
1 SCIENTIFIC HIGHLIGHT OF THE MONTH

Spin Orbit Driven Physics at Surfaces

M. Heide, G. Bihlmayer, Ph. Mavropoulos, A. Bringer and S. Blügel

Institut für Festkörperforschung
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Abstract

The pioneering spintronic proposal of a spin field-effect transistor by Datta and Das

motivated largely the research of the spin related behavior of electrons propagating in the

potentials with structure inversion asymmetry (SIA). Owing to the spin-orbit interaction,

inversion asymmetric potentials give rise to a Bychkov-Rashba spin-orbit coupling causing

a spin-splitting of a spin-degenerate electron gas. In this article we show that the rich spin-

orbit driven physics in potentials with SIA is effective also for electrons at metallic surfaces.

Carrying out first-principles calculations based on density functional theory (DFT) employed

in a film full-potential linearized augmented plane-wave (FLAPW) method in which spin-

orbit coupling (SOC) is included, we investigate the Rashba spin-splitting of surface electrons

at noble-metal surfaces, e.g. Ag(111) and Au(111), at the semimetal surfaces Bi(111) and

Bi(110), and the magnetic surfaces Gd(0001) and O/Gd(0001). E.g. on the Bi(110) surface

the Rashba spin-splitting is so large that the Fermi surface is considerably altered, so that the

scattering of surface electrons becomes fundamentally different. On a magnetic surface, the

Rashba splitting depends on the orientation of the surface magnetic moments with respect

to the electron wavevector, thus offering a possibility to spectroscopically separate surface

from bulk magnetism. Due to the interplay of SIA and SOC effects, magnetic impurities

in an electron gas experience spin-spin interactions which arise not only from the common

Ruderman-Kittel-Kasuya-Yoshida-type (RKKY) symmetric Heisenberg exchange but in ad-

dition also from an Dzyaloshinskii-Moriya-type (DM) antisymmetric exchange. The origin

of the latter can be a combination of Moriya-type spin-orbit scattering at the impurities plus

kinetic exchange between the impurities and the Fert-Levy type exchange due to relativistic

conduction electrons. Assuming that the DM is smaller than the symmetric exchange inter-

action, we develop a continuum model to explore the rich phase space of possible magnetic

structures. Depending on the strength of the DM interaction, we expect in low-dimensional

magnets deposited on substrates, such as ultrathin magnetic films, chirality broken two- or

three-dimensional magnetic ground-state structures between nanometer and sub-micrometer

lateral scale. We present two approaches on how the strength of the DM interaction, the

so-called DM vector D, can be calculated from ab initio methods, either using the concept

of infinitesimal rotations applicable to Green function type electronic structure methods or

using the concept of homogeneous spin-spirals more applicable to a supercell type electronic

structure method. We determine D for a doublelayer of Fe on W(110) and show that the

quantity is sufficiently large to compete with other interactions. We demonstrate that SOC

effects are essential for the understanding of magnetic structures in these ultrathin magnetic

films.
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1 Introduction

Two independent experiments carried out in 1988 by Albert Fert [1] in Paris and Peter Grünberg

in Jülich [2] mark the beginning of magnetoelectronics or spintronics. In these experiments it was

found that an electrical current passing through ferromagnetic films separated by non-magnetic

metallic spacer layers is subject to a resistivity which changes by an unexpectedly large amount

(gigantic amount at those days) with the change of the relative alignment of the magnetization

in these films from ferromagnetic to antiferromagnetic. This observation was coined the giant-

magneto-resistance effect or GMR. Obviously GMR made it possible to turn the information of

a two-state magnetic configuration (parallel or anti-parallel associated with bit 0 or 1) into an

electrical one, or in a more abstract sense, turn spin information into charge current information.

Already 8 years after the discovery, this effect is used for example in sensors embodied in read

heads in hard disk drives common to all contemporary PCs. Today spintronics is a very active

and driving multidisciplinary field whose central theme is the active manipulation of spin-degrees

of freedom in solid state systems combining issues of central importance for fundamental physics

with great perspectives in applications [3, 4].

Very recently, in the field of semiconductor spintronics a number of spin-electronic devices have

been proposed, which explicitly make use of the Rashba effect. Here, the basic idea is the control

of the spin orientation by utilizing the Rashba spin-orbit coupling [5] utilizing a spin splitting due

to spin-orbit coupling in the presence of a structure inversion asymmetric (SIA) potential. This

mechanism opens up the possibility to design electronic devices, where the switching process is

realized by changing the spin orientation in the semiconductor without application of an external

magnetic field. In fact, this scheme is the basis for the well-known spin transistor proposed by

Datta and Das [6].

The Datta-Das proposal motivated largely the research of the spin-orbit driven spin splitting

in SIA potentials, which turns out to be a rather general phenomenon, and arises not only

in two-dimensional electron gases of semiconductor heterostructures but in particular also at

(metallic) surfaces and interfaces. Today, the investigation of the spin-orbit coupling of sys-

tems with a SIA, provides a subject involving different fields of science including mesoscopic

physics, low-temperature physics, surface science, electron spectroscopy, scanning tunneling mi-

croscopy (STM) and spectroscopy (STS), nanomagnetism and electronic structure theory. In

this article we review at first in section 2 our theoretical first-principles investigations of the

Rashba spin-splitting of surface electrons at noble-metal surfaces, e.g. Ag(111) and Au(111),

at the semimetal surfaces Bi(111) and Bi(110), and then at magnetic surfaces Gd(0001) and

O/Gd(0001). Electrons subjected to the spin-orbit interaction in magnets with a SIA, generate

besides the common symmetric Heisenberg-type [7] of exchange, an antisymmetric exchange be-

tween spins, known as the Dzyaloshinskii-Moriya (DM) interaction [8, 9] (although the original

work was in the context of weak ferromagnetism of insulating antiferromagnetic oxides crys-

tallized in non-centrosymmetric lattices, which relates rather to a Dresselhaus spin-splitting of

electrons than to the Rashba spin-splitting, and to a superexchange mechanism rather than that

of conduction electrons, for details see below). As we discuss in section 3, the DM interaction

destabilizes collinear magnetic structures and favors non-collinear ones. Although about the

existence of the DM interaction at surfaces or in nanomagnets cannot be argued in principle,

2



as the reasoning is based on symmetry considerations, after 20 years of intense experimental

research in the field of ultrathin magnetic films there are no experimental reports discussing or

concluding on the DM interaction in this context. This may suggest that the DM interaction

is small and unimportant. In this article we show this is not so. In fact, nobody knows how

strong it actually is. We think it is correct to assume that the antisymmetric exchange is smaller

than the symmetric one. Then, depending on the strength of the DM interaction, we expect

in low-dimensional magnets deposited on substrates, such as ultrathin magnetic films, magnetic

ground-state structures with a lateral length scale between nanometer and sub-micrometer. This

encouraged us to develop a micromagnetic continuum model, presented in section 4, in which

we explore the rich phase space of possible magnetic structures. Which of the possible two- or

three-dimensional magnetic phases are realized in nature depends strongly on the strength of the

DM interaction. This makes first-principles calculations very valuable. At the same time, the

fact that one deals here with magnetic structures of large lateral extent, at surfaces, requiring

spin-orbit interaction and structural relaxation makes first-principles calculations a true chal-

lenge. This might be the reason why in fact no hard numbers are known for D. In this article we

report on two conceptually different approaches to calculate the Dzyaloshinskii-Moriya vector

D from first-principles. In section 5.1, D is derived in the spirit of the Lichtenstein formula [10]

using the concept of infinitesimal rotations. The method is optimally suited for Green-function

type electronic structure methods. To calculate D by wave function based methods we outline

in section 5.2 a perturbative treatment of the spin-orbit interaction on top of self-consistently

calculated homogeneous periodic spin-spirals. All results are obtained with the full-potential

linearized augmented planewave method [11] as implemented in the FLEUR code [12]. Our cal-

culations include spin-orbit coupling (SOC) [13] and spin-spirals are implemented in the general

context of non-collinear magnetism according to reference [14]. In section 6 we present an

example where we actually calculated D for a Fe double layer on W(110), and discuss the conse-

quences for the magnetic structures of domain walls for that system. At first, we continue with

some simple considerations about Rashba spin-spitting due the spin-orbit interaction in SIA,

and what it means for the Datta-Das spin-field-effect transistor. A motivation to study these

effects is to translate these concepts to the physics of nanostructures at surfaces.

1.1 Rashba Effect

In order to look in more detail into the principles of the Rashba effect in semiconductors we

consider a two-dimensional electron gas (2DEG) as it develops typically in epitaxially grown

III-V quantum-well heterojunctions shown for example in figure 1. Considering the 2DEG in a

constant potential e.g. V0 = 0, neglecting electron correlation and working in a single-particle

picture, in the absence of internal and external magnetic fields, B = 0, then the motion of the

electrons is described by the simple kinetic energy Hamiltonian HK = p2

2m∗ . p is the momentum

operator and m∗ are the masses of the valence or conduction band electrons, respectively. The

single particle energy ε(k) = ~
2

2m∗k
2 depends on the Bloch vector k, indicating the orbital

motion of the eigenstate, which is a plane wave ψk(r) = 1√
Ω
eikr. Each eigenstate ε↑↓(k) is

two-fold degenerate for spin-up and spin-down electrons which is a combined consequence of

inversion symmetry of space and time. Space inversion symmetry changes the wave vector
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Figure 1: Schematic illustration of a In0.53Ga0.47As/In0.77Ga0.23As/InP heterostructure. The

two-dimensional electron gas is located in the strained In0.77Ga0.23As layer. Such a heterostruc-

ture is typically grown by metal-organic vapor phase epitaxy on a semi-insulating InP substrate.

The two-dimensional electron gas (2DEG) is located in a strained 10 nm thick In0.77Ga0.23As

layer. The lower barrier of the quantum well is formed by an InP layer, while for the upper

layer a 70 nm thick In0.53Ga0.47As layer is used. The electrons are provided by a 10 nm thick

InP dopant layer separated by 20 nm of InP from the quantum well [15].

k into −k and for each spin-direction σ, σ ∈ {↑, ↓}, the single-particle energy transforms as

εσ(k) = εσ(−k). Time inversion symmetry flips in addition the spin, i.e. ε↑(k) = ε↓(−k), known

as the Kramers degeneracy of the single-particle states. Thus, when both symmetry operations

are combined we obtain the two-fold degeneracy of the single-particle energies, ε↑(k) = ε↓(k).

