is very useful when comparing forces at different levels of approximation.

At the empirical TB level, the ionic force is a sum of the band-structure partFBS
i and the pair-

potential partFpair
i , the former being given by [24]:

F
BS
i = −2Tr [K∇iH − J∇iS] , (16)

whereK andJ are the density matrix and energy matrix respectively [24].It is readily shown that in

theO(N) scheme of LNV, and in some otherO(N) schemes, the same formula forF
BS
i is the exact

derivative of theO(N) total energy.

In NSC-AITB (Harris-Foulkes), the forces can be written in two equivalent ways. The way that

corresponds most closely to empirical TB is:

Fi = F
BS
i + F

∆Har
i + F

∆xc
i + F

ion
i , (17)

whereF
BS
i is given by exactly the same formula as in empirical TB. The contributionsF∆Har

i and

F
∆xc
i , which arise from the double-counting Hartree and exchange-correlation parts of the NSC-

AITB total energy, have been discussed elsewhere [24]. The final termF
ion
i come from the ion-ion

Coulomb energy. This way of writingFi expresses the well-known relationship between NSC-

AITB and empirical TB that in the latter the pair term represents the sum of the three contributions

∆Har + ∆xc + ion − ion. The alternative, and exactly equivalent, way of writingFi in NSC-AITB

is:

Fi = F
ps
i + F

Pulay
i + F

NSC
i + F

ion
i . (18)

Here,Fps
i is the “Hellmann-Feynman” force exerted by the valence electrons on the ion cores;FPulay

i

is the Pulay force that arises in any method where the basis set depends on ionic positions;FNSC
i is

a force contribution associated with non-self-consistency, and is expressed in terms of the difference

between output and input electron densities;F
ion
i , as before, is the ion-ion Coulomb force. Exactly

the same formulas represent the exact derivative ofEtot in both diagonalisation andO(N) modes.

In both SC-AITB and full AI, the force formula is:

Fi = F
ps
i + F

Pulay
i + F

ion
i , (19)

which differs from the second version of the NSC-AITB formula eqn (18) only by the absence of the

non-self- consistent contributionFNSC
i , as expected.

The above hierarchy of force formulas has been implemented in CONQUEST, and extensive tests

have ensured that the total energy and the forces are exactlyconsistent within rounding-error preci-

sion [17].
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2.4 Parallel operation

The principle of near-sightedness and the idea of parallel computation fit each other as a glove fits a

hand. Since different regions of space are independent of each other as far as quantum coherence is

concerned, there is a natural mapping ofO(N) calculations onto an array of processors. CONQUEST

was written from the outset as parallel code, and a large partof the development effort has been

concerned with techniques for achieving good parallel scaling. The parallelisation techniques have

been described in detail elsewhere [8,14,36], so we give only a brief summary. There are three main

types of operation that must be distributed across processors:

• the storage and manipulation of support functions, e.g. thecalculation ofφiα(r) on the inte-

gration grid starting from blip- or PAO-coefficients, and the calculation of the derivatives of

Etot with respect to these coefficients, which are needed for the ground-state search;

• the storage and manipulation of elements of the various matrices (H , S,K, L, etc...);

• the calculation of matrix elements by summation over domains of points on the integration

grid, or by analytic operations (for certain integrals involving PAOs and blips).

Efficient parallelisation of these operations, and the elimination of unnecessary communication

between processors, depend heavily on the organisation of both atoms and grid points into small

compact sets, which are assigned to processors [36]. When the code runs inO(N) mode, matrix

multiplication takes a large part of the computer effort, and we have developed parallel multiplication

techniques [36] that exploit the specific patterns of sparsity on whichO(N) operation depends.

2.5 Recent technical progress

The implementation outlined above was already in place, andthe practicalO(N) performance of

the code was demonstrated several years ago. However, untilfairly recently the range of systems

to which the code could easily be applied was rather limited.However, in the past two years we

have greatly enhanced its functionality and ease of use, in preparation for public release later this

year. We have now standardized the pseudopotentials used inthe code on the Troullier-Martins

form [37]. The reason for this choice is that these pseudpotentials are used in a number of plane-

wave/pseudopotential codes, such asABINIT [38]. This makes it rather convenient to cross-check

CONQUESTresults against standard plane-wave calculations. If one chooses to use PAO basis sets in

CONQUEST, it is necessary to generate the PAO’s using the standard pseudopotentials. The code for

doing this has been adapted from thePLATO code [39,40]

