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Abstract

Correlated Electron-Ion Dynamics (CEID) is an extension of molecular dynamics that

allows us to introduce in a correct manner the exchange of energy between electrons and

ions. The formalism is based on a systematic approximation (Small Amplitude Moment Ex-

pansion - SAME). This formalism is introduced, including modifications to account for open

boundaries, its structure analysed, and some results given (the heating of an ion by current

carrying electrons, and inelastic I-V spectroscopy). The computer code that implements the

closed system version of the formalism (Dinamo) is described. We close with some thoughts

about the future prospects of this approach.
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1 Introduction

Molecular dynamics is a well-established computational method for studying the dynam-

ical properties of materials[1]. The central idea is to allow a collection of atoms to move

under the influence of forces according to Newton’s second law of motion (R̈ν = Fν/Mν),

where Rν(t) is an atomic coordinate at time t, Fν is the force on the coordinate and Mν is

an atomic mass. Different materials are accommodated through the choice of the expres-

sion for the force (which ranges from simple force fields[2] to high-level electronic structure

calculations[3]) and the mass of the atoms. The immense utility of this approach stems

from two things: its great generality and its obvious connection to the material world. The

generality of force expression allows a huge array of materials to be considered (common

examples include biological molecules[4] and metals subjected to high energy radiation[5]),

while the generality of the dynamical equations allows a wide range of conditions to be

considered (notably both equilibrium and non-equilibrium systems) through the choice of

initial and boundary conditions[1, 6]. This is a remarkable achievement for one modelling

technique.

Underlying conventional molecular dynamics is a pair of well-defined assumptions: the

atoms can be treated as classical (that is, not-quantum) particles that follow precise

trajectories; there exists a well-defined set of forces which are a function of atomic position

(and possibly velocity). The latter assumption can be interpreted to mean that the

electrons remain on one Born-Oppenheimer surface (in the absence of velocity dependent

forces). This will be true provided the energy separation between the surfaces is greater

than ~ω, where ω is a characteristic atomic vibrational frequency. This clearly eliminates

all metals. But even then the effects are small because the atomic forces from each of the

Born-Oppenheimer surfaces sampled are rather similar to one another. The lowest order

corrections can the approximately included by means of a velocity dependent force that

introduces the loss of energy of fast atoms to the electrons[7], but this is negligible except

for highly energetic atoms.

The above represents a state of affairs that applies to many materials problems. However,

there are particular problems in which transitions between Born-Oppenheimer surfaces

control the phenomena being investigated. Two problems of this type with which we are

familiar are: irreversible exchange of energy between ions and current carrying electrons

(leading to Joule heating and inelastic I-V spectroscopy); non-radiative relaxation of

excited electrons (or polarons or electron-hole pairs) in polymers. Conventional molecular

dynamics cannot handle these problems, so we need to introduce some modifications to

accommodate them.

An approach used by a number of researchers when faced with these phenomena is the

Ehrenfest approximation[8]. At the back of this is an exact set of results, namely the

Ehrenfest equations[9] which are ˙̄Rν = P̄ν/Mν and ˙̄P ν = F̄ν where Pν is a component

of momentum. While these look like the ordinary equations of Newtonian mechanics,

they of course involve quantum expectation values (R̄ν = 〈Ψ|R̂|Ψ〉, P̄ν = 〈Ψ|P̂ |Ψ〉, F̄ν =
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〈Ψ| − ∂Ĥ(R̂)/∂R̂ν |Ψ〉 where Ĥ(R̂) and |Ψ〉 are the Hamiltonian and wavefunction for

the whole system (electrons and ions)). The Ehrenfest approximation then makes an

anzatz for F̄ν namely F̄ν = 〈Φ| − ∂Ĥe(R̄)/∂R̄ν |Φ〉. Thus the full Hamiltonian Ĥ(R̂)

which depends on the ionic position operator R̂ is replaced by the mean field Hamiltonian

Ĥ(R̄) = T̂I + Ĥe(R̄) (T̂I is the ionic kinetic energy operator) produced by substituting

the ionic position operator by its expectation value, and the full wavefunction |Ψ〉 is

replaced by the electronic wavefunction |Φ〉 which obeys Ĥe(R̄)|Φ〉 = i~∂|Φ〉/∂t. This

approximation describes some phenomena correctly (such as the excitation of electrons

by fast ions), but others incorrectly (such as the heating of ions by current carrying

electrons[10]).

The Ehrenfest approximation is attractive because it retains the good features of molecular

dynamics (generality of systems and properties), while adding the new feature of being

able to model some non-adiabatic processes. But it clearly needs further extensions to

reproduce many other non-adiabatic processes, notably the excitation of ionic motion by

energetic electrons.

In the next section we describe the basic mathematical structure of our method which al-

lows us to model more general non-adiabatic processes[11], discuss a way of thinking about

quantum mechanics that is particularly well suited to this problem, and then explain the

behaviour of our method from this perspective. In the subsequent section this molecular

dynamics approach is compared with established perturbative calculations[12, 13, 14]. We

then look at an extension of the method to accomodate open boundaries[8], and describe

the program used to implement the algorithm (Dinamo). Finally we report results ob-

tained with our method, and then conclude with some thoughts about the future of this

approach.