When the potential through which the carriers move is inversion-asymmetric as in the example

of the strained heterojunction in figure 1, then the spin-degeneracy is removed even in the

absence of an external magnetic field B. Performing a Taylor expansion of the potential V (r),

V (r) = V0 + eE · r + · · · , in lowest order the inversion asymmetry of the potential V (r) is

characterized by an electric field E. When electrons propagate with a velocity v = dε/dp = ~

m∗k

in an external electric field E defined in a global frame of reference, then the relativistic Lorentz

transformation gives rise to magnetic field B = 1
cv × E = ~

m∗ck × E in local frame of the

moving electron. The interaction of the spin with this B field leads then to the Rashba or

Bychkov-Rashba Hamiltonian [16, 17]

HR =
αR

~
σ(p×E) or HR = αR σ(k×E) or HR = αR(|E|) σ(k× ê) (1)

describing the Rashba spin-orbit coupling as additional contribution to the kinetic energy. σ =

(σx, σy, σz) are the well-known Pauli matrices. The latter two terms are strictly correct only

for plane wave eigenstates as for the 2DEG. αR denotes a materials-specific prefactor, known

as Rashba parameter. Different definitions exist, also that for which the strength of the E-

field, |E|, is included in αR(|E|) and only the direction of E, ê, enters the Hamiltonian. This

Hamiltonian leads then to the structure inversion-asymmetric (SIA) spin splitting, the Rashba
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effect [5, 16, 17]. Today, it is common practice to use the term Rashba-effect both for the

Hamiltonian given in equation (1) as well as for the SIA spin splitting in general.

Although we have motivated the Rashba Hamiltonian heuristically by a Lorentz transformed

confining external electric field, in general the Rashba parameter αR is not directly proportional

to it. Instead a microscopic view is required and the effect is caused by the spin-orbit inter-

action as described in a Pauli-like (or scalar-relativistic equation plus spin-orbit interaction as

for ab initio calculations, c.f. subsection 2.1) equation (15), which takes care on the Lorentz

transformation locally of the moving electron of quantum number k in the structure inversion-

asymmetric potential. Then, the strength of SIA spin splitting depends on the asymmetry of the

electronic structure on the spin-orbit matrix elements, most prominently on the asymmetry of

the penetration of the electron wave functions into the barrier, but also on the orbital character,

the size of the band gap and the atomic spin-orbit strength which scales typically quadratically

with the nuclear number Z. Electronic structure k · p calculations of αR can be found in the

book of Winkler [18] and references therein.

The general features of the Rashba-model are studied for the 2DEG in a SIA potential and the

solution is displayed schematically in figure 2. For electrons propagating in the 2DEG extended

in the (x, y) plane subject to an electric field normal to the 2DEG, êz = (0, 0, 1), the Hamiltonian

takes the form

H = HK +HR =
p2

‖

2m∗ +
αR

~
(σ × p‖)|z =

p2
‖

2m∗ +
αR

~
(σxpy − σypx) , (2)

which is solved analytically. For a Bloch vector in the plane of the 2DEG, k‖ = (kx, ky, 0) =

k‖(cosϕ, sinϕ, 0), the eigenstates written as a product of plane wave in space and two-component

spinor are

ψ±k‖
(r‖) =

eik‖·r‖

2π

1√
2

(
ie−iϕ/2

±eiϕ/2

)
(3)

with eigenenergies

ε±(k‖) =
~

2

2m∗k
2
‖ + αR (σ × k‖) =

~
2

2m∗k
2
‖ ± αR|k‖| =

~
2

2m∗ (k‖ ± kSO)2 −∆SO , (4)

Figure 2: Parabolic energy dispersions of a two-

dimensional electron gas in a structure inversion

asymmetric (SIA) environment. Indicated are

the vector fields of the spin-quantization axes

(or the patterns of the spin) at the Fermi sur-

face. As the opposite spins have different ener-

gies, the Fermi surface becomes two concentric

circles with opposite spins. The effective B-field,

Beff is perpendicular to the propagation direc-

tion defined by k‖.
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where ± denotes the spin-up and -down states with respect to a spin orientation axis n̂(k‖),

local in k‖ space. With the exception of the high-symmetry state k‖ = 0, we find that the

original two-fold degenerate energy paraboloid of the 2DEG in a constant potential indeed spin-

splits. The spin splitting ε+(k‖) − ε−(k‖) = 2αrk‖ is linear in k‖. Due to the presence of the

SIA potential and the spin-orbit interaction, the origin of the degenerate parabola is shifted by

kSO = m∗αR/~
2, but in opposite directions for up- and down-spins with in overall spin-orbit

lowering of ∆SO = m∗αR/(2~
2). The orientation axis is given by the expectation value

n̂±(k‖) = 〈ψ±k‖
|σ|ψ±k‖

|〉 = ±




sinϕ

− cosϕ

0


 ⊥ k‖ = k‖




cosϕ

sinϕ

0


 . (5)

We find that the orientation axis is independent of the magnitude k‖ and depends only on the

direction of the k‖ vector. In fact, it is in the plane of the 2DEG and the orientation axis is

perpendicular to the propagation direction of the electron. Considering k‖ → −k‖, ϕ changes

to ϕ + π, we find that the spin orientation axis reverses. n̂±(k‖) → n̂∓(−k‖) → −n̂±(−k‖).

Thus for k‖ and −k‖ the spin-up and -down states refer to opposite orientations. Defining a

global quantization axis along the line (−k‖,k‖), e.g. according to n̂±(+k‖), then a spin-up state

appears as spin-down state if k‖ changes sign. Together with the eigenvalue spectrum given in

equation (4) the Kramer degeneracy ε↑(k‖) = ε↓(−k‖) holds. In all, the magnetic moment is zero

when averaged over all states k‖. This is consistent with the absence of an B field. The Rashba

spin-orbit splitting may be observed either by electron photoemission or transport experiments.

In both cases experiments have to be carried out at temperatures, kBT which are lower than

the energy difference of the spin-splitting, ε+(k‖) − ε−(k‖). In angle resolved photoemission

the eigenvalue spectrum is measured for a selected k‖ value. Two peaks at different energies

are expected. Using spin-polarization analysis, for example using a Mott-detector oriented

perpendicular to the propagation direction of the electron, different polarizations should be

observed for the two peaks. Transport experiments work typically on a shell of constant energy

ε. Here we expect at a given energy two different wave vectors for up- and down-electrons, which

will be exploited in the Datta-Das proposal of a spin-transistor.

That the Pauli-like spin-orbit coupling may have important consequences for the one-electron

energy levels in bulk semiconductors was first emphasized by Dresselhaus et al. [19] already in

1955. Unlike the diamond structure of Si and Ge, the zinc blende structure, in which for example

the III-V semiconductor crystallize, exhibit a bulk inversion asymmetry (BIA), i.e. this crystal

structure lacks a center of inversion, so that we can have a spin splitting of the electron and hole

states at nonzero wave vectors k as for the Rashba effect even if B = 0. Today, this is called

the Dresselhaus effect. The corresponding Dresselhaus Hamiltonian

HD =
αD

~
[σxpx (p2

y − p2
z) + σypy (p2

z − p2
x) + σzpz (p2

x − p2
y)] (6)

describes the BIA spin splitting due to the Dresselhaus spin-orbit coupling, which produces spin

vector fields quite different from those produced by the SIA splitting. One difference is obviously

that the Dresselhaus term produced a spin splitting which is proportional to k3, εD ∝ k3, while

the spin splitting of the Rashba-term is linear in k, εR ∝ k. Since we focus in this article on

spin-orbit driven physics of SIA potentials this term is not further considered.
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1.2 Datta-Das Spin Field Effect Transistor

Figure 3 explains the Datta-Das [6] proposal of a spin field-effect transistor (SFET) exploiting

the Rashba effect. What is remarkable about this theoretical transistor model is the fact that

the tuning of the precessing spin-orientation is accomplished by applying an electric rather than

a magnetic field. Considering the fact that in semiconductor devices it is much easier to generate

electric fields as to integrate externally controllable magnetic fields, this paves a way to even

more complex devices.

Figure 3: Scheme of the Datta-Das spin field-effect transistor (SFET). The source (spin injector)

and the drain (spin detector) are ferromagnetic metals or semiconductors, with parallel alignment

of magnetic moments. The injected spinpolarized electrons with wave vector k move ballistically

through the 2DEG (which is actually quantized along a quasi-one-dimensional channel) formed

by, for example, a strained InGaAs/InP heterojunction. While propagating from source to

drain, electron spins precess about a precession axis, which arises from spin-orbit interaction,

which is defined by the structure and the materials properties of the channel. The change of the

precession angle with propagation distance is tunable by the gate voltage. The current is large if

the electron spin at the drain points in the initial direction, and small if the direction is reversed.

Shown is an intermediate situation. For simplicity we call the left ferromagnet the source, which

acts as spin injector and the right ferromagnet the drain, which acts as spin analyzer.

To understand the principle of the Datta-Das transistor we consider again a 2DEG in the

semiconductor part of the transistor located in the x-y-plane, while the quantum-well potential,

as well as the variable gate voltage, are orientated along the z-axis. We develop a simple

one-dimensional model. The x-axis is the direction of propagation for the electrons and at

the same time the polarization axis of the ferromagnetic source and drain. As we have seen

in subsection 1.1, the direction of propagation defined by k‖ determines the spin orientation

n̂ of the eigenstates in the 2DEG, which is in the plane of the 2DEG pointing perpendicular

to the propagation direction, which is the y and −y direction in our frame of reference, i.e.

k‖ = (kx, 0, 0), ϕ = 0 and n̂ = ±(0, 1, 0), taken the definitions entering equation (5). Neglecting

the spatial plane wave prefactor, according to equation (3) the eigenstates with respect to this

quantization axis take the form | ↑〉 = 1√
2
(i, 1) and | ↓〉 = 1√

2
(i,−1). An electron at the point of

injection into the 2DEG next to the ferromagnetic injector is not in an eigenstate, because both

spin and propagation vector point in the same direction. But its spinor quantized along the x
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direction, | →〉 = 1√
2
(1, 1) can be expressed in terms of above eigenstate as

| →〉 =
1√
2

(
1

1

)
=

1

2

[
(1− i) 1√

2

(
i

1

)
+ (−1− i) 1√

2

(
i

−1

)]
. (7)

Taking into consideration that the eigenstates propagate as plane waves along the x-axis, the

x-dependent amplitude ψ(x) of the injected electron of fixed energy ε

ψ(x) =
1

2

[
(1− i)eik↑x| ↑〉+ (−1− i)eik↓x| ↓〉

]
(8)

is a coherent superposition of up- and down-states. The values k↑, k↓ belong to the opposing

spin states at fixed energy ε and can be obtained from equation (4)

k↑,↓ = κ∓ kSO with κ =

√
2m∗

~
ε+ k2

SO . (9)

Substituted back into equation (8), this gives the wave function the final form

ψ(x) = (cos(kSOx)| →〉 − sin(kSOx)| ←〉) . (10)

The expression includes the spinor eigenstates in x and −x direction. Here we can see for which

particular channel length L between the injector and analyzer, the spin is parallel (kSO = nπ/L)

or antiparallel (kSO = (n+1/2)π/L) to the magnetization direction of the ferromagnetic analyzer.