Any practical DFT code needs to be able to use a range of available exchange-correlation func-

tionals. To make this possible, we have recently implemented the PBE form of generalized-gradient

approximation (GGA) [41], with PW92 parameterization [42]for the local part. The gradient calcu-

lations are done following the scheme of White and Bird [43],which is formally exact on a grid, and

involves the computational of only four Fast Fourier Transforms (FFT’s). The linearity of the scheme

preservesO(N) operation. In order to keep the ability of the code to performstructural relaxation

with non-self-consistent Harris-Foulkes calculations, the original computation of forces had to be

adapted to the newly implemented GGA functional. As we will report elsewhere [44], we are able

to maintain the condition that the forces are exact derivatives of the total energy, and the number of

FFT’s remains equal to four.

We mentioned above that the division of atoms and grid pointsinto compact groups is impor-

tant in achieving good parallel efficiency. The way this was done in early versions of the code is

summarised above. However, those methods turned out to be inefficient for problems in which a sig-

nificant part of the system consists of empty space – a common situation when dealing with surface

problems. We have now been able to develop more sophisticated procedures, which significantly

improve the efficiency.
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In applications of nano-devices, a crucial physical effectis often the transport of electrons, and

the exchange of energy between the ionic and electronic sub-systems. These are effects that are not

included in conventional first-principles molecular dynamics (m.d.) techniques, which explicitly or

implicitly enforce the Born-Oppenheimer approximation, that the electronic sub-system adiabatically

follows the motion of the ions. Recently, an important extension of m.d. has been developed, known

as “correlated electron-ion dynamics” (CEID) [45], in which the quantum spread of the ions is in-

cludedvia a small-amplitude moment expansion. With CEID, it is possible to make direct numerical

simulations of, for example, inelastic current-voltage spectroscopy in atomic wires. An ambition for

the future is to implement CEID within theCONQUESTcode, and we are currently formulating the

strategies needed to do this.

3 Technical tests

Much of the hard work involved in developing any large code goes into demonstrating that it really

achieves what it is intended to achieve, that it is reasonably robust, and that it runs efficiently on

appropriate platforms. In the case of a linear-scaling DFT code like CONQUEST, the issues that

must be addressed include the following: (i) does the code actually achieve parallel scaling with

respect to the number of atoms? (ii) does it achieve good parallel scaling on parallel computers,

and at what typical numbers of processors does the quality ofthe scaling start to deteriorate? (iii) if

we go to basis-set convergence, and if we go to the limit of large support-region radiusRreg and

largeL-matrix cut-off, does it recover standard plane-wave results (using the same pseudopotentials,

obviously)? (iv) how rapid is the convergence with respect to Rreg andRL? (v) how rapid is the

ground-state search for large systems? (vi) how rapid is thesearch for self-consistency for large

systems? (vii) how rapid is structural relaxation for largesystems?

The issue of scaling with respect to number of atoms and number of processors on large parallel

computers was studied already 10 years ago, when we demonstrated excellent scaling of both kinds

on systems of up to∼ 15, 000 atoms using computers having up to∼ 512 processors [14]. More

recently, we have done extensive tests on the Earth simulator, the results of which will be published

soon. We have also presented the results of test on convergence with respect toRreg andRL. As an

illustration of the search for self-consistency, we show inFig. 1 the decrease of the self-consistency

residual as a function of iteration number for an amorphous Si cluster of 343 atoms, which was

specifically designed as a challenge to self consistency, because it is close to being metallic. The

results show rather rapid monotonic convergence to self consistency, and generally we find similar

behaviour also for much larger systems. As an illustration of the ground-state search for very large

systems, we show in Fig. 2 the deviation of the energy from theexact ground-state value as a function

of iteration number for a 23,000-atom Ge hut cluster on Si (001) (see below for more details of this

system). For fuller discussion of the many other technical issues referred to above, our published

papers should be consulted.

4 Scientific applications

In the immediate future, we expect the most important applications ofCONQUESTto be in the area

of biomolecular systems and nano-systems (there are, of course, close links between the two types

of systems). In all cases, it is clearly essential to build upexperience withO(N) methods, starting

with relatively small systems, where we can cross-check against the results of more standard codes.

For nano-systems, we started this learning process with simple tests on semiconductor surfaces [17],

and we are now making exploratory calculations on much larger and more complex systems. For

biomolecules, we are still at the stage of tests on systems ofa few hundred atoms.
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Figure 1: Residual during self-consistency search for differentRreg. System treated is an amorphous Si

cluster (see text).

