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Abstract

The ideal (theoretical) strength was originally defined as the stress or strain at which
perfect crystal lattice became mechanically unstable with respect to arbitrary homogeneous
infinitesimal deformation. This has been intensely investigated because the ultimate strength
without defects is a fundamental mechanical characteristic of materials. In the analyses, the
instability criteria have been studied on the basis of elastic constants. Recent developments
in computational technology make it possible to analyze the ideal strength on the basis of
quantum mechanics. On the other hand, it is well known that the mechanical strength of
components is dependent not only on (1) material (atom species), but also on (2) loading
condition and (3) structure. Because most studies on the strength in terms of atomic me-
chanics have focused on the factor (1) (materials), analysis has mainly been conducted on
simple crystal consisting of perfect lattices (e.g. fcc and bcc) under simple loading condi-
tions (e.g. tension), though some have explored the properties of bulk materials with defects
(e.g. vacancy and grain boundary). Small atomic components (nano-structured components)
such as nano-films, nano-wires (tubes) and nano-dots (clusters) possess their own beautiful,
defect-free structure, namely ideal structures. Thus, they show characteristic high strength.
Moreover, utilizing the structure at the nanometer or micron level is a key technology in
the development of electronic devices and elements of micro (nano) electro-mechanical sys-
tems (MEMS/NEMS). Therefore, it is important to understand the mechanical properties
not only for the sake of scientific interest, but also for engineering usefulness such as design
of fabrication/assembly processes and reliability in service. In the other words, the effects
of structure (factor (3); e.g. film/wire/dot) have to be understood as the basic properties
of atomic components. Thus, the definition of ideal strength should be expanded to in-
clude the strength at instability of components with ideal structures under various external
loads (factor (2)), which provides fundamental knowledge of nano-structured materials. In
this paper, we review works on the strength of ideal nano-structured components in terms
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of factor (3), mainly under tension and discuss the strength criterion of arbitrary atomic
structure/material under arbitrary loading.

1 Introduction

The ideal strength (theoretical strength) was originally defined as the stress or strain at which
perfect crystal lattice became mechanically unstable with respect to arbitrary homogeneous in-
finitesimal strain (e.g. [1]). It has been intensely investigated because the ultimate strength
without defects is a fundamental mechanical characteristic of materials. However, it is well
known that there is an eminent difference between the ideal strength and the actual one ob-
served experimentally, and this fact led researchers to the discovery of dislocation which plays
important role in crystal plasticity. Because the ideal strength physically means the maximum
resistance against the external stress (strain) that the material possesses, such high strength
was experimentally observed in only whisker that included few defects. Recently, the strength
obtained by nano-indentation is attracting researcher’s attention because the extremely localized
evaluation reveals properties in a defect-free region (e.g. [2,3]).

On the other hand, investigation of the strength of bulk materials and macroscopic structures
has long history (e.g. [4]), and the number of related articles published runs into astronom-
ical numbers. The key point derived from the experiences is that the mechanical strength of
components depends not only on (1) materials (atom species), but also on (2) loading condi-
tions (mechanical boundary conditions) and (3) structure. Although the environmental effect
is also prominent, it lies outside the scope in this article. The interactions among those factors
complicate the fracture phenomenon, and this is one of the main reasons why it is difficult to
understand the ”strength” of materials.

(1) Material The ideal strength gives a fundamental insight into factor (1). In early analyses,
the focus was on the simple structure of perfect crystal (e.g. fcc and bcc) under simple loading
conditions (e.g. tension) because it was difficult to correctly calculate the interactions among
the atoms. In other words, the inter-atomic potential was not reliable for the crystal lattice
with complex structures under high strain conditions. The precise analysis became possible in
this decade due to the progress in computational resources and the technique for simulating
quantum mechanics.

(2) Loading The homogeneous deformation of a crystal is represented by the change in shape
of a unit cell, namely the strain, which is the symmetric second order tensor, εxx , εxy , εxz , εyy ,
εyz , and εzz . Of course, it can be related to the homogeneous stress tensor through proper
constitutive equations. At first, researchers were interested in the strength in uni-axial tension;
however, the ultimate strength should be understood as a function of the combination of strain
components in general. For example, the strength under the shear along the slip direction of
the crystal gives us fundamental knowledge of the dislocation nucleation and glide.