By calculating the spin orientation axis

n̂ = 〈ψ(x)|σ|ψ(x)〉 =




cos(2kSOx)

0

− sin(2kSOx)


 (11)

we see that the spins precess in the x-z plane. The wavelength of precession λ = π/kSO =

π~
2/(m∗αR(Ez)) depends on the electric field Ez and it should in principle be possible to tune

Ez such that either full- or half-integer spin revolutions fit into the gate length L. The spin-

precession has also a classical analogon: a electron with a magnetic spin moment mx pointing

into the x-direction is injected into the 2DEG and is subject to an Rashba By-field in the y

direction. Thus, a torque τ = m×B is exerted on the magnetic moment which gives rise to a

precession of the moment in the x-z plane.

1.3 Spin structure in quantum wires

In the geometry of the SFET (figure 3) the motion of the electrons is restricted to one preferred

direction (x). Orthogonal to this direction (y) the wave functions are bound by a wall like

potential (cf. figure 4). The lack of circular symmetry causes a non trivial spin distribution

across the wire. This may be shown by solving the Schrödinger equation

(HK +HR + V ) Ψ = EΨ

with the Hamiltonian of eqn. (2) and a confining Potential V in y-direction. For a long wire the

wave functions are separable

Ψ =

(
ψ+

ψ−

)
= eikxx

(
f (y)

ig (y)

)
. (12)
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W = 600 [ nm ]
L = 30 [ µ m ]

y / W

V

−.5 0 .5

ε
F

Figure 4: Schematic picture of a quantum wire made out of the heterostructure material of

figure 1. The typical width W and length L and position of the Fermi energy εF are indicated.

With the scaled quantities y = Ws, κ = Wkx, η = αRm
∗W/~2, ε = m∗(W/~)2E , v =

m∗(W/~)2V , this results in two coupled differential equations for the spinor functions f and g:

[
−1

2

(
d

ds

)2

+
1

2
κ2 + v − ε

](
f

g

)
=

[
0 η

(
κ− d

ds

)

η
(
κ + d

ds

)
0

](
f

g

)
. (13)

They may be solved by standard discretization methods [20]. A typical wave function is shown

in the right of figure 5. In a wire a fraction of the kinetic energy rests in the confinement. One

− 0.5 0 0.5 y / W

V [meV ]

50

100

ε
F

|Ψ|
2

e
y

|Ψ|
2

e
z

Figure 5: Left: Spinor wave functions (f red, g purple) and density (blue) at εF across the wire

of figure 4. Right: Polar plot of the spin direction across the wire of the wave function shown

in the left part.

observes wave functions with increasing number of nodes across the wire at higher energies. The

local spin direction is defined by

(ex, ey, ez) =

(
0 ,

2fg

f2 + g2
,
f2 − g2

f2 + g2

)
(14)
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and may be plotted weighted by the density in a polar diagram (right of figure 5). From left

to right, the spin direction is turned from the lower to the upper side of the wire plane. This

left right asymmetry is present in most of the stationary states and there have been attempts

to observe it experimentally [21].

2 The Rashba effect at metallic surfaces

2.1 Nonmagnetic Surfaces

A surface state can be considered as a particular realization of a two dimensional electron gas.

Since the surface always breaks spatial inversion symmetry, the effective potential which acts on

the surface state will generally have a finite gradient along the surface normal, i.e. there is an

electric field in this direction. The physical manifestation of this field is the workfunction.

Figure 6: Electrons moving with in-plane wavevectors k‖ and −k‖ in the potential gradient of

a surface (indicated on the left). The resulting electric field, E, is seen in the restframe of the

moving electrons as a magnetic field B or −B which couples to the spin of the electron. This

interaction modifies the bandstructure of a spin-degenerate (s, pz)-like surface state as shown

in the lower right picture. The degeneracy is lifted and the electrons at the Fermi level have

spin directions perpendicular to their propagation directions as indicated by the small arrows

(cf. also preceding section).

Like in the semiconductor heterostructures discussed above, due to the movement of an electron

with wavevector k‖ in the surface plane, this electric field appears in the rest frame of the electron

as a magnetic field which couples to the spin of the electron. The situation is schematically

depicted in figure 6 for two electrons traveling on the surface in opposite directions. For a

non-spinpolarized surface state (e.g. on a nonmagnetic surface) this gives rise to a term in the
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Hamiltonian

Hsoc =
~

4m2
ec

2
σ · (∇V (r)× p) (15)

which leads to a k-dependent splitting of the dispersion curves. When we simply use the nearly

free electron gas (NFEG) model and substitute p by the k-vector, for usual workfunctions we

would expect this splitting to be very small, in the order of 10−6 eV. This would be far too

small to observe directly with angle resolved photoemission spectroscopy (ARPES). So it came

rather as a surprise, when in 1996 LaShell and coworkers [22] discovered a splitting of the surface

state of the Au(111) surface, which was not only k-dependent, but also in the order of 0.1 eV at

the Fermi level. They correctly interpreted this splitting as a spin-orbit coupling effect, which

obviously was influenced by the strong atomic spin-orbit effects in the heavy Au atom. Spin

resolved ARPES experiments finally also analysed the spin distribution of this surface state [23]

and found it to be in quite good agreement with the NFEG model (cf. figure 6), as it was also

predicted theoretically [24].

While this effect was observed in different studies for the Au(111) surface, on other surfaces

which show a similar Shockley state, e.g. Ag(111) or Cu(111), no such splitting was discovered

experimentally and in calculations [25] based on density functional theory (DFT). From the

calculations it was concluded, that the k-dependent splitting on Ag(111) is by a factor 20 smaller

than on Au(111) (cf. also figure 7). This can neither be explained by the difference in atomic

spin-orbit coupling of Au (Z = 79) and Ag (Z = 47) alone, nor by the potential gradients at

the surface. Also the amount of p-character in the sp-surface state is larger for Ag than for Au,

so that in principle spin-orbit effects should be more prominent in silver. So what is responsible

for the size of the effect?

To resolve this issue, we did calculations based on DFT with the full potential linearized aug-

mented planewave method [11] as implemented in the FLEUR code [12]. Our calculations include

spin-orbit coupling (SOC) in a self-consistent manner [13] in the muffin-tin (MT) spheres. For

the present discussion it might be interesting to note, that actually only the spherically sym-

metric part of the potential is included in the calculations, which might seem inconsistent with

the above discussion which claims that the potential gradients at the surface are responsible for

the effect we want to describe. But we will see, that in all considered cases the agreement with

experimental data is fine, suggesting that the theoretical approach includes the dominant terms

leading to the Rashba-type splitting in question.

In the calculations we can choose the region where to include SOC: in specific spheres around

the atoms, i.e. in certain layers of the film, or we can also vary the size of the sphere, where

we want to include spin-orbit coupling. In this way, it is possible to show that a bit less

60% of the k-dependent splitting of the Au(111) surface state comes from the surface layer

and the contribution in deeper layers decays more or less like the weight of the surface state

in these layers [26]. Moreover, this effect is extremely localized in the core region, where the

radial potential gradient is largest. For Au(111), more that 90% of the effect originate from a

sphere with radius 0.25 a.u. around the nucleus. In this region the potential is almost perfectly

spherically symmetric, so that our above mentioned approximation, to include only the l = 0

part of the potential, is probably well justified. The potential gradient at the surface enters

actually only indirectly, via the asymmetry of the wavefunction in the core region. In a tight-
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binding model, Petersen and Hedeg̊ard showed that the size of the Rashba-type splitting is

determined by the product of the atomic spin-orbit coupling parameter and a measure for the

asymmetry of the wavefunction under consideration [27].

A measure for the asymmetry of the wavefunction of a surface state can be found by analysing

the l-like character of the state, i.e. to determine how much s, p or d character a surface state

shows at a certain k‖-point, in our case the Γ-point. E.g. a surface state of pure pz character is

inversion symmetric and will – in absence of an electric field – show no Rashba-type splitting.

The potential gradient or electric field at the surface will distort the wavefunction, so that some

s or dz2 contributions to the surface state will arise. The ratio of l- to l ± 1-type character of a

surface state (for a given m, e.g. m = 0) will therefore give a measure for the asymmetry of this

state. In the case of Ag(111), we find that the surface state is predominantly of pz-type, with

a small dz2 admixture (p : d ratio of 9.5) while in Au the surface state has much stronger dz2

character (p : d = 3.3). The fact that the Au d band lies much higher in energy than the Ag d

band leads to a stronger d character of the Au surface state and thus to larger asymmetry of the

wavefunction [26]. This determines the stronger k-dependent splitting in the Au(111) surface

bandstructure.
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Figure 7: Bandstructure of Au(111) (left, full circles) and one monolayer Ag on Au(111) (left,

open circles) as compared to a Ag(111) film (right, full symbols) and a single Au monolayer on

Ag(111) (right, open symbols).

This effect can be further demonstrated, when we compare a single monolayer of Ag on Au(111)
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with a Au monolayer on Ag(111). Just from the point of view of the atomic SOC, we would

expect that the Rashba-type splitting of the Au monolayer of Ag(111) is larger than that of

the Ag/Au(111) system, since more than 50% of the effect comes from the surface layer. But

since the gold d states of the subsurface layers can induce a larger d character of the Ag surface

state in Ag/Au(111) while the Au surface state of Au/Ag(111) has less d character than the

one of pure Au(111), finally the Rashba-type spin-orbit splitting is larger in Ag/Au(111) (cf.

figure 7). Other examples, how the asymmetry of a surface state influences the strength of the

Rashba-type splitting can be found on lanthanide surfaces (e.g. Lu(0001) [26]), and a particular

case will be presented in subsection 2.3.

2.2 Semimetal Surfaces

Up to now we have discussed examples, where the Rashba-type spin-orbit splitting was in the

order of 10 to 100 meV (up to 120 meV for Au(111)), so that experimentally it is not so easy to

detect in ARPES experiments. Now, we turn to another extreme, where the splitting is so big,

that it was not a-priori clear, whether the two experimentally observed features were spin-split

partners of the same state or two different surface states: the low-index surfaces of Bi. Bismuth

is a non-magnetic, rather heavy metal (Z = 83) with semimetallic properties, i.e. the Fermi

surface consists only of two tiny pockets, so that the density of states (DOS) at the Fermi level

(EF) is almost zero. In the surface projected bulk-bandstructure extended gaps are observed

around EF, in which surface states can be localized.