2 Moment expansion approach to CEID

2.1 Small Amplitude Moment Expansion (SAME)

2.1.1 Main equations

As we have described above, the Ehrenfest approximation is achieved by replacing the

ionic position operator R̂ν by its expectation value R̄ν. We now introduce fluctuations

about this mean value through the quantity ∆R̂ν = R̂ν − R̄ν[11]. Instead of using wave-

functions it is much easier to work with the density matrix of the system ρ̂, in terms of

which we can immediately define an electronic density matrix ρ̂e = TrI {ρ̂} where TrI {?}

means the trace over ionic coordinates. In a real space representation this would be

ρ̂e =
∫

d~R〈~R|ρ̂|~R〉. The equation of motion is the quantum Liouville equation

i~
∂ρ̂

∂t
=
[

Ĥ, ρ̂
]

(1)
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where the square brackets signify a commutator:
[

Ĥ, ρ̂
]

= Ĥρ̂ − ρ̂Ĥ. This equation of

motion is the foundation of our approach. If we write the Hamiltonian as Ĥ = T̂I +Ĥe(R̂),

then the Ehrenfest approximation can be written as

˙̄Rν =
P̄ν

Mν

, ˙̄P ν = F̄ν

F̄ν = Tre

{

ρ̂e

(

−
∂Ĥe(R̄)

∂R̄ν

)}

, i~
∂ρ̂e

∂t
=
[

Ĥe(R̄), ρ̂e

]

(2)

where Tre {?} means a trace over electronic degrees of freedom. Note that if we define

the Ehrenfest energy by EEhrenfest =
∑

ν P̄
2
ν /2Mν + Tre

{

ρ̂eĤe(R̄)
}

the above equations

of motion have the great virtue of conserving this energy.

Keeping the above in mind, we now derive a more general set of equations for which

the Ehrenfest method is the lowest order approximation. The key physical idea is that

atoms are well defined by classical trajectories (R̄ν) but that these are slightly broadened

(characterised by ∆R2
ν) because of the quantum nature of the ions. Thus we have:

i~
∂ρ̂e

∂t
= TrI

{[

T̂I + Ĥe(R̂), ρ̂
]}

= TrI

{[

Ĥe(R̄) +
∑

ν

∆R̂ν
∂Ĥe(R̄)

∂R̄ν

+ · · · , ρ̂

]}

=
[

Ĥe(R̄), ρ̂e

]

−
∑

ν

[

F̂ν, µ̂1,ν

]

+ . . .

where we have introduced the force operator F̂ν = −∂Ĥe(R̄)/∂R̄ν , and the first moment

µ̂1,ν = TrI

{

∆R̂ν ρ̂
}

. In general the moments measure the ionic distribution[15, 16, 17]

as a function of electronic state. We will provide a more intuitive explanation for this

later on. Note that we will only keep terms in expansions that produce the effects we are

interested in.

To evaluate the equation of motion for ρ̂e, we need to find µ̂1,ν . We do this by using its

equation motion:

∂µ̂1,ν

∂t
=

1

i~
TrI

{

∆R̂ν

[

T̂I + Ĥe(R̂), ρ̂
]}

− ˙̄Rν ρ̂e

=
1

i~
TrI

{

∆R̂ν

[

T̂I + Ĥe(R̄) +
∑

ν′

∆R̂ν′

∂Ĥe(R̄)

∂R̄ν′

+ · · · , ρ̂

]}

− ˙̄Rν ρ̂e

=
λ̂1,ν

Mν
+

1

i~

[

Ĥe(R̄), µ̂1,ν

]

−
∑

ν′

1

i~

[

F̂ν′ , µ̂2,νν′

]

+ . . .

We have introduced two further moments: λ̂1,ν = TrI

{

∆P̂ν ρ̂
}

and µ̂2,νν′ = TrI

{

∆R̂ν∆R̂ν′ ρ̂
}

,

where ∆P̂ν = P̂ν−P̄ν . We only need to keep electron-ion correlations in the first moments,

but we need the width of the ions to appear somewhere, so we write

µ̂2,νν′ ≈ CRR
νν′ ρ̂e
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where CRR
νν′ = Tr

{

∆R̂ν∆R̂ν′ ρ̂
}

. The equation of motion for λ̂1,ν is

∂λ̂1,ν

∂t
=

1

i~

[

Ĥe(R̄), λ̂1,ν

]

−
∑

ν′

1

i~

[

F̂ν′ , χ̂2,νν′

]

+

1

2

(

∆F̂ν ρ̂e + ρ̂e∆F̂ν

)

−
1

2

∑

ν′

(

K̂2,νν′ µ̂1,ν′ + µ̂1,ν′K̂2,νν′

)

+ . . .

where χ̂2,νν′ = 1
2
TrI

{(

∆P̂ν∆R̂ν′ + ∆R̂ν′∆P̂ν

)

ρ̂
}

≈ CPR
νν′ ρ̂e, and we have defined CPR

νν′ =

1
2
Tr
{(

∆P̂ν∆R̂ν′ + ∆R̂ν′∆P̂ν

)

ρ̂
}

, K̂2,νν′ = ∂2Ĥe(R̄)/∂R̄ν∂R̄ν′ (a sort of spring constant),

∆F̂ν = F̂ν − F̄ν, and F̄ν = Tre

{

ρ̂eF̂ν

}

−
∑

ν′ Tre

{

µ̂ν′K̂ν′ν

}

. To obtain closure we need

equations of motion for CRR
νν′ and CPR

νν′ . This involves introducing CPP
νν′ = Tr

{

∆P̂ν∆P̂ν′ ρ̂
}

,

and hence we have

∂CRR
νν′

∂t
=

CPR
νν′

Mν
+
CPR

ν′ν

Mν′

∂CPR
νν′

∂t
=

CPP
νν′

Mν′

+ Tre

{

F̂νµ̂1,ν′

}

−
∑

ν′′

K̄2,νν′′CRR
ν′′ν′

∂CPP
νν′

∂t
= Tre

{

F̂νλ̂1,ν′ + λ̂1,νF̂ν′

}

−
∑

ν′′

(

CPR
νν′′K̄2,ν′′ν′ + K̄2,ν′′νC

PR
ν′ν′′

)

where K̄2,νν′ = Tre

{

K̂2,νν′ ρ̂e

}

. We now have a closed set of equations. However, these

involve many-electron density matrices which are computationally intractable. Thus we

have to reduce the many-electron density matrices to single-electron matrices by trac-

ing out all but one electron[11]. To produce closure we have to make a Hartree-Fock

approximation for two-electron density matrices. But note that since the single parti-

cle density matrix is not in general idempotent we need to augment the usual result

ρ̂
(2)
e (12, 1′2′) = ρ̂

(1)
e (1, 1′)ρ̂

(1)
e (2, 2′) − ρ̂

(1)
e (1, 2′)ρ̂

(1)
e (2, 1′)[18]. The formal procedure (taken

only to first moment) is explained elsewhere[11], and the new result will be given in an

upcoming paper. From now on, the equations will be for single-electron matrices.