(3) Structure The strain tensor can not fully describe the deformation of a crystal when the
unit cell includes many atoms, e.g. a perovskite structure. That is, the inner displacement plays
important role in the deformation [5], signifying that the structure has a strong influence on
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Figure 1: Bending of a tube. The rigidity is dependent on the configuration of tube (the moment
of inertia of area).

the strength at the atomic scale. Since we intend to discuss the strength of nano-materials that
usually possess characteristic atomic structures, the instability of complex structures becomes
a crucial factor in the analysis. In terms of factor (3), we can gain valuable suggestions from
the conventional cognition in the mechanical engineering approach on the basis of the contin-
uum mechanics concept. For example, it is well known that the shape of component strongly
influences its rigidity and structural strength. The rigidity of the tube illustrated in Fig.1 is
determined by the shape of the cross-section (diameter and wall thickness) as well as its elastic
coefficient. This, of course, basically represents the carbon nano-tube, which is a typical nano-
structured component. Thus, it implies that the structural factor becomes essential, although
factor (3) has not been discussed well in past analysis of ideal strength.

In the context of structural analysis, over last decade multi-scale simulation is spotlighted as an
ad hoc method connecting molecular dynamics to continuum mechanics. However, it is neces-
sary to identify the representative indicator for characterizing the strength of nano-structured
materials as fundamental knowledge. Small atomic components such as nano-films, nano-wires
(tubes) and nano-dots (clusters) possess their own beautiful, defect-free structures, namely the
ideal structure. Consequently, they display characteristic high strength. Moreover, utilizing the
structure at the nanometer or micron level is a key technology in the development of electronic
devices and elements of micro or nano electro-mechanical systems (MEMS or NEMS). Their
complex systems can be decomposed into elements with simple configuration such as the film,
wire and dot. For this reason, it is important to understand the mechanical properties not only
for the sake of scientific interest but also for engineering applicability such as design of fabri-
cation/assembly processes and reliability in service. As the basic property of component, the
effects of structure (factor (3); e.g. film/wire/dot) and the loading condition (factor (2); e.g.
combined load of tension/shear) on the ultimate strength have to be understood. In particu-
lar, analysis of instability of component with an ideal defect-free structure gives fundamental
insight into the strength of atomic structure. In other words, the definition of ideal strength
should be expanded to include the strength at point where nano-structured components with
ideal structure (factor (3)) become unstable under various boundary conditions (factor (2)).
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Many attractive materials with the ideal structure have been reported not only in scientific
journals [6] but also in books (e.g. [7-11]; in this series of highlights, there are excellent reviews
as well [12, 13]). However, it is not our aim here to review them. We do, however, select some
examples investigated by the auth’s group, and present characteristic behavior of their strength
in Section 2. In terms of the strength, it is clear that mechanical instability under external load
or displacement is essential for the analysis of nano-structured materials. Thus, in section 3 we
explore the instability criterion.

2 Strength of material with ideal structure

To analyze an ”ideal” bulk crystal, the three-dimensional periodic boundary condition was
applied to the unit cell. Neglecting one- or two-dimensional periodicity, we can easily obtain
typical nano-structured components without defect inside. The periodicity is held in the clean
structure, though it is low-dimensional. Thus, there are two-dimensional and one-dimensional
materials with ideal structure referred to as ”ideal” film and ”ideal” wire (or tube), respectively.
In this context, the cluster (nano-particle) and the fullerene (cage-like structure) should be
classified as zero-dimensional ideal structures.