ARPES measurements on the Bi(110) surface [28] showed the existence of two spectroscopic

features in the gap, which could be interpreted as to two surface states. Bismuth has a rhom-

bohedral crystal structure and the (110) surface consists of unreconstructed pseudocubic bilay-

ers [29], where dangling bonds can give rise to surface states. Similarly, on Bi(111) two states

were identified spectroscopically [30]. The (111) surface has closed-packed layers and again

shows a bilayer structure, but without dangling bonds and with a much larger separation of

the bilayers [31]. In both cases of course only the occupied part of the surface bandstructure

could be observed spectroscopically. Using DFT calculations, we have the possibility to access

also the unoccupied part of the spectrum. It can be seen that the observed spectroscopic fea-

tures are actually a Rashba-type spin-split pair of a surface state which forms – at least for the

(110) and (100) surface – a band through the whole surface Brillouin zone [32, 33]. That these

surface state is actually split by spin-orbit coupling can be demonstrated by comparison of a

scalar-relativistic calculation without inclusion of SOC and with the inclusion of SOC [34] (cf.

also left of figure 8). In this cases, the splittings are very large (in the order of 300 meV) and,

since the surface states extend throughout the Brillouin zone, they are also no longer linear in

k, except in the vicinity of high symmetry points.

It is not only of academic interest, whether two surface states are a spin-split pair or two spin-

degenerate surface states. For example, on the Bi(111) surface the Fermi surface forms a small

hexagon around the Γ point, which led to speculations about the formation of a charge density

wave on this surface [35]. If the Fermi surface were indeed formed by spin-degenerate surface

states, this would be possible. If, on the other hand, Rashba-type spin-split bands form this part

of the Fermi surface, the electrons at +k‖ and −k‖ were of opposite spin and instead of a peak
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in the (spin) diagonal part of the susceptibility χ, we would expect a large contribution to the

spin off-diagonal part, χ±, leading to a modulation of the spin-structure. Since the surface is of

course still nonmagnetic, these modulations have to cancel and a direct observation is difficult.

When magnetic atoms were present at the surface, their interaction would be modified and this

effect could be detected. We will show in a later chapter, that this is actually possible.

Using scanning tunneling microscopy (STM) techniques, consequences of the spin polarization of

the surface states have indeed been observed for another Bi surface [32]. If a scanning tunneling

spectrum (STS) is recorded for a dense mesh of positions on a surface, this STS map can be

Fourier transformed for a given energy within this spectrum. The Fourier transformed (FT) STS

map gives then a picture of the energy dispersion in reciprocal space, i.e. a two dimensional cut

through the function ε(k‖), but with doubled length of the k-vectors, since the STS maps the

scattering between two states of different k but at the same E. In particular, for E = EF, this

yields an image the Fermi surface. It is easily seen, that a surface state with a Fermi surface of

a wavevector ±kF will give rise to standing waves with 2kF which can be seen in the STS map.

This correspondence between FT-STS and Fermi surface has been used extensively to study the

electronic properties of high-temperature superconductors. A Rashba splitting will not change

this picture, since for one spin channel the Fermi vectors are changed to ±kF + ∆k, while for

the other spin we get ±kF−∆k, so that both spin channels will lead to a contribution of ±2kF

in the STS map, i.e. the picture is indistinguishable from the one without Rashba splitting [27].

But if the Fermi surface is more complex, like in the case of Bi(110), the fact, that the surface

states are spin polarized can be seen the FT-STS clearly.
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Figure 8: Bulk-projected bandstructure of Bi and surface bandstructure of a 22 layer Bi(111)

film with H termination on one side (left) with (full line) and without (broken line) spin-orbit

coupling included in the calculation. A similar calculation with SOC included for a symmetric

20 layer film without H termination is shown on the right.

Consider a simple one-dimensional example: along the line ΓM in Bi(111) we can see in figure 8

(left, broken line) a surface state obtained without inclusion of SOC. This state originates at
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−0.3 eV at Γ, crosses the Fermi level at a wavevector we denote ka, disperses down again and

crosses EF once more at kb and reaches M at −0.22 eV. Surface states at EF can scatter between

ka and kb and give rise to standing waves with wavelength 2ka, 2kb, (ka + kb) and (ka − kb), if

the state is spin-degenerate. Now, consider that spin-orbit coupling splits this degeneracy and

gives rise to spin-up states at ka + ∆k and kb−∆k, while spin-down states cross the Fermi level

at ka −∆k and kb + ∆k. In this case, spin conserving scattering events will again give rise to

oscillations with wavelength 2ka, 2kb, but also (ka + kb) ± 2∆k and (ka − kb)± 2∆k. Here, the

effect of spin is clearly visible. On the Bi(110) surface, this effect was also verified experimentally

in a two dimensional case [32].

The occurrence of spin-polarized surface states of course suggests, that this could be utilized in

some way for spintronic applications. In the case of Ag(111), where the surface state contributes

very little to the density of states at the Fermi level, this might not seem very promising, but in

the case of a semimetal surface, where the DOS at EF originates almost exclusively from surface

states, this might be more realistic. Alternatively, the surface of a thin film on insulating or

semiconducting substrates could be interesting, since in this case the relative contribution of the

surface state to the conduction electrons is also increased. This works of course only, if the thin

film still supports the same surface state as the semiinfinite crystal, i.e. localized Tamm states

of d-character as they occur on lanthanide (0001) surfaces will be more suitable for very thin

films than the extended s, p-derived Shockley states of the closed packed coinage metal surfaces.

Another effect, that can disturb the surface states in thin films, is the interaction between the

two surfaces of the film. If, like in Bi, the screening is very weak, surface states at the upper

and lower surface of a symmetric film interact to form even and odd linear combinations. This

of course interferes with the concept of broken inversion symmetry at the surface. On the other

hand, in our theoretical calculations for Au and Ag surfaces, we always used symmetrical films

where a tiny interaction between upper and lower surface cannot be avoided, even in thicker

films. For the bandstructures of figure 7 we used 23 layer films and especially in the case of

Ag(111), a finite splitting of the surface state parabolas at the Γ point can be seen. At the

first glance it might seem surprising, that the two different splittings, the even-odd and the

Rashba-type splitting result in only two dispersion curves. Without the interactions that lead

to the splittings, we can think of having two states (spin up, ↑ and down, ↓) on each surface.

The spin-orbit coupling leads for the spin up states of the upper surface (↑u) to the same shift

in energy as for the spin down states of the lower surface (↓l) (since the potential gradient is

reversed there) and they will have an energy ε+. In the same way of course ε(↓u) = ε(↑d) = ε−.

A hybridization of ↑u and ↓u leads to energies ε+ + εs and ε−− εs, respectively, but in the same

way the two downspin states, ↓u and ↓l will be shifted to energy values ε− − εs and ε+ + εs.

The stronger the interaction across the film, the more each state will be localized at both sides

of the film so that finally the spin-polarization for a given energy and k‖ gets reduced.

A case, where this scenario has been actually observed in experiment are thin Bi films grown

on a Si substrate [36]. The interaction with the substrate is very weak, since the Bi film is

deposited on a seeding layer of Bi atoms and can adopt (for more than a few bilayers) the

structure of Bi(111). Angle resolved photoemission has shown that near the zone center the

electronic structure of these Bi films is not so different from what has been observed on single

crystal surfaces. But when the k‖ vector approaches the zone boundary at M, the crossing of the
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two spin-split states is no longer observed. Instead, quantum well states (QWS) are formed when

the surface state gets near to the bulk continuum at M [36]. The energy levels of these states

agree nicely with those obtained by the calculation of symmetric films of the same thickness

(cf. right of figure 8). As the surface state character is lost, also the spin-polarization of these

states vanishes. The very bad screening of Bi makes this QWS disappear only for very thick

films (more than 40 bilayers). Therefore, when we simulate Bi single crystal surfaces, we have

to terminate one side of the film with H atoms to saturate the dangling bonds and explicitly

remove the inversion symmetry of the film, even if it is 22 layers thick.

2.3 Magnetic Surfaces

Let us finally consider the case of a surface of a magnetic metal, like Gd(0001). On this closed

packed surface a bulk projected bandgap around Γ contains a surface state of dz2 character, like

it can be found also on other lanthanide surfaces. Exchange interaction splits this surface state

into an occupied majority spin state and an unoccupied minority state. This splitting is mainly

controlled by the 4f electrons of Gd and amounts to about 0.8 eV, which is large as compared to

spin-orbit effects in this system. No matter how SOC affects the electrons of the surface state,

their spin will remain more or less parallel to the exchange field, which is oriented in plane in

the directions of nearest neighbor atoms by the magnetic anisotropy.

An electron traveling on the surface in a direction perpendicular to its spin quantization axis,

will experience the potential gradient at the surface as a magnetic field parallel to its spin.

Therefore, a magnetic coupling can arise and the dispersion curves will split more or less similar

to what is observed on a nonmagnetic surface. If, on the other hand, the propagation direction

of the electron is parallel to its spin quantization axis, the field arising from SOC cannot couple

to the electron’s spin and no Rashba-like splitting can be observed. Schematically, this situation

is shown in figure 9. In contrast to the surface state on the nonmagnetic surface, where the spin

of the electron is always oriented perpendicular to the propagation direction and the surface

normal, ez, (with some deviation, depending on the shape of the potential [24]), on the spin-

polarized surface, the spins are more or less collinear. This changes the shape of the Fermi

surface significantly, especially if exchange splitting is considered (figure 9 (c)). If the exchange

splitting is large, this leads to a Fermi surface consisting of a single circle shifted away from the

zone center. The consequences for the bandstructure are simple: along a certain direction in

reciprocal space SOC will have no particular effect. In a direction orthogonal to this one, the

dispersion curves for majority and minority spin will be shifted in opposite directions. For the

eigenvalues this results in an expression

ε↓(↑)(k) = ε(k)± IM ± αR(k× ez) · M̂ (16)

where M = MM̂ is the magnetization and IM represents the exchange splitting of the bands.

Of course in a calculation of a symmetric film, again on the lower surface (−ez) the directions

of the spin-orbit induced shifts will be exactly opposite to the shifts on the upper surface,

so that in total a picture as shown in figure 9 (d) is obtained. From this picture the two

splittings for the spin-up and the spin-down surface state can be determined directly as ∆ε(k) =

ε(k,M) − ε(k,−M).
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Figure 9: (a): Rashba splitting on a non-magnetic surface: the top panel shows the Fermi

surface and the spin-polarization of the states at the Fermi level. In the middle and lower panel

the bandstructures along two orthogonal directions in reciprocal space are shown. (b): The

same relations as in (a) are shown, but now for the case where the spin-quantization axis of the

electrons has been aligned in a particular direction. For electrons propagating in this direction,

the Rashba splitting vanishes. (c): Effect of an additional exchange splitting on the situation as

described in (b). (d): Surface bandstructure arising from the calculation of a symmetric film,

where the surface states from the lower surface are shown in red.

Experimentally, for a single crystal surface, it is possible to measure with ARPES two spectra

of the same surface, but rotated by 180 degrees. In the case of an in-plane anisotropy, as

for Gd(0001), this rotation reverses the spin and leads, therefore, also to a picture as figure 9

(d). A comparison of these two spectra allowed to determine the Rashba splitting in Gd(0001),

even though its magnitude is rather small [37]. A particular advantage of magnetic surfaces is,

that the measurements allow the determination of the sign of the Rashba parameter, αR, even

without the need of spin-analysis via a Mott detector.