2.1.2 A model of quantum mechanics

Having written down a set of opaque equations we need some way to understand them

intuitively. This first requires us to have some way of thinking about quantum mechanical

density matrices. In this context they are most naturally thought of as distribution

functions corresponding to collections of trajectories (or Feynman paths: they do not

need to correspond to solutions of an equation of motion). Thus the quantum width of an

atom refers to the range of allowed trajectories available to it. Immediately we see that

the average kinetic energy of an atom is not determined by the average momentum, but

also by the spread of momentum

T̄I =
∑

ν

P 2
ν

2Mν

=
∑

ν

1

2Mν

(

P̄ 2
ν + ∆P 2

ν

)
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Thus atomic heating (increase in kinetic energy) has two components: the “classical”

component from the average momentum, and the “quantum” component from the spread

in momentum.

The force from the atoms felt by the electrons depends on the positions of the atoms,

and hence their trajectories. Thus a spread of atomic trajectories will produce a spread

of forces on the electrons, and hence the spread of electronic trajectories. Likewise, a

spread of electronic trajectories will produce a spread of forces on the atoms, and hence

of atomic trajectories. We are now in a position to understand the SAME equations.

2.1.3 An interpretation of SAME

We begin with the simplest case, the Ehrenfest approximation. The atoms are clearly

represented by just one trajectory (R̄ν(t)), and so the quantum width is zero. This is

reflected in the dynamics of the electrons which experience only Ĥe(R̄). Because there

is no dispersion of atomic trajectories there is similarly no dispersion of the electronic

trajectories.

This latter point can be seen most clearly by assuming that the electrons can be repre-

sented by a single Slater determinant. In this case the equation of motion for the electrons

(in terms of the single particle density matrix) becomes

i~
∂ρ̂

(1)
e

∂t
=
[

Ĥ(HF )
e , ρ̂(1)

e

]

where Ĥ
(HF )
e is the Fock matrix. If Ĥ

(HF )
e |ψ

(1)
n (t)〉 = i~ ∂

∂t
|ψ

(1)
n (t)〉 where |ψ

(1)
n (t)〉 is a

single-particle state, and ρ̂
(1)
e =

∑

n |ψ
(1)
n (t)〉fn〈ψ

(1)
n (t)|, then we find that ∂fn/∂t = 0.

Thus the eigenspectrum of the density matrix remains unchanged, and if the electronic

system starts as a single Slater determinant, it remains so for evermore. This is what we

mean by a single electron trajectory. Thus the Ehrenfest approximation corresponds to

representing the electrons and ions individually as single trajectories that interact with

one another.

Another way of phrasing this is that the Ehrenfest approximation is a mean field approx-

imation in which all fluctuations have been suppressed. It is this feature that prevents it

from properly describing the flow of energy from electrons to the ions[10]: the ions see the

electrons as a cold gas regardless of the state of excitation (defined by the occupancies

fn), and so heat flows predominantly from ions to electrons. There can be a small flow the

other way if the mean electron density becomes sufficiently rough, but this still provides

quantitatively wrong results[8].

Thus we see that the correct energy transfer requires the electron gas to have its fluctua-

tions restored, which by our earlier arguments means that the ions must also be allowed

to fluctuate about their mean trajectory. Quantitative results can be obtained at the level

of the first moment (see later in this article for results). The explanation is as follows.
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Consider first the equation motion for the electrons

i~
∂ρ̂

(1)
e

∂t
=
[

Ĥ(HF )
e , ρ̂(1)

e

]

−
∑

ν

TrI

{[

∆R̂νF̂
(1)
ν , ρ̂(1)

]}

where we have unpacked µ̂
(1)
1,ν . The first term is just the Ehrenfest term, so we focus

on the second one. The quantity ∆R̂νF̂
(1)
ν gives the linear variation of the force felt by

the electrons due to the ions with displacement of the ionic trajectory from the mean

trajectory. Thus, dispersion in the ionic trajectory will now produce dispersion in the

electronic trajectories.

To see explicitly what is meant by dispersion of electron trajectories let us write i~Γ̂(1) =

−
∑

ν

[

F̂
(1)
ν , µ̂

(1)
1,ν

]

so that

i~
∂ρ̂

(1)
e

∂t
=
[

Ĥ(HF )
e , ρ̂(1)

e

]

+ i~Γ̂(1) (3)

As above, we now write ρ̂
(1)
e =

∑

n |ψ
(1)
n (t)〉fn〈ψ

(1)
n (t)|, which after inserting into equation

(3) gives
∂fn

∂t
= 〈ψ(1)

n (t)|Γ̂(1)|ψ(1)
n (t)〉

Thus the occupancies can now change. This means that if we started from a single Slater

determinant, this must evolve into an incoherent sum of determinants corresponding to

evolving fluctuations in the electron gas. That is, we now must write:

ρ̂(1)
e =

∑

m

℘mρ̂
(1)
e,m

where ρ̂
(1)
e,m is produced from a single Slater determinant and evolves as i~∂ρ̂

(1)
e,m/∂t =

[

Ĥ
(HF )
e , ρ̂

(1)
e,m

]

and ℘m is the probability of being in that state, and itself evolves in response

to ionic fluctuations.

So far we have not considered the explicit width of the ionic bundle of trajectories. This

information is present in µ̂
(1)
1,ν, but has to get there from somewhere, and that somewhere

is the equation of motion which we can write as

∂µ̂
(1)
1,ν

∂t
=
λ̂

(1)
1,ν

Mν

+
1

i~

[

Ĥ(HF )
e , µ̂

(1)
1,ν

]

−
1

i~

∑

ν′

CRR
νν′

[

F̂
(1)
ν′ , ρ̂

(1)
e

]

Information about the ionic width is provided explicitly by CRR
νν′ . It also propagates

through from λ̂
(1)
1,ν which depends on CPR

νν′ .