2.1 Two-dimensional structure

Graphene sheet When the ”ideal” film (film with ideal understructure) is defined as the struc-
ture with the perfect two-dimensional periodicity, the simplest one is a layer of the graphene
sheet which consists of a hexagonal carbon network as illustrated in Fig.2 (a) [14-18]. It is an
absolute mono-layer film, for which the unit cell is indicated by the solid square in Fig.2(a)[14].
The equi-tensile strains, εxx and εyy , (Simulation A) or the uni-axial tensile strain, εyy , (Simula-
tion B) are applied to the cell under the constraint condition that the other strain components
are kept null [14]. The dotted and solid lines in Fig.2 (b) show the relationships between the load
Py and the strain εyy along the y-axis, respectively, analyzed by first-principle simulation (LDA,
plane-wave basis, norm-conservative pseudopotential). Although it is easy to convert the load
into the stress to evaluate the thickness from the distance between layers of stacked graphene
sheet, we prefer to represent it here without the conversion in order to avoid ambiguity. This
provides fundamental knowledge on the strength of nano-structured carbon such as fullerenes,
nano-tubes, hones and so on. Moreover, the ideal strength, which is given by the peak load, in
the uni-axial tension is higher than that in the equi-axial tension. Thus, the ideal strength is
dependent on the combination of external strains (loading condition).

By comparing the load-strain curves, we can examine the validity of classical potential (e.g. the
Brenner potential [19]) and the tight-binding (TB) method [20] under the high-strain condition.
The result obtained by TB showed excellent correspondence with that in the above first-principle
analysis, whereas the Brenner potential does not.

Thin film with reconstructed surface The development of high-vacuum technology enables
us to procure well-defined surfaces, and extensive investigations have been devoted to exploring
the structure at the surface as well as exotic properties stemming from it. The lattices near
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(a) Ideal structure of carbon layer in graphene sheet and the unit cell for calculation.

Tensile strain ε yy

ε yy

ε xxε xx

ε yy

ε yyε yy

P y
T

en
si

le
 lo

ad
   

   
   

,  
nN

/m

Graphene sheet
First principle simulation

Simulation A

Simulation B

Simulation BSimulation A

 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3
 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3

(b) Relationships between the load and the strain under tension.

Figure 2: Strength of graphene sheet [14].
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(a) Ideal structures of thin films with 6, 10, 14 silicon layers, and their unit cells.
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(b)Dependence of ideal strength and elastic coefficient on the film thickness.

Figure 3: Strength of silicon thin film[26].
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the surface are relaxed and they sometimes form notably different structures from those in the
bulk. In particular, the first layer shows a unique structure due to the reconstruction when the
atoms on the surface have dangling bonds (e.g. [21-24]). Since the thin film is interpreted as
being a material sandwiched by the surfaces, the mechanical property reflects the nature of the
surfaces. In the other words, we may be able to determine the Ideal structure of carbon layer in
graphene sheet and the unit cell for calculation.we may be able to determine the ideal surface
effect on the strength by comparing the strengths between the bulk and the film [25].

Here, we show the strength of a silicon thin film with the excellent reconstructed surface of
(100), of which the simplest structure is 2× 1 illustrated in Fig.3 (a), as an example of an ideal
film [26]. The freedom of a periodic cell in a film depends not only on the crystal structure but
also on the thickness. We prepare a calculation cell of silicon with several thicknesses, and apply
the uni-axial tensile strain, εyy, to the cell under the free transverse-stress condition, σxx = 0
by the first-principle simulation (GGA, plane-wave basis, ultrasoft pseudopotential).

Figure 3 (b) shows the dependence of the peak tensile stress and the elastic coefficient, Eyyyy,
on film thickness. The figure indicates that the peak stress increases as the film thickens [26],
and approaches the ideal bulk strength (thick line). It also reveals softening in the thinner film,
signifying that the surface inherently possesses a weakening effect. However, the magnitudes of
strength and the elastic coefficient, Eyyyy, of a 2-nm-thick film reach about 90% of those of the
bulk. This implies that the surface property dominates only a region of less than 1 nm deep.

2.2 One-dimensional structure

There are several types of ideal wire with perfect one-dimensional periodicity, such as atomic
chains, solid wires and tubes (hollow ones). In this section, we will present a typical strength
analysis of them.