Modification of the Gd surface also alters the characteristics of the surface state: if (atomic)

oxygen is adsorbed in the surface, the surface state shifts down in energy and both, minor-

ity and majority spin states become occupied. Moreover, the dispersion of the surface state

changes from almost flat on Gd(0001) to parabolic for O/Gd(0001). Both surface states were

observed experimentally, and DFT calculations show, that these states are actually interface

states residing between the topmost Gd/O layer and the underlying Gd bulk [37].

Let us now focus on the Rashba-type splitting on O/Gd(0001). In figure 10 we plotted the

splitting as a function of k‖ for the directions ΓM1 and ΓK1 as indicated in the figure. Since

the magnetization is directed towards nearest neighbours (a-direction), the largest effects on

the surface state dispersion should be observed in ΓM1 direction while no splitting should be
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visible in the direction ΓK2. A closer look at figure 10 reveals, that the splitting, ∆ε is indeed

smaller in ΓK1 than in ΓM1. Furthermore, we observe that ∆ε for the majority spin state

(S↑) is not only of opposite sign as compared to ∆ε for the minority state (S↓), but also their

absolute values differ. This is also observed experimentally, and can be explained again by the

different positions of the states in the bulk-projected bandgap and the different asymmetry of

the wavefunctions. One should note here, that also the effective masses of the S↑ and S↓ states

differ and this shows, that spin is not the only difference of these states.

Even more drastic is the difference of the S↑ surface state of O/Gd(0001) to the S↑ state of

Gd(0001). We can see from the right of figure 10 that not only the magnitude of the splitting is

a factor 3 to 4 smaller, even the sign is different. Since this reversal of sign cannot be attributed

to the spin, it must result from a different admixture of pz-character to the dz2 surface state. A

reversal of the gradient of the wavefunction at the position of the Gd nucleus can be interpreted

as the result of hybridization with pz-type wavefunctions of different signs. In some sense we

can say, that we see the sign of the wavefunction here in the sign of the Rashba-parameter.

3 Anisotropic exchange of adatoms on surfaces

In the last subsection, we assumed that the magnetic order at the surface is not influenced by

spin-orbit coupling effects. If the exchange field is strong, all spins will align accordingly. On

the other hand, if the exchange coupling is weak, spin-orbit coupling effects can substantially

influence the magnetic interaction. The particular case of two distant impurities, which interact

in a RKKY-type manner via a non-magnetic host which shows strong spin-orbit effects has

been discussed by Smith [38]. He showed that the interaction between two magnetic atoms A

and B (spins SA and SB) via a non-magnetic third atom with a SOC term l · s gives rise to

an interaction (SA · s)(l · s)(s · SB). Taking the trace over the spin variable s this term can

be written as (−i/4)l · (SA × SB) and thus shows the form of the Dzyaloshinskii-Moriya (DM)
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interaction D · (SA×SB). Fert and Levy [39] derived an expression for this anisotropic exchange

interaction of two magnetic atoms in spin-glasses doped with heavy impurity atoms which is of

the form

HDM = −V (ξ)
sin [kF(RA +RB +RAB) + η] R̂A · R̂B

RARBRAB
(R̂A × R̂B)(SA × SB) (17)

where RA = RAR̂A and RB = RBR̂B are the positions of the magnetic atoms measured from

the nonmagnetic impurity and RAB is the distance between the atoms A and B. V (ξ) is a

term that depends of the spin-orbit coupling constant of the nonmagnetic atom, ξ, kF is the

Fermi vector and η the phase shift induced by the impurity. The sinus term reflects the RKKY-

type character of the interaction, while the two cross products determine the symmetry of the

interaction.

RA RB

RA RBx

SA SBSA SBx

RA RB

RA RBx

SA
SB

SA SBx

Figure 11: Two magnetic adatoms (A,B) on a surface interacting with a surface atom at the

center. The distance between the surface atoms and the adatoms is RA and RB . The spins of

the adatoms are almost perpendicular to the surface (left) or in the surface plane (right), but

sightly canted to give a finite value for SA × SB

This model can be translated to the case of two magnetic atoms on a surface, where the magnetic

interaction is mediated by surface states which show strong SOC effects. Such a situation might

be imagined, if e.g. two Mn atoms are placed on a Bi surface (figure 11). If the easy magnetic axis

is out-of-plane, a slight tilting of the magnetic moments results in a finite value for SA×SB which

is then parallel to R̂A × R̂B and leads to a non-vanishing contribution of HDM (equation (17)).

If the easy magnetic axis is in-plane (right of figure 11) and the surface normal is the hard axis,

a small tilting of the magnetic moments results in a vector SA×SB that is normal to R̂A× R̂B

and equation (17) will give no contribution to the total energy. Of course, on a surface the

scattering will involve all surface atoms and in general it will depend not only on the direction

of the spins of the adatoms, but also on the symmetry of the surface whether a DM interaction

will occur for a specific arrangement of the spins. This will be discussed later in more detail.

If we extend the two impurities in figure 11 to a chain of magnetic atoms, where the spins of

two neighbouring atoms, i and j, are canted slightly, an interaction of this kind

HDM = Dij · (Si × Sj) (18)

will favour spin-spiral structure. Since the DM interaction has to compete with the Heisenberg-

type (symmetric) exchange interaction, these structures will probably be of long wavelength.

Such long-ranged magnetic structures can be found on surfaces in domain walls of thin magnetic

films. In the following we will discuss the consequences of the DM interaction on this kind of
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long ranged, non collinear structures, and show results of ab initio calculations for a system that

has also been investigated experimentally in some detail.

4 Mesoscale magnetic structures

In this section, we discuss magnetic structures on the mesoscopic length scale that are driven

by the DM interaction. Since the DM interaction is a purely relativistic effect, we expect it to

be much weaker than the usual exchange interactions. In most cases, it cannot cause more than

a small canting angle between the spins on adjacent lattice sites, and the local magnetic struc-

ture (typically ferro- or antiferromagnetic) is governed by non-relativistic effects. For spatially

slowly varying magnetic structures, however, the DM interaction can become relevant since it is

antisymmetric whereas the non-relativistic exchange interactions are all symmetric with respect

to the canting angle. The symmetric interactions lack any linear terms in the usual Taylor

expansions in the canting angle, whereas an antisymmetric interaction shows such a term. In

the following, we employ a simple model in order to describe the mesoscale magnetic structures

that can arise from an interplay of spin stiffness, usual anisotropy and the Dzyaloshinskii-Moriya

interaction. It is not the aim of this section to give a complete overview of the possible magnetic

structures arising from the DM interaction at surfaces, but our simple model already illustrates

the variety of possible magnetic structures.

4.1 Micromagnetic model

We restrict our further investigations to a quasi one-dimensional model where the magnetization

depends on only one spatial coordinate x, and we denote the corresponding real-space direction as

propagation direction (cf. figure 12). The quasi one-dimensional model is justified for anisotropic
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Figure 12: Atomic rows. In

the quasi one-dimensional model,

we assume that the magnetiza-

tion direction changes along the

x-direction but remains constant

within a row normal to the x-

direction (i.e. Sj,i = Sj,i′ ). The

x-direction is called propagation

direction.

crystal structures where the magnetization is expected to propagate along a high-symmetry line

and for simple domain walls where the magnetization is expected to propagate normal to the

real-space orientation of the domain boundary. But our ansatz cannot describe vortices and

other mesoscale magnetic structures that are well discussed in literature (cf. e.g. [40]).

As we want to investigate magnetic structures, that change on length scales that are large

compared to the lattice spacing, we can employ a micromagnetic model. In such a model, the

magnetization direction is not described by a discrete set of unit vectors {Sj} but by a contin-
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uous function m(x) with |m| = 1 . This ansatz works for ferromagnetic and antiferromagnetic

materials alike: In the case of an antiferromagnetic structure, m(x) is oriented parallel and

antiparallel respectively to every second atomic moment Sj .

If all relevant interactions are reasonably short-ranged, we can estimate the energy of a magnetic

configuration (in a homogeneous crystal) by

E[m] =

∫
dx f(m, ṁ) (19)

with ṁ(x) = d
d x m(x) . The structure of the function f can be deduced from a discrete lattice

model, for instance the classical Heisenberg model
∑

i,j Ji,j Si · Sj corresponds to a term of the

form
∫

dxA ṁ(x)2 (cf. e.g. [41]). But the integrand A ṁ(x)2 can also be regarded as the lowest

order Taylor expansion to an arbitrary symmetric ṁ-dependent function. Thus, the parameter

A includes all non-relativistic exchange effects in the limit of spatially slowly varying magnetic

structures, even if the system is badly described by the Heisenberg model.

In the following, we consider a term symmetric in ṁ (that prevents spin rotations on short

length scales), a term antisymmetric in ṁ (that favors certain spin rotations), and the lowest

order anisotropy term and we work with the energy functional

E[m] =

∫
dx
(
A ṁ(x)2 + D·( m(x) × ṁ(x) ) + m(x)† ·K·m(x)

) )
. (20)

The model parameters are the spin stiffness A, the Dzyaloshinskii vector D and the anisotropy

tensor K. As we assume, that the magnetization propagates along a high symmetry line of a

rectangular surface, we know the direction of the Dzyaloshinskii vector D and the structure of

the anisotropy tensor K: D is oriented perpendicular to the x-direction and perpendicular to

the surface normal (cf. figure 13), and K is diagonal if we choose our coordinate axis along the

high symmetry directions of the crystal. With such a coordinate system, we get:

D =




0

0

D


 , K =




K1 0 0

0 K2 0

0 0 KD


 . (21)

4.2 Planar spin structures

From equation (20) it is obvious, that the DM term is minimized if the magnetization rotates

in the plane normal to the Dzyaloshinskii vector D. If the hard axis is oriented parallel to D

(i.e. KD>K1 , KD>K2 ), then the anisotropy term also favors a magnetization that is confined

to the plane normal to D. At first, we restrict our considerations to this case. In such a system

with m ⊥ D, we can describe the magnetization with only one angle ϕ ( m = ê1 cosϕ+ê2 sinϕ )

and obtain the energy functional

E[ϕ] =

∫
dx
(
A ϕ̇(x)2 +D ϕ̇(x) +K sin2 ϕ(x) + const

)
(22)

with K = K2 −K1 . Without loss of generality, we assume K > 0 . The functional (22) is well

discussed by Dzyaloshinskii. In the following we briefly state some of his results, for further

details and analytical derivations cf. [42, 43].
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D

−→

(a) (b) (c)

Figure 13: Spin spirals with different rotation axes on a symmetric surface. For each rotation

axis, a right- and a left-handed spiral is shown. If we neglect the substrate, the right- and left-

handed spirals are mirror images of each other. If we take spin-orbit coupling into account, we

need to consider the system consisting of spiral and substrate. For (a) and (b), the mirror plane

is oriented normal to the surface, therefore the surface does not break the mirror symmetry

(provided that the spirals propagate along a high-symmetry line of the crystal structure). In

the case (c), however, the surface breaks the mirror symmetry and there is no other symmetry

operation mapping the right- onto the left-handed system. Therefore, the two systems in (c) are

not equivalent to each other and may differ in energy. With equation (18), we conclude that D

is orthogonal to the rotation axes of (a) and (b). Of course, the sign of D cannot be deduced

from the symmetry.