Thus, by keeping electron-ion correlations up to the first moment (µ̂
(1)
1,ν and λ̂

(1)
1,ν) and using

the mean field expressions for the second moments (µ̂2,νν′ ≈ CRR
νν′ ρ̂e etc.) we are able to

capture many important features (see below for results) deriving from the interaction of

time-evolving fluctuating electrons and ions.
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2.2 Analytical features of the method

We will now discuss several analytical properties of the method. We have continually

found these properties helpful both as a reality check and, in a broader sense, as an

additional source of insight into CEID and into the dynamical processes that the SAME

algebra represents.

2.2.1 Detailed balance and statistical properties

Let us return to the question of electronic transitions driven by the electron-ion correla-

tions, viewed this time at the many-electron level. Let |α〉 = |α(t)〉 and Pα = Pα(t) be

the eigenvectors and eigenvalues of the many-electron density matrix ρ̂e so that

ρ̂e =
∑

α

|α〉Pα 〈α|

Then SAME enables us to write the equation of motion for ρ̂e in the form

i~ ˙̂ρe = [Ĥe, ρ̂e] + Σ̂ρ̂e − ρ̂eΣ̂
† +G[ρ̂e] (4)

and to obtain explicit forms for the self-energy-like operator Σ̂ and for the superoperator

G[ρ̂e], which remain valid for restricted, but finite, lengths of time after the combined

electron-ion system has been allowed to evolve. Leaving these forms to a future paper,

let us here concentrate on the following results.

The hermitian part of Σ̂ constitutes an effective correction to Ĥe. The resultant new

effective Hamiltonian for the electrons would, by itself, produce unitary temporal evolution

with constant Pα. As was indicated earlier, this is the type of evolution that would

be obeyed by an isolated system of electrons, or by electrons that interact with their

surroundings through at most mean field interactions.

The antihermitian part of Σ̂, together with G[ρ̂e], on the other hand, drives transitions in

the density matrix, which manifest themselves as time-variation in its eigenvalues. This

means that even if the combined electron-ion system is described by a pure state (a single

state-vector that could itself of course be a coherent superposition of other state-vectors),

the electron subsystem itself cannot be described in that way. Instead, after tracing out

the ionic degrees of freedom, we are left with an effective description of the electrons

given by an incoherent mix of many-electron state-vectors (the eigenvectors of ρ̂e), with

time-dependent weights. The propagation of this incoherent mix of states furthermore

cannot be described by a single effective hermitian electronic Hamiltonian, for if it could,

then an initially pure electronic state would not split into an incoherent shower in the

first place.

Notionally, we could think of this incoherent shower of electronic states as a collection of

independent quantum electronic evolutions, corresponding to different possible evolutions

of the original correlated electron-ion system. It is a strength of SAME, however, that

we do not have to make this interpretation. We do not, furthermore, have to in any way
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prejudge the nature of the evolution of the shower. We do not, in particular, have to

attempt to impose ad hoc forms on the above transitions, such as hops – instantaneous or

not, random or not – between different states. These processes are allowed to take place

naturally, in whatever way the quantum Liouville equation dictates. Indeed, SAME is as

accurate – within a given level of the moment expansion – as the many-body electron-ion

time-dependent Schrödinger equation (TDSE). A strength of SAME though is that by

breaking down the TDSE into interpretable terms, it helps us understand the processes

described by this equation.

The forms of Σ̂ and G[ρ̂e], furthermore, are such that the time-varying eigenvalues of ρ̂e

obey a rate equation of the form

Ṗα =
∑

β

(−PαWαβ + Pβ Wβα) (5)

where the coefficients Wαβ are set by Σ̂. Since Σ̂ depends on µ̂1 and since the propagation

of the latter is driven by ρ̂e, the coefficients Wαβ can themselves be viewed as functions

of the density matrix. Equation (5) therefore relates the rate of change of every Pα to

the microscopic content of ρ̂e, and for this reason, at least for the purposes of the present

discussion, we regard equation (5) as a statement of detailed balance. Equation (5) comes

about as a consequence of SAME. It is not an a priori stipulation.

Let us now briefly turn to another question. Let us go back to the world of classical

mechanics and ask, how would one go about writing down an analogue of SAME for a

system of classical interacting electrons and ions. The first question we would have to

resolve is what quantity, if any, is to take up the role of moment operators such as µ̂1,ν.

There is but one possible answer. We would first and foremost have to consider a statistical

ensemble of copies of our correlated electron-ion system, described by a classical phase-

space distribution function f(~r, ~p, ~R, ~P , t), where lower- and upper-case symbols represent

classical electron and ion canonical variables respectively. Then we can define the classical

analogue of µ̂1,ν (now a scalar function of ~r, ~p)

µ1,ν =

∫

∆Rν f(~r, ~p, ~R, ~P , t) d~Rd ~P

where ∆Rν = Rν − R̄ν , R̄ν =
∫

Rν f(~r, ~p, ~R, ~P , t) d~rd~pd~Rd~P . For the actual development

of the classical moment expansion (based on the classical Liouville equation), we would

expect an algebraically analogous route to above, with certain replacements: electronic

operators become scalar functions in the classical phase space; traces become phase-space

integrals; [ , ]/i~ turns into a corresponding Poisson bracket.

While this mapping from quantum to classical SAME may seem trivial, it has the following

implication. Suppose that quantum mechanics, and, in particular, the quantum state-

vector |Ψ〉 (e.g. that for the combined electron-ion system, but also more generally) and

the TDSE, described a single system (as opposed to an ensemble). Then, since as we have

seen the TDSE leads to SAME in the quantum case, we would expect Hamilton’s equations

of motion to lead to a classical form of SAME for the corresponding classical system.
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But we have just argued that we may write down a classical form of SAME only for a

classical ensemble, not for a single system. Therefore, we have to conclude that quantum

mechanics, and |Ψ〉 and the TDSE in particular, describe an appropriate (quantum)

ensemble of copies of a given system, and not a single system. Of course, this statistical

view of quantum mechanics is known. But we have found that the SAME description of

interacting many-particle systems makes it especially compelling and intuitive (and the

other way round).