Atomic chain In recent years, it has become possible to arrange atoms in order by employing
a sensational manipulation technique. An atomic chain is the simplest wire. It can be exper-
imentally created and be observed in situ by an electron microscope (e.g. [27]). Figure 4(a)
illustrates the atomic chain in which atoms align in a string [28-31].

Numerical simulation (LDA, plane-wave basis set, and norm-conserving pseudopotential) is con-
ducted on the calculation cell of an aluminum atomic chain shown by the dotted square in
Fig.4(a)[30]. The result reveals that the equilibrium interval of atoms is much shorter than the
closest distance between atoms in the bulk fcc crystal of aluminum. A tensile strain is then
imposed on the cell. The load-strain curve shown in Fig.4 (b) indicates a strength of 1N and a
critical strain of 0.2. One way of perceiving the chain’s strength is to compare it with the bulk
providing that the fcc crystal is a bundle of atomic strings as illustrated in Fig.4 (c). Not only
is the failure load of the atomic chain much higher than the critical tensile load per string in
the bulk, but the elongation is eminently lower [30]. Therefore, we notice that the chain is more
brittle than the bulk crystal.

Nano-wire There are two types of structure that form an ideal solid wire. One is a crystal
with an ordinary structure surrounded by surfaces, and the other is a very thin wire with an
exotic structure, namely a nano-wire. For the former, a similar property as shown in thin film
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(a) Illustration of atomic chain and the calculation cell.
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Figure 4: Strength of aluminum atomic chain[30].
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(a) Ideal structure of silicon nano-wire and the unit cell.
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Figure 5: Strength of silicon nano-wire[26].
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(Fig.3 (b)) is readily conceived. The wire becomes softer and weaker as the diameter shrinks to
the extent that it possesses the structure of a crystal lattice.

In the meantime, since the extraordinary structure in the latter [32-38] still holds its periodicity
along the wire axis, it should be categorized as an the ideal wire as well. Figure 5 (a) shows an
example of the nano-wire structure proposed for silicon [26].

Tensile behavior of the unit cell marked by thick squares in the figure is simulated by the first-
principle method (GGA, plane-wave basis set, and ultrasoft pseudopotential) [26]. The relation
of load versus strain is shown in Fig. 5 (b), indicating the peak strength of about 5 N. However,
care is necessary since the wire possesses various meta-stable structures due to loose constraints
imposed by neighboring atoms. This requires strict judgment of instability as discussed in
section 3.

Tube Since the discovery of fullerene, intensive research attention has been directed foward
materials with hollow structures at the nano scale. As a wire, the carbon nano-tube (CNT)
possesses beautiful tubular structure with rich properties, that have been rigorously investigated
both experimentally and theoretically (e.g. [39-47]), promising potential use in future miniature
devices and machines.

Figure 6 (a) shows the unit cells of CNT with different chirality which represents the understruc-
ture of the tube. They have a similar diameter of 0.7-1.0 nm, and tensile simulation is carried
out based on the TB method [46]. Here, (9,0) and (8,8) are known as Zigzag and Armchair
types, respectively. Referring the graphene layer shown in Fig.2 (a), the strength of CNT (8,8)
can be compared with that of raw material. (In the case of Fig.2 (b), the transverse strain is
constrainted. For exact comparison, the simulation of the graphene layer should be conducted
under the free transverse-stress condition.) This signifies the small effect of curvature on the
strength. The effect of chirality can be determined in a similar manner.

The tensile curves shown in Fig.6 (b) reveal that the Armchair type shows higher critical-stress
than the Zigzag type though there are few differences among CNTs with different chirality. The
stiffness at the equilibrium (no external load) is also only slight dependent on the understruc-
ture. Applying an unbalanced load (strain) to the side wall of CNT as shown in Fig.6 (c), we
can analyze the effect of pure bending. Since this provides fundamental knowledge of defect-free
nano-structure components under simple loading, it also should be included in ideal strength,
though the one-dimensional periodicity along the y-axis is lost. At this point, the instability
criterion of an arbitrary structure under an arbitrary external load becomes crucial in the anal-
ysis. In general, CNTs inherently possess various shapes including bent tubes, hones, and so
on. The strength of typical ones, which provides fundamental comprehension and insight into
the strength of the various CNTs, should be categorized as the ”ideal strength”.