In preparation for large-scale calculations on DNA systems, we are currently making extensive

tests withCONQUEST on single DNA bases and on DNA base pairs, and comparing with results

obtained with other codes, includingSIESTA, VASP andGAUSSIAN. As expected, we find excellent

agreement for the equilibrium bond lengths of covalently bonded atoms. Results of these tests will

be published in the near future [46].

We are also performing tests on the important enzyme dihydrofolate reductase (DHFR), whose

function in living organisms is to catalyze the reduction ofdihydrofolate to produce tetrahydrofolate.

The latter is an important molecule in metabolism. In particular, it is an essential cofactor in one-

carbon transfer reactions. As a consequence, DHFR, which isthe only enzyme that synthesizes it, has

receive much attention, for example as a target for anti-malarial drugs. Although the specific substrate

for DHFR is dihydrofolate (DHF), in some species the enzyme also catalyzes, very inefficiently and

less specifically, the reduction of folate, a precursor of DHF.

The reasons why DHFR is specific for DHF remain unclear. LDA DFT calculations of the active

site suggested that enzyme-induced polarization of the substrates may be a cause for the preference, at

least in theEscherichia coli enzyme. Indeed, one study [47] found large electron densitydifferences

(EDD) between the density of DHF when bound to the enzyme withrespect to that in vacuum.

However, results from MP2 calculations, although qualitatively supportive for a role of polarization,

are less conclusive [48,49].

All existing studies used a point-charge model for the bulk protein, restricting the quantum me-

chanical (QM) calculations to a few atoms at the active site.Hence, the quantitative discrepances

between different studies may be due to that limitation of the models, rather than to the different QM

methods employed. Since DHFR is a relatively small protein (159 amino acids inEscherichia coli,

or about 3000 atoms), we decided to assess such posibility byusing Conquest to perform LDA DFT

calculations in extended models of the active site, with theultimate goal of including the whole of

the protein. Thus, we did not model bulk protein in any way, since its effect was expected to become

obvious as the size of the model increased.

Our preliminary results on portions of the protein of up to 300 atoms show that indeed larger mod-

els are quantitatively closer to MP2 results than to the original LDA calculations. We found larger

polarization on DHF than on folate, and only DHF displayed polarization on the bond susceptible

of hydrogenation, consistent with the observed specificity(see Fig. 3). Furthermore, calculations on

different conformations of the protein agree with experimental evidence regarding the mechanism.
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Figure 2: Convergence during energy minimisation with respect to density matrix elements (inner loop

of ground-state search) for 23,000-atom Ge hut cluster on Si(001).

In particular, the presence of some amino acids of the so-called Met20 loop seems to be essential

for catalysis, as represented by polarization on the hydrogenable bond of the substrate. Moreover,

those amino acids must be occluding the active site for polarization to be observed, as expected in

the proposed mechanism [50].

Turning now to the application ofCONQUESTto nano-systems, we summarise our recent progress

in investigating the three-dimensional (3D) structures formed when Ge is deposited on the Si (001)

surface. The Ge/Si (001) has been extensively studied, because it is a prototypical example of hetero-

epitaxial Stranski-Krastanov growth. When Ge atoms are deposited on Si (001), growth initially

occurs layer by layer, up to a critical thickness of about three monolayers (ML). Strain due to the

lattice mismatch is relieved by the formation of regularly spaced rows of dimer vacancies in the

two-dimensional (2D) structure, resulting in the2 × N structure. Deposition of further Ge leads to

another strain-relief structure, 3D pyramid-like structures known as “hut clusters” [51]. Recently, we

have studied this transition from 2D to 3D structures, usingCONQUEST.

Usually, the stability of 3D structures is governed by (i) the lowering of strain energy in the clus-

ters and the underlying substrate, and (ii) the energy increase arising from the formation of facets.