2.2.2 Connection with electron-phonon perturbation theory

A widely used tool in the theory of electron-phonon interactions is a model electron-

phonon Hamiltonian, based on an expansion of the true electron-ion Hamiltonian to sec-

ond order in the ionic displacements on some reference Born-Oppenheimer surface. We

could make this expansion in two ways. If we expand about the equilibrium classical ionic

positions, R0, on that surface, then we obtain the Hamiltonian [10]

Ĥ0 = Ĥe(R0) −
∑

ν

F̂ν(R0)X̂ν + T̂I +
1

2

∑

ν,ν′

X̂νKνν′X̂ν′ (6)

where X̂ν = R̂ν −(R0)ν and K is the Born-Oppenheimer dynamical response matrix. The

first term describes unperturbed electrons, in a phonon-free environment, with relaxed

frozen classical ions. The second term is the electron-phonon interaction. The last two

terms describe unperturbed Born-Oppenheimer phonons. This is the standard electron-

phonon Hamiltonian in solid state theory.

Making the expansion about R̄ instead, in the spirit of SAME, yields the closely related

Hamiltonian [10]

H̄ = Ĥe(R̄) −
∑

ν

F̂ν(R̄)∆R̂ν + T̂I +
1

2

∑

ν,ν′

∆R̂νKνν′∆R̂ν′ (7)

For small variations in R̄ about R0, the two Hamitonians are equivalent.

Our task now is to show that SAME, applied to H̄, yields the same lowest-order electron-

phonon transition rates, as standard electron-phonon perturbation theory, applied to

Ĥ0. The purpose of the exercise is to demonstrate that despite its different algebraic

appearance, SAME incorporates the selection rules that control inelastic transitions.

For simplicity, we consider non-interacting electrons and just one dynamical ionic degree

of freedom, so that the index ν can be dispensed with. All electronic operators below

are one-electron operators and we dispense with superscript 1 for simplicity. We ignore

variations in R̄, with R̄ ≈ R0, so that the two Hamiltonians above are now the same and

we can dispense with the arguments of Ĥe and F̂ . Consider first the equations of motion

for the ionic moments. They now read

ĊRR =
2

M
CPR
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ĊPR =
CPP

M
−KCRR + Tre

{

F̂ µ̂
}

ĊPP = −2KCPR + 2Tre

{

F̂ λ̂
}

(8)

where, for short, we have written µ̂ (λ̂) for µ̂1 (λ̂1). The physics described by these

equations is the following. The quantity

w =
1

M
Tre

{

F̂ λ̂
}

(9)

is the power dissipated into the ion by the electrons [10]. This power comes in as kinetic

energy. It is then repartitioned, between kinetic and potential energy, via the quan-

tity CPR, which effectively mediates the communication between the two ionic canonical

variables (momentum and position). This conduction of heat around ionic phase space,

however, is modulated by the electrons, via the last term in the second one of equations

(8). Indeed, we know that lattice heat conduction in metals is heavily suppressed by

phonon-electron scattering.

Let us now turn to the equations of motion for the electronic density matrix and moment

operators. Making use of the Hartree-Fock relation for the two-electron density matrix,

given earlier, we obtain

˙̂ρe =
1

i~
[Ĥe, ρ̂e] −

1

i~
[F̂ , µ̂] (10)

˙̂µ =
1

i~
[Ĥe, µ̂] −

1

i~
CRR [F̂ , ρ̂e] +

λ̂

M
(11)

˙̂
λ =

1

i~
[Ĥe, λ̂] +

1

2
(F̂ ρ̂e + ρ̂eF̂ ) − ρ̂eF̂ ρ̂e −

1

i~
CPR [F̂ , ρ̂e] −Kµ̂ (12)

We imagine releasing the electron-ion system from an initial product state, in which ρ̂e

commutes with Ĥe, while the vibrations are in a harmonic-oscillator eigenstate with N

phonons and with CPR = 0. In the absence of electron-phonon interactions, the two

subsystems would remain in that state forever.

The electron-phonon interaction is realised by the quantity F̂ . To do a lowest-order

perturbative calculation we therefore now have to linearise the above equations in F̂ .

Thus, we set CPR = 0, CRR = CRR(0) = n~ω/K, n = N + 1/2, ω2 = K/M , and drop

the last term in equation (10). This leaves us with two coupled equations for µ̂ and λ̂.

Taking matrix elements of these two equations in two eigenstates of ρ̂e (and of Ĥe), with

occupations fα, fβ and energies Eα, Eβ, and defining ẑ = Kµ̂ we get

żαβ = −iωαβzαβ + ω2λαβ + inω(fβ − fα)Fαβ

λ̇αβ = −iωαβλαβ − zαβ +

(

fα + fβ

2
− fαfβ

)

Fαβ

where ~ωαβ = Eα − Eβ. The solution for λαβ is

λαβ =
1

2

Fαβ

ω2 − ω2
αβ

{exp[i(ωβα + ω)t] (P/iω −Q) − exp[i(ωβα − ω)t] (P/iω +Q) + 2Q}
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where

P = −nωωαβ(fβ − fα) + ω2

(

fα + fβ

2
− fαfβ

)

Q = −inω(fβ − fα) + iωαβ

(

fα + fβ

2
− fαfβ

)

Substituting this into equation (9) and taking the long-time limit (when (sinωt)/ω →

πδ(ω)), gives (with a factor of 2 added for spin degeneracy)

w =
π

M

∑

α,β

|Fαβ|
2{δ(ωβα + ω)[−(N + 1/2)(fβ − fα) + (fβ + fα)/2 − fαfβ]

+δ(ωβα − ω)[(N + 1/2)(fβ − fα) + (fβ + fα)/2 − fαfβ]}

This expression is algebraically identical (after some rearrangement) to the corresponding

result for the power dissipated into phonons by excited electrons obtained by first-order

scattering theory based on the standard electron-phonon Hamiltonian Ĥ0 given earlier

[13].