2.3 Zero-dimensional structure

This category includes nano-particles and clusters [48,49] as the solid structure and fullerenes [50-
53] as the hollow one. While these do not maintain periodicity, they do possess characteristically
beautiful, defect-free structure. Moreover, they are essential members of the family of nano-
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Figure 6: Strength of carbon nano-tube[46].
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structured materials. Thus, they should also be categorized into the ”ideal structures”.

In this section, the tensile behavior of the silicon cluster illustrated in Fig.7 (a) [26], which
includes six atoms, is examined by the first-principle simulation (GGA, plane-wave basis set,
and ultrasoft pseudopotential) as an example. The displacement is applied to the top and
bottom of the cluster. Figure 7 (b) depicts the stretched process that discloses the spring-like
behavior, and the load-displacement curve is shown in Fig. 7(c).

3 Ideal strength and instability

As described in the Introduction, the strength of an atomic structure is defined as the stress or
strain at which unstable deformation takes place. Consequently, it is inevitable to investigate
the instability criterion under an external load (or displacement) when we consider in detail the
strength of nano-structured components.

3.1 Instability of homogeneous crystals under homogeneous external stress

(strain)

In the 1960s, Milstain [54] made a famous landmark analysis on the stability of cubic lattices
under tensile deformation. The homogeneous deformation of cubic lattices is attributed to the
components of the strain tensor in order that the distorted lattice shape is represented by the
axial lengths, a1 − a3, and the angles, a4 − a6, as illustrated in Fig.8, respectively. It is then
defined as ”stable” when the total energy (free energy) of the system, Π does not decrease
for an arbitrary incremental disturbance of strain under the external load. If it decreases, the
component deforms without increase in external load, namely unstable deformation. Thus, the
instability criterion for the homogeneous crystal under the homogeneous external strain is given
by the sign of determinant A including its minor matrices. Here, the matrix A is in the form

A =
(
Aij

)
=

(
∂2Π

∂ai∂aj

)
. (1)

The lattice is stable when all of the determinants are positive. The criterion, of course, can
be described by the differentials for strain instead of the variables a1 to a6. Since the elastic
coefficient is defined as the second differential of the potential energy for the strain component,
the instability criterion means the instance that the distorted structure loses its stiffness. Then,
by using the elastic coefficient, the criterion for metals with cubic lattice (fcc and bcc) is rewritten
as [1]

Exxxx + 2Exxyy > 0

Exyxy > 0 (2)

Exxxx − Exxyy > 0.

Hill [55, 56] pointed out that the instability criterion is dependent on the coordinates used
for the evaluation of strain and stress. In other words, it is strongly dependent upon the
loading boundary condition (loading device or external atomic system that yields the load on the
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Figure 7: Strength of silicon cluster[26].
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Figure 8: Variables a1 − a6 that represent the deformation of unit cell.

component in question). This stems from the fact that the freedom of deformation is restricted
by only six variables in the analysis. As the nano-material has a larger number of degrees of
freedom in general, the effect must be considered in discussions of the instability criterion.

Wang et al. [57,58] expanded the discussion on the basis of free energy and corrected the criterion
using the stiffness coefficient for the bulk crystal. On the other hand, the criterion can be
discussed in the context of the propagation of sound waves. The criterion of the transformation
of crystal structures has been explored in terms of the soft mode of phonons by Hill [59]. As the
elastic coefficient has a close relation with the long-wave mode of phonons, the ideal strength,
which is a kind of structural transformation under an external load, surely can be generalized
by the viewpoint of the soft mode, including the influence of the internal displacements. This
phonon-based analysis is effective as far as the components hold periodicity, though the effect
of external force is not explicitly included in the strictest sense.