If we neglect the anisotropy term K sin2 ϕ, we obtain spin rotations for all non-vanishing D.

But, for sufficiently large K the DM term cannot compete with the other terms and the energy

is minimized by a collinear magnetization that is oriented along the easy axis (i.e. ϕ(x) = 0 =

const ). The model (22) shows a rotating spin structure as the ground state, if and only if

|D| > 4

π

√
AK ⇔ |D̃| = |D|√

AK
>

4

π
. (23)

At the transition to the collinear ground state, the spiral’s spatial period length λ diverges (cf.

figure 14). This transition can be interpreted as a second-order phase transition with order

parameter 1/λ and a kink in dE/dD̃ .

If the DM term is not strong enough to cause a rotating spin structure, a ferromagnetic sample

of sufficient size usually consists of several domains that posses different spin quantization axes.

In this case, we can use equation (22) with the boundary conditions

ϕ(x)
x↘−∞
−−−−→ π , ϕ(x)

x↗+∞
−−−−→ 0 (24)

in order to describe a wall between two oppositely magnetized domains. Thereby, the size of

the DM term cannot influence the domain-wall shape ϕ(x) but alters the wall energy E:

E =

+∞∫

−∞

dx
(
A ϕ̇2 +K sin2 ϕ

)
+

+∞∫

−∞

dxD ϕ̇ with

+∞∫

−∞

dxD ϕ̇ =

π±π∫

π

dϕ D = D (±π) . (25)

Minimizing the (A,K)-dependent term in equation (25) yields two degenerate solutions of oppo-

site rotational directions, i.e. with opposite sign of ϕ̇(x). The D-dependent term is independent
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Figure 14: Influence of the model parameters on the ground state of equation (22). The model

is characterized by one dimensionless parameter D̃ = D√
AK

. We use the reduced length x̃ =
√
K/A x . (a): Magnetization direction of the periodically rotating ground state. For D̃↘ 4

π ,

the period length diverges and two collinear domains with sin2 ϕ = 0 evolve. For D̃ < − 4
π , the

rotational direction is reversed (i.e. ϕ̇ changes sign). (b): Spatial period length λ with respect

to the model parameters.

of the actual shape of ϕ(x), but its sign depends on the rotational direction. It favors domain

walls with sign ϕ̇ = − signD. The functional
∫ +∞
−∞ dx

(
A ϕ̇2 +K sin2 ϕ

)
with the boundary

conditions (24) is minimized by the domain-wall shape ϕ(x) = arccos tanh(±
√
K/Ax) with the

energy 4
√
AK [44]. Thus, from equation (25) we obtain an optimal domain-wall energy of

E = 4
√
AK − π |D| . (26)

A negative domain-wall energy indicates, that the the system can gain energy by deviating from

the collinear state. Therefore, E = 0 in equation (26) corresponds to the condition (23).

4.3 Three-dimensional spin structures

Of course, the assumptions made in equation (22) do not hold for all systems. In the following

we still restrict our ansatz to the functional (20) and a crystal structure compatible with the

definitions (21), but we do not impose any conditions to the anisotropy constants K1, K2, KD.

As a consequence, the magnetization vector m is not necessarily confined to a single plane but

can rotate on a three-dimensional path in spin space. Although we still work with only one

spatial coordinate, our model already illustrates the variety of magnetic structures that can

arise from an interplay of spin stiffness and spin-orbit-coupling effects in anisotropic crystals.

Our model can be described with two dimensionless parameters D̃ and K̃. For K2 6= K1 we can

define

D̃ = D√
A |K2−K1|

, K̃ = KD−K1

|K2−K1| , x̃ =

√
|K2−K1|

A x , Ẽ =
√

1
A |K2−K1| E (27)

and consider the functional

Ẽ =

∫
dx̃
(
ϑ̇2 + sin2ϑ ( ϕ̇2 + D̃ ϕ̇ + sin2ϕ− K̃ )

)
(28)

with the x̃-dependent angles defined by m = ê1 sinϑ cosϕ + ê2 sinϑ sinϕ + êD cosϑ . In

the following, we present results that are obtained from a numerical analysis of the func-

tional (28) [45, 46].
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Figure 15: Noncollinear ground state of the functional (28). The left picture shows a planar

rotating state (ϑ = π/2) that occurs for large |D̃|, the right picture shows the state that occurs

for intermediate values of |D̃|. The latter performs a truly three-dimensional path in spin space

with ϑ 6= const . Note, that m tries to avoid the hard axis that is oriented vertically in this

figure.
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⊥
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Figure 16: Phase diagram of the ground state of the functional (28). The diagram shows

the collinear phase with m aligned perpendicular (Col ⊥ D) or parallel (Col ‖D) to D, the

noncollinear (rotating) phase where m is confined to a plane (NC ⊥ D) and the noncollinear

phase where m describes a truly three-dimensional path in spin spin space (3-dim). For D̃ < 0

equivalent noncollinear phases occur with reversed rotational direction. The solid line denotes

a first-order and the dashed lines denote continuous transitions. The two dashed lines approach

each other for increasing (−K̃). For K1 = K2 the intermediate region (3-dim) vanishes and there

is a sharp transition from the collinear state (Col ‖D) to the planar rotating state (NC⊥D).

Due to our choice of the reduced parameters (equation (27) ), this transition point cannot be

displayed in this figure.

For small |D̃|, the anisotropy term dominates the DM term and the ground state is collinear

(ϑ = 0 = const), for large |D̃| the system is dominated by the competition between the DM

interaction and the spin stiffness and the rotating magnetization is confined to the plane normal
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to the Dzyaloshinskii vector (ϑ = 1
2 π = const , left picture in figure 15). If D points parallel

to the easy axis (i.e. K̃ < 0 ), there is a continuous transition from the collinear to the planar

rotating ground state: When |D̃| exceeds a certain critical value, then the magnetization starts

to rotate around the D-vector (i.e. sign ϕ̇ = − sign D̃ = const ), and the average cone angle ϑ

increases with increasing |D̃| (right picture in figure 15). If D does not point parallel to the easy

axis, there is no continuous transition from the collinear to a rotating ground state possible: In

this case a rotation around the D-vector cannot be realized by an infinitesimal deviation from

the collinear state. In figure 15 we illustrate the rotation path m(x̃) of the ground state, in

figure 16 we show the resulting phase diagram.
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Figure 17: Phase diagram of the domain walls that are described by the functional (28). The

thin lines show the transitions of the unconstrained structures (cf. figure 16), the bold lines

indicate additional transitions of the domain-wall structures. For K̃ > 0 the D-vector points

parallel to the hard axis. This case is already discussed in section 4.2. The solid line starting at p

denotes the first-order transition that occurs when the preferable rotational direction reverses

( sign ϕ̇ = − sign D̃ ). The dashed line from p to b denotes a second-order transition between wall

structures with m(x̃) confined to one plane (DW⊥D) and wall structures with m(x̃) describing

a three-dimensional path in spin space. Note, that the latter can exist also in the case of collinear

aligned domain magnetization. The possible domain wall structures are further explained in the

caption of figure 18.

Next, we turn our attention to the domain walls that can be described with our ansatz. We

minimize the functional (28) under the boundary conditions

x̃� 1⇒
{

êeasy ·m(+x̃) > 0

êeasy ·m(−x̃) < 0
(29)

where êeasy denotes the unit vector that points parallel to the easy axis. This condition can be

applied for the the collinear domains as well as for the three-dimensional ground states that are

discussed above (cf. figure 15). A numerical investigation of the expressions (28) and (29) in

the (K̃, D̃) parameter-space shows a variety of domain wall structures that can be classified in

several distinct phases. The main results are summarized in the figures 17 and 18.
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Figure 18: Rotation paths

of m(x̃) in the walls between

collinear domains. In fig-

ures a-c the D-vector is per-

pendicular to the easy axis

(i.e. K̃ > 0), in figure d it is

parallel to the easy axis (i.e.

K̃ < 0). (a): For D̃ = 0 and

0 < K̃ < 1 there are two de-

generate rotation paths in the

plane normal to the hard axis.

(b): For small D̃ > 0 and

0 < K̃ < 1 the competition

between the anisotropy term

and the DM term results in

a three-dimensional rotation

path in spin space (in this

figure, the hard axis is ori-

ented vertically). There are

still two degenerate solutions.

(c): For larger D̃ or K̃ > 1

the magnetization is confined

to the plane normal to D. In

this case, there is only one so-

lution: the continuations of

both walls in figure b coin-

cide in the regime of m⊥D.

(d): For D parallel to the easy

axis, the domain walls reduce

their energy by a spatial ro-

tation around D.
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5 Dzyaloshinskii-Moriya interaction from first principles

5.1 DM-interaction within Multiple-Scattering Theory

Within multiple-scattering theory (MST) the DM constants Dij can be found in an elegant way,

as outlined in [47] and more recently in [48]. One employs the so-called “method of infinitesimal

rotations”, which provides the energy cost of an infinitesimal rotation of two spins, at sites i and

j, within second-order perturbation theory. An underlying assumption is that the associated

energy is related to the change of the single-particle energy levels only, i.e., one assumes again the

validity of the magnetic force theorem. The change in the single-particle levels is then calculated

in a straightforward way by utilizing Lloyd’s formula, in a way analogous to the derivation of the

Lichtenstein formula [10] for the Heisenberg exchange constants. Here, we follow the derivation

by Udvardi et al. [48]. It is implied that the spin-orbit coupling is already included in the

calculations of the electronic structure, scattering t-matrices, etc., before applying perturbation

theory for the infinitesimal rotations.

We distinguish between two models for the description of the solid, which we will then bring in

connection: (i) the density-functional model, including the charge and spin density ρ(r); m(r) at

each point as a degree of freedom, and giving rise to a free energy F [m; ρ]; and (ii) an extended,

classical Heisenberg-like model with a Hamiltonian H(Si), including spin-spin interactions up

to second order, and containing the directions of the magnetic moments at each atom, Si, as

degrees of freedom. It is assumed that, for the system properties in question, a mapping of the

free energy F of model (i) to the Hamiltonian H of model (ii) is meaningful. Such a mapping

leads obviously to a significant reduction of the degrees of freedom to the essential ones for the

problem at hand.