We have demonstrated in a previous paper [11] that SAME, already at the level of the first

moment, indeed reproduces the above analytical result in actual numerical simulations

of ionic heating in a current carrying atomic wire. This agreement is highly significant

because, unlike the argument above, the SAME equations on which the simulations are

based do not make use of any reference Born-Oppenheimer surfaces, nor are these simu-

lations perturbative.

Let us now consider the transition rates directly in ρ̂e. The solution for zαβ = Kµαβ is

zαβ =
1

2

Fαβ

ω2 − ω2
αβ

{exp[i(ωβα + ω)t] (−P + iωQ) − exp[i(ωβα − ω)t] (P + iωQ) + 2P}

From equation (10) we have

ρ̇αα =
2

~
Im
∑

β

Fβαµαβ

Substituting in and taking the long-time limit gives

ρ̇αα =
2π

~

~

2Mω

∑

β

|Fαβ|
2{δ(Eβα + ~ω)[(N + 1/2)(fβ − fα) − (fβ + fα)/2 + fαfβ]

+δ(Eβα − ~ω)[(N + 1/2)(fβ − fα) + (fβ + fα)/2 − fαfβ]}

This is algebraically identical to

ρ̇αα =
2π

~

~

2Mω

∑

β

|Fαβ|
2{−(N + 1)fα(1 − fβ)δ(Eβα + ~ω) −Nfα(1 − fβ)δ(Eβα − ~ω)

+(N + 1)fβ(1 − fα)δ(Eβα − ~ω) +Nfβ(1 − fα)δ(Eβα + ~ω)}

The latter is the known quantum correlated electron-phonon scattering-rate expression,

which incorporates the selection rules for inelastic current-voltage spectroscopy [14]. There-

fore, we expect SAME, at the level of the second moment, to capture inelastic transport
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spectral features. We will demonstrate by direct numerical simulations later on that this

is indeed the case. The above analytical results incorporate also the ingredients needed

for making the crossover from ionic heating, via thermal equilibrium, to ionic cooling,

in the presence of an excited electron gas, as a function of the effective phonon energy

[12]. We therefore assert that SAME enables us to monitor directly the flow of heat back

and forth between the two subsystems, with the added advantages that SAME is not a

perturbative scheme, that it makes no use of any Born-Oppenheimer reference surfaces,

that it implicitly accounts for anharmonicity and that it is, above all, a form of MD that

portrays these processes in real time.

2.3 Infinite lead current formalism

One area where the interaction between electrons and ions (and the transfer of energy

between the different subsystems) is important is in the area of conduction of nanostruc-

tures, e.g. atomic-scale wires[19]. To examine problems of this nature, we need to be able

to consider a device (where the physics which we are concerned with is localised) con-

nected to an environment, which might typically be a pair of leads (allowing exchange of

electrons and energy with the surroundings). In the description below we explicitly con-

sider two leads, working at the Ehrenfest level, though the formalism extends in principle

to a much broader environment model, and to the higher moment expansions (details will

be presented in a paper under preparation).

We start from the quantum Liouville equation, Eq. (1), and divide the system into two

regions: a device, labelled D, and the environment, labelled E. Then we can write:

i~
∂ρ̂D

∂t
= [ĤD, ρ̂D] + (ĤDEρ̂ED − ρ̂DEĤED) (13)

i~
∂ρ̂DE

∂t
= ĤDρ̂DE − ρ̂DĤDE + ĤDEρ̂E − ρ̂DEĤE (14)

i~
∂ρ̂E

∂t
= [ĤE, ρ̂E] + (ĤEDρ̂DE − ρ̂EDĤDE)

− 2i~ΓE(ρ̂E − ρ̂ref), (15)

where a damping term, 2i~ΓE(ρ̂E − ρ̂ref), has been introduced to the environment and

will be descibed below.

Now we can apply different time evolution schemes to the environment (which we want

to act as a bath of energy and electrons) and the device. For the environment, we seek

a closed, integral form. We assume that the Hamiltonian is static. If we define a driving

term i~ĜE = (ĤEDρ̂DE − ρ̂EDĤDE) and define the value of the reference driving term by

0 = [ĤE, ρ̂E(0)] + i~Ĝ
(0)
E − 2i~Γ(ρ̂E(0) − ρ̂ref), then we can write:

ρ̂E(t) = ρ̂E(0) +

∫ t

0

dx Ô(x)
(

ĜE(t− x) − Ĝ
(0)
E

)

Ô†(x), (16)

where Ô(t) = e−ΓEteĤEt/i~ is a time evolution operator which arises from the commutator

of ρ̂E and ĤE, and includes the damping introduced in Eq. (15). The effect of this
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scattering-like ΓE term will be to localise ρ̂E(t) in time, enhancing the natural time

localisation of the time evolution operators[8].

The time evolution operators are most easily evaluated from the electronic Green’s func-

tions for the environment region, ĝ(z):

Ô(t) = e−ΓEt

∫

dEeEt/i~ lim
η→0+

Im

(

−
1

π

)

ĝ(E + iη). (17)

These operators implicitly include the semi-infinite environment given by the Green’s

functions; when coupled with the reference density matrix, ρ̂ref , for a similar environment

they give a restoring force towards the chosen semi-infinite system whatever the size of

the explicit environment chosen.

For the device and device-environment terms, we use the leapfrog method to evolve the

equations forward in time; this is also used by the DINAMO code.

2.4 Implementation of DINAMO

The computational implementation of the SAME has been named DINAMO, which stands

for Dynamics in Non-Adiabatic Molecular Orbitals. This is a code written from scratch

in Fortran 90, which at present roughly consists of 10k lines of code, and is an implemen-

tation of the SAME equations for orthogonal tight binding Hamiltonians. The following

methodologies have been implemented:

• Geometry optimization, using an efficient quasi-Newton algorithm [20, 21].