Rapid progress in computational technology makes it possible for us to analyze the ideal strength
on the basis of quantum mechanics. Investigations are rigorously conducted not only for pure
metals with simple structures but also complex crystalline structures, e.g. intermetallic com-
pounds. Sob et al. [60] produced an excellent review on the ideal strength of metals in the
Highlight No. 58. In that report, they pointed out the importance on the coupling of ideal
deformation (mechanical property) with electrical or magnetic properties in an ideal crystal.
Several researchers (e.g. [60]) have successfully extended the analysis on the change in the elec-
trical or magnetic properties due to deformation. For example, the electric property of the CNT
is strongly correlated not only to its chirality but also to the strained condition [44-47].

3.2 Local instability in atomic components

In order to generalize the discussion on the ”strength” of nano-structured components, it is
necessary to explore the instability criterion of an arbitrary structure in the atomic scale.
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The criterion for the dislocation emission from a crack tip under an external stress was pro-
posed by Rice [61]. This have an impact on the following works on local instability of atomic
components, though his analysis was totally based on the continuum mechanics concept. In his
analysis, Rice derived the criterion from an instability of plastic flow under a singular stress-
strain field near the crack tip, with the consideration given to the crystallographic slip direction.
This stimulated researchers who were working on material strength at the atomic scale, leading
to studies using numerical simulations by classical molecular dynamics (e.g. [62]). As a result,
criterion based on the atomic mechanics concept is required to discuss the above problem pre-
cisely. In the nano-structured components, the switching or breaking of bonds between atoms
under an external load generally brings about a sudden load-drop or displacement acceleration,
namely unstable deformation. In a crystal, the dislocation nucleation was the shear collapse of
local lattice. Thus, it was investigated from perspective of lattice instability [63, 64].

The stress, σij , and the elastic coefficient, Eijkl, are the quantities in continuum mechanics
originally defined for a large region, which includes enough atoms. Those inherently can not
be evaluated for each atom or local region. However, under the appropriate assumption (for
example: the inter-atomic potential of embedded atom method [65]), σij and Eijkl in a local
region can be reasonably estimated in consideration of short-range influence [66]. Vliet et al.[67]
proposed the local instability criterion (Λ-criterion) based on the soft mode of long-wave phonons
referring to the relationship between the long-wave property and σij and Eijkl in the region.
They successfully applied it to dislocation generation under nano-indentation. Moreover, the
criterion is generalized to the soft mode of shorter-waves by Dmitriev et al. [68].As we will
describe in the next section, the exact mechanical criterion for the instability of arbitrary atomic
structures under external load requires enormous numerical calculations due to its large number
of degrees of freedom for deformation. Thus, it becomes important to make an approximation
(local instability criterion) to extract the effective condition based on local information.

Strictly speaking, the analysis of phonons can be applied only on the structure with periodicity.
As the low-dimensional structures discussed in section 2 do hold the periodicity in their dimen-
sions, the characteristic instability can be explained by their soft mode. The instability at the
surface of a nano-film with strained lattices has recently analyzed using the phonon dispersion
property. The results may provide an important clue not only on the dislocation generation
from the surface under strain, but also on the ideal strength of low-dimensional components.

3.3 Instability criterion for arbitrary structures under external load [69, 70]

Let us consider an arbitrary body comprising N atoms (N: number of atoms) under a strained
state at the temperature of 0 K. Under an external load, the deformation is described by the
number of degrees of freedom, M = 3N − 6, excluding the translation and rotation of the
body. The total energy in the structure under an arbitrary deformation, Π which is the sum
of strain energy, U, and the external work (negative), V, is in the function of only coordinates
of atoms, R = (R1, · · · , RM ). Then, the Taylor’s series expansion of Π in terms of infinitesimal
deformation, ∆R, gives the following relation

Π(R + ∆R) = Π(R) +
M∑

m=1

∂Π
∂Rm

∆Rm +
1
2

M∑
m=1

M∑
n=1

∂2Π
∂Rm∂Rn

∆Rm∆Rn + · · · . (3)
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The second term on the right-hand side vanishes since the system is at equilibrium. Attention
should be paid on the fact that this term does not denote the external load.