Theoretical approaches used so far have used continuum elasticity theory to describe the strain en-

ergy, with DFT being used only for the surface energies [52, 53]. For the Ge/Si system, the four

facets of the hut cluster are well established to be{105} surfaces, and the structure of these surfaces

has recently been clarified by DFT calculations [54, 55]. Note that the typical side-length of hut

clusters is about 150 Å, and deposition of additional Ge leads to the formation of other 3D structures

called “domes”, having steeper facets. Interestingly and importantly, the DFT calculations show that

the strained Ge (105) surface is more stable than strained Ge(001). This means that the surface

energy may actuallystabilise the structure. If the surface contribution to the overall energy is small

or favours the 3D structure, contributions from the edges where the facets meet each other and the

wetting layer may also affect the stability of the 3D structure. In addition, as the area of the facets

of the experimentally observed Ge hut cluster is not large, the evaluation of the surface part itself is

doubtful. For these reasons, the validity of previous theoretical approaches is uncertain, especially

for small hut clusters. To overcome these problems, we are using CONQUESTto model the entire hut

cluster, together with the wetting layer and the Si substrate.

In preparation forCONQUESTcalculations on the full system, we first performed DFT calcu-

lations on the Ge (105) surface, including test calculations also on the unstrained and strained Ge
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Figure 3: Electronic density difference plot for dihydrofolate (DHF) upon binding to the enzyme dihy-

drofolate reductase (±0.001 electron/bohr). Charge deficiency (with respect to the density of DHF in

vacuum) is shown in blue; charge excess is red. The enzyme induces polarization on N5 and C6 atoms

(marked with arrows), and electronic density withdrawal from the bond linking them. These effects are

consistent with the catalyzed reaction, namely, protonation of N and hydride transfer to the bond, and

are much weaker for the very inefficient reduction of folate,a secondary substrate (not shown).

bulk [56]. Since the size of this system is relatively small,we can employ diagonalisation in this

case. We have clarified the accuracy of the various DFT methods explained above for the unstrained

and strained Ge systems. We have also confirmed that full DFT calculations performed withCON-

QUEST using cubic-spline basis sets are accurate enough for the study of the strained Ge (105) sur-

face. The conditions need forO(N) calculations to achieve good accuracy for this system have also

been established.

Using these results, we have performedO(N) DFT calculations on the entire Ge/Si (001) hut

clusters. At the non-self-consistent level, we have performed structual optimisation on systems of

different sizes. The largest system treated so far, shown inFig. 4, contains∼ 23000 atoms, and

we found that structure optimisation is robust even for suchlarge systems. We have examined three

structural models of the Ge hut cluster having different facet or edge structures, and we have com-

pared their energies with those of the2 ×N reconstructions withN = 4, 6 and 8. The results, to be

reported in detail elsewhere [56,57], show that the 2D structure is more stable for small coverages of

Ge atoms, but the 3D hut structure becomes more stable when the coverage exceeds 2.6 monolayers,

in agreement with experimental observation.

5 Distribution of the CONQUESTcode

We plan that theCONQUESTcode will be released under a GNU General Public License by the end

of 2007. At the time of writing (end of May 2007), we are in the beta-testing phase, and the code

has been released to a small set of carefully chosen users, who will work with us to apply the code to

their own scientific problems. A short tutorial course on thepractical use ofCONQUESTwill be held

at CECAM7− 8 September 2007, and there is funding to support the attendance of participants. For

more details, please go towww.cecam.fr and click on ‘tutorials’.
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174 Å

174 Å

47.5 Å

Figure 4: Atomic geometry of largest Ge/Si (001) hut clusterused for structural relaxation withCON-

QUEST DFT calculations. Upper and lower panels shows plan and sideviews, respectively. Pink and

green spheres represent Si and Ge atoms. Dimensions of periodically repeated cell in surface plane and

normal to surface are marked.

6 Summary

The main ideas underlying linear-scaling DFT were established in the early 1990’s. However, the

realisation of these ideas in practical codes has required the solution of a large number of tech-

nical problems concerning basis sets, the enforcement of linear scaling in the calculation of the

ground-state density matrix, efficient manipulation of sparse matrices having the patterns of sparsity

associated with spatial locality in three dimensions, and implementation of the algorithms on large

parallel computers. Some of these problems admit of more than one solution, and the codes that

have appeared so far, includingCONQUEST, SIESTA, ONETEP and OPEN-MX , differ in important

ways. We have tried to show here how theCONQUESTcode has now passed beyond the stage of

feasibility studies, and can now be applied to real scientific problems concerning biomolecular and

nanoscale systems. Comparisons with the results of standard codes for relatively small systems of a

few hundred atoms are demonstrating the realibility of the methods. At the same time, it is clear that

structural relaxation at different levels of precision, using both self-consistent and non-self-consistent
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calculations, is becoming a practical proposition for systems containing more than 20,000 atoms.
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