• Born-Oppenheimer molecular dynamics.

• Ehrenfest dynamics.

• First moment SAME.

• Second moment SAME.

Self consistency is implemented at the BO and Ehrenfest levels via point charge inter-site

Coulomb interactions and an onsite Hubbard “U” like term[22].

All input is handled using the FDF package written by Alberto Garcia and Jose Soler

(used in the SIESTA code) which makes input files easy to read and edit and provides

great flexibility. All parameters are read from a single input file (which may be separated

in different files using FDF’s “include” capabilities). Most input parameters will acquire

sensible default values when not explicitly defined.

In a tight binding basis set, all SAME equations of motion are equations between matrices.

Operations like commutators and matrix products are required to calculate the derivatives

of the different operators in their equations of motion and they represent the bottleneck of

the calculation. These operations must be optimized to achieve maximum performance.

At the core of the code is a purpose built linear algebra module which implements all
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matrix operations, including additions and multiplications by scalars. Although some of

these operations could be dealt with by using Fortran 90 array features, we have chosen to

encapsulate them in the linear algebra module. In this way, parallelization, vectorization

or changes in the storage structures can be restricted to the internal workings of the

module and no modification of the rest of the code is needed. A new Fortran type matrix

is defined, the structure of which is hidden from the user. Using the abstract matrix

operations, the implementation of the SAME equations is a matter of translating the

algebra into these operations. This made the task of implementing and debugging the

SAME equations relatively straightforward since never in the code is an actual element

of any of the operators explicitly modified or referenced.

The Hamiltonian matrix and its derivatives are inherently sparse, and taking this sparsity

into account is crucial to make the SAME equations computationally manageable. The

matrix structure can contain both sparse and dense matrices. Subroutines that implement

the abstract matrix operations can choose internally the most appropriate algorithm ac-

cording to the nature of the operands. For sparse matrix operations we have implemented

our own algorithms that operate only on non-zero elements based on a simple coordinate

storage format. This is not the most efficient approach, both in terms of the required

storage and cache efficiency, but has the advantage of being simple. More sophisticated

methods should be easy to implement. For all dense matrix operations, BLAS routines

are used. Routines within the linear algebra module and other time consuming routines

such as the construction of the Hamiltonian matrix have been parallelized using OpenMP

directives.

The implementation of new tight binding models is a straightforward task, and only

requires to add calls to particular subroutines to calculate the model-dependent radial

hopping matrix elements, their derivatives and pair repulsion functions. These routines

are easily plugged into a single interface module, and there is no need to modify any of

the higher level routines. General routines for the calculation of the Slater-Koster factors

and their derivatives have been implemented.

Equations of motion for the operators, such as ρ̂e or the various µ̂ν, are integrated using

the following “leapfrog” like method:

q̂(t + ∆t) = q̂(t− ∆t) + 2∆t
dq̂

dt

∣

∣

∣

∣

t

which is time reversible and unitary and therefore unconditionally stable. This simple

integration scheme is extremely powerful. As an example, we have successfully performed

Ehrenfest calculations (including self-consistency, which makes the Liouville equation non-

linear) for systems of thousands of atoms for many tens of femtoseconds using a time step

of 0.01 femtoseconds. Particle numbers are conserved within numerical precision, and

energy is conserved to a part in 109.

For an Ehrenfest calculation, the bottleneck is the calculation of the commutator [Ĥ, ρ̂]

which for a sparse Hamiltonian scales as M 2, where M is the number of basis functions.

This makes Ehrenfest dynamics very competitive with Born-Oppenheimer dynamics. For
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large numbers of atoms, the better scaling compensates the fact that a hundred times

smaller time step is needed, in a similar way to the Car-Parrinello method. Both the first-

moment and second-moment dynamics have similar computational costs. The bottleneck

in these cases is the calculation of products of the form q̂Âq̂, where q̂ is ρ̂ or µ̂1,ν and

Â is a sparse operator. These terms appear in the equations of motion for the one-

particle density matrices after the Hartree-Fock approximation is applied. In the present

implementation, these are treated as dense-dense products, but in principle their scaling

can be reduced to M 2. There are about N 2 of these products where N is the number of

“quantum” ions.

3 Results

3.1 Joule heating

We present results for Joule heating of a single atom within a linear chain, using a first

moment extension of the open boundary formalism described above. The tight binding

model used was extremely simple: a chain of 1s atoms, with a hopping integral of -1eV

between nearest neighbours only, and an atomic spacing of 1.0 Å. A repulsive potential

was fitted to give the correct equilibrium spacing, with a value of 0.648 eV. The variation

with distance was a simple power law, with an exponent of 2 for the hopping integral and

4 for the repulsive potential. The device consists of nine atoms, the central atom of which

is allowed to move (and whose quantum evolution is followed). The leads are 16 atoms

long, and the integral for the environment covers only the most recent 7.5 fs. The initial

electronic density matrix (which is also the reference density matrix for the environment)

is found by diagonalising a wire 1001 atoms long, and using the central 41×41 site portion

of the resulting density matrix. A timestep of 0.008 fs was used throughout (after tests to

establish the largest practical value). We have considered two slightly different systems:

the first, with ordinary coupling between the central atom and the surrounding atoms;

the second, with a weaker coupling (hopping integral of -0.5eV) for this atom only.

Before considering heating, we examine the current that results from application of a bias

to this system. In Fig. 1(a) we see that a steady current is easily achieved after application

of a bias (in all cases, the bias is applied to the left-hand lead and the left-hand side of the

device by shifting the on-site terms in the Hamiltonian). There are two further important

effects shown in Fig. 1(b): the effect of changing the coupling of the central atom to its

neighbours and the effect of introducing classical kinetic energy to the central ion. The

effect of weakening the coupling is, as expected, to reduce the current (though other effects

will be explored below). The classical kinetic energy causes the ion to oscillate about its

mean position: for the ordinary coupling at the ionic equilibrium position, current is a

maximum as hopping into and out of the ion is equal, while at each extremum, current is

a minimum as one of the two bonds to the nearest neighbours is significantly weakened.