The spin-spin interaction can be described, up to second order, by the Hamiltonian

H =
∑

i

K(Si) +
∑

ij(i6=j)

SiJijSj (30)

Here, the first term describes the on-site anisotropy energy and the second term (where i 6= j)

includes the intersite exchange interactions and the Dzyaloshinskii-Moriya interaction. The

quantities Jij are 3 × 3 matrices (second rank tensors in real space). They can be decomposed

in symmetric and antisymmetric parts as:

Jij = Jij1 + JS
ij + JA

ij (31)

with Jij being the usual exchange interaction

Jij =
1

3
TrJij, (32)

JS
ij the (traceless) symmetric part

JS
ij =

1

2

(
Jij + Jt

ij

)
− Jij1, (33)

and JA
ij the antisymmetric part:

JA
ij =

1

2

(
Jij − Jt

ij

)
. (34)
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The latter can be brought in connection with the Dzyaloshinskii-Moriya interaction constants

Dij = (Dx
ij , D

y
ij , D

z
ij) by writing

JA
ij =




0 1
2(Jxy

ij − J
yx
ij ) 1

2(Jxz
ij − Jzx

ij )

−1
2(Jxy

ij − J
yx
ij ) 0 1

2 (Jyz
ij − J

zy
ij )

−1
2(Jxz

ij − Jzx
ij ) −1

2(Jyz
ij − J

zy
ij ) 0


 =




0 Dz
ij −Dy

ij

−Dz
ij 0 Dx

ij

Dy
ij −Dx

ij 0


 (35)

The spin-spin interaction is then written in terms of the Dzyaloshinskii-Moriya vectors as

SiJijSj = JijSiSj + SiJ
S
ijSj + Dij(Si × Sj) (36)

It is now necessary to express the interaction constants J xy
ij etc. in terms of H; then the sub-

stitution F ↔ H will make the connection to the density-functional model. We restrict the

discussion to the off-diagonal elements, as these enter expression (35) for the Dzyaloshinskii-

Moriya interaction. Evidently,

Jxy
ij =

∂2H

∂xi∂yj
, (37)

and similar expressions hold for the other components. These can be rewritten in terms of

spherical coordinates (θi, φi) (defining the direction of magnetization Si). To obtain, for example,

the expression of J zy
ij in terms of H, it is convenient to choose a reference system in which the

magnetization of the ferromagnetic state is along the x-axis, as sketched in fig. 19. In this

reference system we get from eq. (30):

Jzy
ij = −

(
∂2H

∂θi∂φj

)

θi,j=
π
2

φi,j=0

, Jyz
ij = −

(
∂2H

∂φi∂θj

)

θi,j=
π
2

φi,j=0

, (38)

By choosing the magnetization along the y-axis, J xz
ij and Jzx

ij can be obtained as:

Jzx
ij = −

(
∂2H

∂θi∂φj

)

θi,j=
π
2

φi,j=
π
2

, Jxz
ij =

(
− ∂2H

∂φi∂θj

)

θi,j=
π
2

φi,j=
π
2

, (39)

while the Jxy
ij and Jyx

ij are found by placing the magnetization along the z-axis and taking

infinitesimal rotations in the x and y directions (thus we set θ = 0 and φ = 0, π
2 ):

Jxy
ij =

(
∂2H

∂θi∂θj

)
θi,j=0
φi=0
φj=

π
2

, Jyx
ij =

(
∂2H

∂θi∂θj

)
θi,j=0
φi=

π
2

φj=0

. (40)

We now turn to the expressions of the change of free energy with respect to infinitesimal rotations

of the magnetic moments within DFT, as derived by multiple-scattering theory. Again we follow

the derivation by Udvardi et al. [48]. The contribution of the single-particle levels to the free

energy at zero temperature is given in terms of the density of states n(E), or the integrated

density of states N(E) =
∫ E

n(E′)dE′, as an integral up to the Fermi level EF :

F =

∫ EF

(E −EF )n(E)dE = −
∫ EF

N(E)dE. (41)

By virtue of the magnetic force theorem, changes in the magnetization direction affect, to lowest

order, only this single-particle part of the free energy. Therefore, the change in total energy can

be directly associated with the changes in the integrated density of states.
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Figure 19: Setup for the calculation of the Dzyaloshinskii-Moriya interaction constants Dij.

The magnetic moments of atoms i and j are tilted in different directions. Here, Si is tilted

in the z direction and Sj in the y-direction (i.e., δSi = −δθ ẑ and δSj = δφ ŷ) yielding J zy
ij =

∂2H/∂zi∂yj = −∂2H/∂θi∂φj .

Within the Korringa-Kohn-Rostoker Green function method, one considers the atomic potentials

as scattering centers at points Ri, each characterized by a scattering t-matrix ti(E). A central

quantity is the scattering path operator τ(E), which is connected to the site-dependent scattering

t-matrix ti(E) and to the free-space structure constants gij(E) via the matrix relation

τ(E) = [t−1(E) − g(E)]−1 = t + t g t + t g t g t + · · · ; (42)

i.e., the matrix τ(E) describes the coherent scattering from all centers i. Here, t(E) is to

be understood as a site-diagonal matrix with element (t)ij = ti(E)δij (ti(E) is also a matrix

with angular-momentum and spin indexes). The free-space structure constants (describing the

electron propagation in the absence of scattering) relate a free spherical wave (a Hankel function),

outgoing from a center j , to incoming free spherical waves (Bessel functions) at a center i [49].

The change of the integrated density of states (with respect to free space) due to the scattering

centers can be connected to the scattering path operator τ(E) via Lloyd’s formula:

∆N(E) =
1

π
ImTr ln τ(E) (43)

(Expressions (42) and (43) hold also when relating a perturbed system to any reference system

(not just free space), with ti(E) describing the scattering with respect to the reference system

and g(E) being the reference system structural Green function.)

Utilizing expressions (41), (42) and (43) we can express the change of free energy under an

infinitesimal change in the direction of the magnetic moments at sites i and j, which in turn is

expressed via a corresponding change in the t-matrices ti(E) and tj(E). We proceed as follows.

Firstly we express the rotated inverse t-matrix of atom i in terms of rotation matrices R(δθi, δφi),

corresponding to an infinitesimal change in the moment direction described by angles δθi and

δφi:

t′−1
i = R(δθi, δφi) t

−1
i R†(δθi, δφi). (44)

In the absence of spin-orbit coupling, the rotation matrices act only in spin space and are

of the form R(δθi, δφi) = exp[−(i/~)αin̂(δθi, δφi) · σ/2] where αi is the angle and n̂ is the
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unit vector expressing the real-space rotation (δθi, δφi), and σ is the Pauli matrix vector; then

the equations are simplified, yielding the result of Lichtenstein for the exchange constants J ij

[10]. Here, however, spin-orbit coupling is present, so that the rotation affects also the angular

momentum part of the t-matrix; thus, R(δθi, δφi) = exp[−(i/~)αin̂(δθi, δφi) · (L + σ/2)], where

L is the angular momentum operator.

For the calculation of the exchange and DM-interactions we are interested in the change of

the free energy up to second order in δθi and δφi. Thus, the partial derivatives of the inverse

t-matrix are needed. These can be expressed via the derivatives of the rotation matrices (see

eq.(44)), as [48]:

t−1
i θ ≡ ∂t−1

∂θi
=
∂R

∂θi
t−1
i R† + R t−1

i

∂R†

∂θi
(45)

t−1
i φ ≡ ∂t−1

∂φi
=
∂R

∂φi
t−1
i R† + R t−1

i

∂R†

∂φi
(46)

Let us denote the change of t−1 due to the rotation of t−1
i by δt−1

i (this matrix has non-zero

elements only at the (i, i) block). An infinitesimal rotation at sites i and j brings a change in

the scattering path operator,

τ ′ = [t−1 + δt−1
i + δt−1

j − g]−1 = τ [1 + (δt−1
i + δt−1

j ) τ ]−1. (47)

We are interested in the change of the integrated density of states caused by these rotations.

Having in mind Lloyd’s formula (43), we expand the logarithm of τ ′ up to second order:

δ ln τ = ln τ ′ − ln τ = 1 + (δt−1
i + δt−1

j )− 1

2
(δt−1

i + δt−1
j ) τ (δt−1

i + δt−1
j ) τ + · · · (48)

From equations (37-40) it is evident that we seek the quantity ∂2 ln τ/∂θi∂φj etc. Then only

the cross terms of the last part of eq. (48) survive, i.e., 1
2(δt−1

i τ δt−1
j τ + δt−1

j τ δt−1
i τ). Using

the cyclic property of the trace, we obtain

∂2

∂θi∂φj
Tr ln τ =

∂2

∂θi∂φj
Tr (t−1

i τ t−1
j τ) = TrL t

−1
i θ τij t

−1
j φ τji, (49)

where in the last part the trace is only over angular momentum indexes (we have used the fact

that δt−1
i has nonzero elements only in the (i, i)-block). Similar are the expressions for the other

partial second derivatives with respect to angles at both i and j. Combining this with Lloyd’s

formula (43) and with the free energy expression (42), we arrive at the following equations:

∂2F

∂φi∂φj
= − 1

π
Im

∫ EF

dE TrL[t−1
i φ (E) τij(E) t−1

j φ(E) τji(E)] (50)

∂2F

∂θi∂φj
= − 1

π
Im

∫ EF

dE TrL[t−1
i θ (E) τij(E) t−1

j φ(E) τji(E)] (51)

∂2F

∂θi∂θj
= − 1

π
Im

∫ EF

dE TrL[t−1
i θ (E) τij(E) t−1

j θ (E) τji(E)] (52)

The final step is the connection of the two models (the Hamiltonian (30) and density-functional

theory) by making the substitution F → H in eqs. (50-52). Thus we arrive at expressions
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describing the Dzyaloshinskii-Moriya interaction constants, using also equations (35) and (38-

40). We obtain:

Dx
ij = − 1

2π
Im

∫ EF

dE TrL

[
t−1
i φ (E) τij(E) t−1

j θ (E) τji(E)− t−1
i θ (E) τij(E) t−1

j φ(E) τji(E)
]
θi,j=

π
2

φi,j=0

(53)

Dy
ij = − 1

2π
Im

∫ EF

dE TrL

[
−t−1

i φ (E) τij(E) t−1
j θ (E) τji(E) + t−1

i θ (E) τij(E) t−1
j φ(E) τji(E)

]
θi,j=

π
2

φi,j=
π
2

(54)

Dz
ij = − 1

2π
Im

∫ EF

dE TrL





[
t−1
i θ (E) τij(E) t−1

j θ (E) τji(E)
]
θi,j=0
φi=0
φj=

π
2

−
[
t−1
i θ (E) τij(E) t−1

j θ (E) τji(E)
]
θi,j=0
φi=

π
2

φj=0





(55)

5.2 Calculating the DM interaction with periodic spin spirals

An alternative way to obtain model parameters like the elements of the above discussed matrix J ij

from first principles is to fit the energy expression obtained from the model ansatz to the

total energies obtained from electronic structure calculations for different magnetic states. We

follow this strategy in order to obtain the micromagnetic parameters that are discussed in

section 4. If we know the orientation of the Dzyaloshinskii vector from symmetry considerations,

we can constrain the magnetization to the plane normal to D and work with equation (22).