Ignoring the higher-order terms, we have

∆Π = Π(R + ∆R) − Π(R) =
1
2

t∆R A ∆R, (4)

where the components of the matrix, A, are given by

Amn =
∂2Π

∂Rm∂Rn
. (5)

The structure is stable when ∆Π is positive, but becomes unstable and consequently deformation
progresses when ∆Π becomes negative. Thus, the critical magnitude for the structural stability
is given by ∆Π =0.

The matrix, A, is diagonalized using the matrix, P=(p1 p2 · · · pM), where p1, p2,· · · , pM are
the eigenvectors of A, as

P−1AP = tP AP =




η1 O
. . .

O ηM


 . (6)

Here, ηm (η1 < · · · < ηM ) is the eigenvalue of A. Introducing the matrix, ∆Q = P−1∆R, we
get

∆Π =
1
2

t (P ∆Q) A (P ∆Q)

=
1
2

t∆Q( tP AP )∆Q =
1
2

M∑
m=1

ηm (∆Qm)2 . (7)

Then, the instability criterion (∆Π =0) is attained by

η1 = 0, (8)

under

∆Qm = 0 (m = 2, · · · ,M). (9)

(Strictly speaking, the third differential term in Eq.(3) must be negative.) Moreover, Eqs.(7)-(9)
point out that

∆R = ∆Q1 · p1. (10)

This means that the deformation at the instability is proportional to the eigenvector for the
minimum eigenvalue, signifying the deformation mode at the instability. As the scheme is
purely dependent on the system’s energy, it can be applied to the quantum mechanical analysis
without any collection.

Since the criterion is versatile, it is applicable to the instability of materials without periodicity
or symmetry, such as the nucleation of dislocations [70], the delamination of thin film from a
substrate [71], and so on. Even the plastic deformation of amorphous and metal glass, which
stems the bond switching of local atoms, can be analyzed.
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3.4 Structural instability

Above, we mainly discussed the instability of a lattice. In the meantime, there is another type
of instability caused by the combination of load and global structures. It happens even when
the lattice strain is not large. We can classify it into the ”global” instability instead of ”local”
instability because it takes place in a macroscopic elastic body. A typical example of global
instability is ”buckling” of thin bar.

Figure 9 (a) [26] shows a silicon nano-wire with the same structure as the one shown in Fig.5(a).
Axial compression is applied to the wire, of which calculation cell consists of 1 unit cube (Sim-
ulation A) or 5 cubes (Simulation B). The periodic boundary condition in the first-principle
simulation (GGA, plane-wave basis set, and ultrasoft pseudopotential) fixes both ends of the
wire. Simulation A, of course, exhibits extremely high strength, whereas the load-strain curve
in Simulation B shown in Fig.9 (b) has low strength due to the buckling. This signifies that the
buckling strength can not be predicted by the ideal strength, nor can it be explained in terms
of local strain (local lattice instability). On the other hand, an analogy does exist for the rela-
tion between the nano-structured component and macroscopic continuum body. In this sense,
the conventional continuum mechanics of an elastic body provides an interesting insight to the
global collapse of nano-structured components such as devices and MEMS/NEMS. Moreover, it
should be noted that the instability criterion discussed in section 3.3 can be applied not only to
the local instability, but also to the global one.

4 Conclusion

We discussed the strength of nano-components with the ideal structure, with particular attention
focused on the peak stress of low-dimensional material to extend the concept of the conventional
ideal (theoretical) strength of a perfect crystal. In the same framework, we could discuss the
ideal strength of grain boundaries and interfaces with periodicity, even though they are not nano-
components. Materials possessing a super lattice structure, of course, should be such interesting
targets. Thus, the ”ideal structure” could be defined as the model structure by which simulation
provides us with fundamental knowledge.

In the latter half of this paper, we investigated the instability that is closely related to the
strength on nano-structured components. Since there are many unknowns in the instability
criterion, further research is required.

In this review, we make no mention of not only the influences of temperature and chemical
factors, but also of the deformation in the post-unstable criterion, the multiple instabilities
(e.g. yielding in crystals) and irreversible cyclic deformation (e.g. fatigue). It is clear from the
history of the strength of macroscopic components that these factors play also crucial roles in
the strength of nano-structured components.
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