For the weak coupling, we see two further effects: first, the magnitude of the oscillations

of the ionic position is smaller, resulting in smaller oscillations in the current; second, the
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Figure 1: Current into central atom of chain when a bias of -0.6 V is applied at t =2 0 fs (linearly

increased over 5 fs). (a) Ordinary coupling, no classical KE given to atom. (b) Ordinary and

weak coupling with small classical KE given to the atom at 35 fs.
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oscillations in the current show a doubling of the period and two separate height maxima

relative to the ordinary coupling oscillations. This behaviour relates to the charging of

the central ion at different extrema: when it is at the left-hand extremum (near the biased

electrode) it loses charge to that electrode, so that when it reaches the mid-point, it has

less charge than at equilibrium (i.e. zero bias) and the current is (relatively) large. When

it is at the right-hand extremum it gains charge from the right-hand electrode, so that

when it returns to the mid-point it has more charge than at equilibrium and the current

is (relatively) small.

We now turn to heating, within the first moment approximation (i.e. retaining only µ̂1,ν

and λ̂1,ν). The average kinetic energy now includes two terms, one arising from the average

momentum of the ion, and the other from the qantum spread of momentum (we label

these as “classical” and “quantum” contributions). These are plotted against time for the

weak and ordinary coupling cases in Fig. 2, with classical KE in the top graph in each

case, and quantum KE in the bottom graph. We see a number of important features: first,

the classical kinetic energy decreases, as expected (electrons are being excited by the ions

and removed from the open boundaries, leading to cooling); second, the quantum kinetic

energy increases with bias and with time; third, the frequency of the classical kinetic

energy oscillation increases with bias, due to a population of anti-bonding states as well

as bonding states. The weakly coupled system exhibits higher frequency oscillations due

to the weaker coupling; it also exhibits less heating in the central ion due to the lower

current and weaker electronic correlations (in the limit of zero coupling, the heating goes

to zero as expected).

3.2 Inelastic current-voltage spectroscopy

We will now show a direct calculation of inelastic current-voltage spectroscopy from

second-moment CEID. The calculation is based on direct numerical integration of the full

second-moment SAME equations of motion, with no approximation. Thus, this numerical

calculation is inherently different, and superior, to the earlier analysis, based on the stan-

dard electron-phonon harmonic Hamiltonian expanded on a reference Born-Oppenheimer

surface. We have a 131-atom metallic chain described by a tight binding-model with all

parameters as in reference [11] except the ionic mass which is now 1 a.m.u. A single atom

in the middle of the chain is allowed to move. A bias is applied, and a current flows, as in

reference [11]. The current, for a given bias, is averaged over about one thermal vibration

period. The current, differential conductance and its derivative with voltage are plotted

against bias in figure 3.

The characteristic inelastic spectral feature (in the bottom panel) is clearly visible. The

shoulder (bottom plot) beyond the voltage where the spectral feature occurs is the sig-

nature of the quantum heating of the ion that becomes activated at that critical voltage.

This critical voltage, on the plot, is in excellent agreement with the value of ~ω = 0.26

eV (where ω is the Born-Oppenheimer frequency of the ion), which may be expected

on the basis of electron-phonon perturbation theory [14], and on the basis of the earlier
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Figure 2: Classical (upper panels) and quantum (lower panels) KE for four biases: 0V, -0.2V,

-0.4V and -0.6V. Bias applied at t=20fs (linearly increased over 5fs). A small classical KE was

given to the atom at 35fs. Top graphs: Weak coupling. Bottom graphs: Ordinary coupling.

Note the different energy scales for the quantum KE plots.
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Figure 3: Current, differential conductance and its derivative with voltage, versus bias, for a

single dynamical atom in a metallic chain.
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analytical derivations. The physical origin of this feature is that for current carrying

electrons to be able to excite vibrations, the excess electronic energy, set by the bias,

has to exceed a phonon quantum. There is no other way to satisfy the selection rules

for inelastic scattering, derived earlier. Hence, we expect inelastic scattering, the onset

of dissipation and ionic heating, and a drop in conductance (due to the newly opened

scattering mechanism) to occur at a bias that matches this phonon energy. And indeed it

does. But, once again, the present simulations start from scratch and know nothing about

any Born-Oppenheimer surfaces. Nor are the simulations constrained by the assumption

of harmonicity, not are they perturbative. They furthermore allow phonons and electrons

to be perturbed by each other in a consistent manner, both ways. In principle (though

this is not done here) the method allows also the inclusion of electron-electron interactions

and dynamical screening, at least in a Hartree-Fock, or in an adiabatic-LDA, spirit.

4 Conclusion and future directions

The range of problems to which this modelling technique can be applied is already large

(ranging from low-energy I-V spectra to high-energy radiation damage) and we expect new

and exciting insights to emerge as a result of this. However, the development of the formal-

ism is not yet complete. The one qualitative feature left to work out is electron-electron

correlation. We will begin at the mean-field level (Hartree-Fock or density functional

theory). This is essential for describing (for example) the discharge of a capacitor. At

the level of the Ehrenfest approximation this is straightforward and has already been im-

plemented. Of course, if we could consider explicit two-electron correlation we should be

able to model the onset of superconductivity in very small devices. This project, though,

is for the more distant future.

A major area for which this approach is particularly well-suited is the transport of charge

in biological systems. Biological systems have three important features that make conven-

tional perturbative approaches difficult, but make a molecular dynamics based approach

attractive:

1. They have very low symmetry in general, so many degrees of freedom need to be

treated explicitly.

2. They are made from soft matter, so it is hard to define lattice sites about which

oscillations occur. Indeed, diffusion can take place.

3. Calculations at zero temperature to define a reference state for the perturbation

calculations could be qualitatively wrong, as biological systems make use of water,

and water at low temperatures solidifies and behaves quite differently from the liquid

at higher temperatures.

The presence of an environment that can contain charges clearly makes it important to

introduce electrostatics into our equations of motion.
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