For homogeneous spin spirals (i.e. spirals with ϕ̇(x) = q = const or a constant canting angle

arccos(Si·Si+1) between the magnetizations of two adjacent lattice sites) the magnetic structure

has a period of λhs = 2π/q and the energy density E/λhs of the micromagnetic model gets

q

2π
E(q) =

q

2π

2 π
q∫

0

dx
(
Aq2 +D q +K sin2(q x)

)
= Aq2 +D q + 1

2 K . (56)

Thus, we can obtain our model parameters A and D from a quadratic and a linear fit to

the dispersion curve q E(q) , with latter obtained from first-principles calculations. In order

to determine the anisotropy constant K, we can perform independent calculations of collinear

configurations with ϕ = 0 and ϕ = π .

Since the micromagnetic model is valid in the limit of slow spatial rotations, relation (56) holds

only for homogeneous spin spirals with large period lengths. This presents a formidable problem,

since the size of the unit cell that one can treat is limited by the computing facilities. We employ

a perturbative scheme in order to deal with these large magnetic superstructures: In contrast

to the method described in the previous section, we calculate the rotations selfconsistently

but treat the spin-orbit coupling as a perturbation. Thereby, we make use of the local force
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theorem [10, 50]. If we neglect spin-orbit coupling, the orientation of the magnetic moments

with respect to the crystal lattice is irrelevant and we can calculate the electronic structure

of a homogeneous spin spiral within the chemical unit cell by applying a generalized Bloch

theorem [51, 52]. The resulting eigenstates of the unperturbed Hamiltonian H0 have the form

ψk,ν(r) =

(
ψ(↑)

k,ν(r)

ψ(↓)

k,ν(r)

)
= exp(ik·r)

(
exp(−i 1

2 q·r) u(↑)

k,ν(r)

exp(+i 1
2 q·r) u(↓)

k,ν(r)

)
(57)

with the q-vector of length |q| pointing along the propagation direction of the spiral and the

functions u(↑)

k,ν(r), u(↓)

k,ν(r) possessing the period of the chemical lattice. Of course, k denotes

a k-vector of the reciprocal chemical lattice. In a next step, we apply the spin-orbit coupling

operator Hso in second variation, i.e. we expand the eigenfunctions of H0 +Hso in eigenfunctions

of H0 and construct the Hamiltonian matrix with the matrix elements 〈ψk′,ν′ |H0 +Hso|ψk,ν〉 .
Since we can neglect all states of high energy, this procedure reduces the size of the Hamiltonian

matrix drastically. The spin-orbit coupling is well described by

Hso =
∑

α

1

rα

dVα(rα)

drα
σ ·L̂α =

(
H(↑,↑)

so H(↑,↓)
so

H(↓,↑)
so H(↓,↓)

so

)
(58)

where the index α denotes the atoms. Since only the spin-independent part of the potential

enters Hso, its real-space representation possesses the period of the chemical lattice. This allows

us to write the matrix elements in the form

〈ψ(↑)

k′,ν′ |H(↑,↑)
so |ψ(↑)

k,ν〉 =
∫
dr ei (k−k′)·r u(↑,↑)(r) ,

〈ψ(↑)

k′,ν′ |H(↑,↓)
so |ψ(↓)

k,ν〉 =
∫
dr ei (k−k′+q)·r u(↑,↓)(r) ,

〈ψ(↓)

k′,ν′ |H(↓,↑)
so |ψ(↑)

k,ν〉 =
∫
dr ei (k−k′−q)·r u(↓,↑)(r) ,

〈ψ(↓)

k′,ν′ |H(↓,↓)
so |ψ(↓)

k,ν〉 =
∫
dr ei (k−k′)·r u(↓,↓)(r)

(59)

H{k} =
(
δk,k′δν,ν′ εk,ν +

〈ψk,ν′ |Hso|ψk,ν〉
)
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Figure 20: Block of the Hamiltonian matrix for spin-spiral basis functions.
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Figure 21: (from [56]) Magnetic domain structure imaged with spin polarized STM. The bright

and dark areas correspond to domains with magnetization aligned parallel or antiparallel to

the magnetization of the STM tip. The vertical stripes originate from step edges and other

geometrical irregularities. The domain walls are oriented normal to the [001]-direction.

with lattice-periodic functions u(↑,↑), u(↑,↓), u(↓,↑), u(↓,↓). Obviously, these matrix elements are non-

zero if and only if the exponents are zero. If we choose a q-vector that is commensurate with

the reciprocal lattice (i.e. a spiral that is commensurate within a certain supercell) and a k-grid

that is commensurate to the q-vector, then we obtain a block-diagonal and sparse Hamiltonian

matrix. Each block contains the matrix elements from all k-vectors that are connected by q (cf.

figure 20). Note, that q is a reciprocal lattice vector of the large magnetic unit cell in which the

spin spiral is commensurate.

For large systems, the Hamiltonian matrix that is shown in figure 20 is too large for straightfor-

ward diagonalization. But since we are applying the local force theorem, we only need to know

the sum of occupied eigenvalues. This allows to use a perturbative technique that requires exact

diagonalization only in a subspace close to the Fermi energy and exploits the sparseness [45].

6 An example: Domain walls in Fe/W(110)

In this section, we illustrate the relevance of the DM interaction by discussing an exemplary

system, namely an ultrathin Fe film consisting of two atomic layers grown on the W(110)-surface.

We choose this system, since its magnetic structure is elaborately studied by spin-polarized STM,

cf. e.g. [53, 54, 55]. A typical STM image is shown in figure 21.

The system shows ferromagnetic domains with the magnetization pointing out-of-plane along

the easy axis. The spatial orientation of the corresponding domain walls is determined by the

K001 K11̄0
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Table 1: Planar rotation

paths and corresponding

model parameters. In the

domains, the magnetization

points out-of-plane.
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Figure 22: Energies of homogeneous spin spirals obtained from electronic-structure calculations.

|λhs| denotes the spirals period length and the sign of λhs depends on the rotational direction.

The left panel shows the energies obtained by neglecting spin-orbit coupling, quadratic fits to

these curves yield the values for A. The right panel shows the effect of the spin-orbit coupling,

here we plotted the energy differences between the results obtained by including and neglecting

spin-orbit coupling. The spin-rotation axis is chosen in-plane and orthogonal to the propagation

direction. The slopes of the curves at λ−1
hs =0 correspond to D. The fits are indicated with solid

lines.

crystal lattice and hardly influenced by the mesoscopic shape of the sample: The walls are

preferably oriented normal to the [001]-direction (i.e. the magnetization changes along [001]

and remains constant along [11̄0] ). In the following, we want to investigate this effect on the

basis of the previously introduced micromagnetic models. If the DM term is irrelevant, the

magnetization in the domain walls tries to avoid the hard axis and the magnetization rotation

axis does not depend on the propagation direction. In this case, the energies
√
AK of walls

that are oriented in different crystallographic directions differ due to the spin stiffness, the value

of A depends on the propagation direction. However, the values obtained for A by electronic-

structure calculations do not change much for different propagation direction (cf. figure 22 left

panel). A further indication of the relevance of the DM interaction in the studied system is

the fact, that all domain walls that are observed within one sample show the same rotational

direction [57], this cannot be explained on the basis of symmetric exchange interactions. In the

following we take the DM term into account, but we restrict our investigations to planar domain

walls that can be described with the equations (22) and (26). If the propagation direction and

the spin-rotation axis are both oriented along a high-symmetry line, we have to consider eight

different walls that depend on six parameters. The walls are listed in table 1 and their energies

are given by equation (26).

We estimate values for the model parameters by electronic-structure calculations. These calcu-

lations are performed with the FLAPW method implemented in the FLEUR code [12]. A and

D are obtained by using a generalized Bloch theorem [51, 52] and the approach introduced in

section 5.2. The results of these calculations are shown in figure 22. The anisotropy constant K

consists of two main contributions, a term due to the anisotropic electronic energy and a term
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due to the magnetostatic interactions. The first term can be estimated directly from the elec-

tronic energies of collinear configurations with different spin quantization axes, the second term

can be estimated from the magnetic (dipole) moments Mj by applying the well-known formula

E(dip) =
µ2

B

2

∑

j 6=0

(Mj ·M0)(Rj −R0)2 − 3
(
(Rj −R0) ·Mj

)(
(Rj −R0) ·M0

)

|Rj −R0|5
. (60)

This sum converges fast, since we are considering a two-dimensional ultrathin magnetic film

and not a magnetic bulk system. The results our calculations are summarized in table 2 (for

computational details cf. [45]). The values given for the spin-stiffness constants A are fairly

accurate, since they are obtained from an unambiguous fitting procedure on a curve on a large

energy scale (cf. figure 22). The values given for D are less accurate, but they tell us the order

of magnitude of the Dzyaloshinskii vector. The accuracy of the anisotropy constants K is not

satisfactory, these calculations reach the limit of our computational method and we cannot rule

out an error of a few meV nm−1 (note that 1 meV nm−2 =̂ 0.035 meV per Fe atom ).

001 11̄0

spin stiffness A / ( meV ) 56.4 44.8

DM interaction D / ( meV nm−1 ) −10.4 7.3

anisotropy energy K / ( meV nm−2 ) 1.1 2.3

Table 2: Theoretically predicted model parameters converted into areal densities. The crystal-

lographic directions refer to the indices used in table 1.

Inserting the values given in table 2 in equation (26) yields the wall energies

4
√
A001K001 − π |D001| = −1.2 meV nm−1 ,

4
√
A001 K11̄0 = 45.6 meV nm−1 ,

4
√
A11̄0K001 = 28.1 meV nm−1 ,

4
√
A11̄0K11̄0 − π |D11̄0| = 17.7 meV nm−1 .

(61)

A negative wall energy indicates that a rotating spin structure is energetically more favorable

than a collinear state. From the results (61) we would predict a spiral propagating along the

[001]-direction, thus we would not only explain the experimentally observed domain-wall ori-

entation but also the formation of the regular domain pattern. However, due to the large

uncertainties in the values and the restriction to planar spin structures, the good agreement

with the experiment may be supported by an accidental cancellation of errors. Nevertheless,

the calculations clearly show two points: The observed wall orientation cannot be explained

by the spin stiffness alone, and the DM interaction is strong enough to compete with the other

quantities. Keeping in mind that all domain walls show the same rotational direction, the DM in-

teraction presents the most plausible explanation for the observed mesoscale magnetic structure.

The studied system nicely illustrates the relevance of the Dzyaloshinskii-Moriya interactions for

magnetic surfaces.
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