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Introduction

Every chapter of the well-known textbook Principles of the Theory of Solids by J.M. Ziman is
headed by a particular quotation. For example, the chapter about Electronic states is introduced

by R. Kipling’s words

There are nine and sixty ways of constructing tribal lays,
And-every-single-one-of-them-is-right.

What Kipling wrote is certainly true. (Who would ever doubt this ?) Also, Ziman took a good
choice of the heading, since he intended to emphasize the equivalence of band structure methods
in principle. Everybody who has been working in our field of electronic structure theory knows,
however, that quantitative comparisons between recent codes, on a physically relevant scale
of accuracy, are still unsatisfactory. This statment does not refer to the never ending discussion
if LSDA, GGA, LDA+U, or SIC-LSDA is the preferrable approximation to density functional
theory for a given system. What is meant is the purely numerical implementation of a well-
defined task. Take six different band structure codes and let them calculate the lattice constant
of fcc thorium in LDA. You will get five answers deviating from each other by much more than
related experimental data, see Figure 9 in Section . Remember, we do not want to discuss the
well-known problem of overbinding in LDA ! This problem can only be tackled if we know
what the LDA result is.
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At this point it is fair to state that tremendous advances in the numerical techniques have been
achieved since John Slater’s days. A number of full-potential methods with a high degree of
reliability and flexibility have been developed.! The price that has to be paid for the accuracy
consists of computing time and main storage: linear methods require large basis sets, while

non-linear schemes are slow anyway.

Despite the worldwide efforts spent in developing accurate electronic structure code, we are
not aware of any reasonable data collection, except that discussed below, comparing the key
quantity of DFT, the ground state energy, obtained with essentially different schemes. There
is a wide-spread opinion that the numerical accuracy of the codes is more or less unknown.
However, if the total energies produced by completely independent codes with tenthousands of
command lines would almost coincide, the probability that the codes have noticable errors would

be accordingly small.

This highlight is devoted to a recently developed code that provides answeres to both questions
raised. The full-potential local-orbital minimum-basis (FPLO) code [1] is

(i) numerically (almost) as efficient as wide-spread lower-accuracy schemes. This efficiency is
based on employing a self-adjusting minimum basis. The valence basis is completed by a

few upper core states and polarization states.

(ii) The total energy calculated by FPLO coincides with the total energy obtained by the
WIEN97 code within chemical accuracy, in the order of 1-2 mHartree per atom. This goal
has been achieved by an efficient method to optimize the local basis states with respect
to the total energy and by applying a shaping technique for the construction of densities

and potentials.

After gathering enough experience with the first version of the code, that has been used and
tested by about 10 individuals during the last two years, we decided to release the updated
version FPLO®-2. Licences to use this version were issued to 15 groups during the workshop
“Hands-on-FPLO” at IFW Dresden, held in the first week of March, 2002. The release includes
a fast and convinient user interface and several tools to process output data. Informations on the
workshop and on the licence conditions can be obtained from our homepage, http://www.ifw-
dresden.de/FPLO/.

Before we proceed to present the background of the method and some of the obtained results,
a few words should be spent on the history of this development. The ancestor of our present
method is the linear combination of atomic orbitals method (LCAQ), well-known from textbooks
and, besides the complementary plane-wave method, most frequently explained to students in
solid state physics. LCAO has two major disadvantages. At first, many Slater-Koster inte-
grals have to be calculated since the atomic functions are far-ranging. Second and more severe,
the atomic basis is incomplete if only bound states are included. In the mid-seventies, Helmut
Eschrig started to develop an optimized LCAQO method being exempt from the mentioned short-
comings. The trick was to smoothly localize the atomic orbitals by an attractive potential [2].

The same idea is used in the present code in refined form, see Section . The ins and outs of

1On purpose, we do not quote the individual methods: to forget one of them would be worse than not to

mention any...
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Optimized LCAO were published in in the year 1988 together with calculated data for all light
metals of the periodic table up to Zn [3].

As time went by, the calculation of band structures and densities of states alone was not sufficient
anymore, and total energy calculations came into focus. Optimized LCAO could not compete
in this field, since it relied on a representation of radial functions (wave functions, densities, and
potentials) in terms of Slater-type orbitals. This choice had been taken on the background of the
available main storage (up to at most 1 MByte) of computers accessible to Dresden physicists
before 1990. In the early nineteeth, it became clear by attempts of Ulrike Nitzsche that the
Slater-type representation had to be abandoned. In addition, we were heading for uttermost
accuracy. Thus, Arthur Ernst in our group implemented a mixed basis scheme that achieved
this goal at the price of a comparably poor performance [4]. The accuracy obtained by this
method is perhaps not surpassed yet, but it cannot be used for elementary cells larger than
a few atoms. On the basis of the existing experience, Klaus Koepernik developed the current
scheme. It perhaps represents the best compromise between absolute accuracy and performance
[1].

The described development through more than two decades was almost from the beginning paral-
leled by the implementation of important extensions to the basic codes. Chemical disorder could
be treated in the optimized LCAO code within non charge-selfconsistent CPA, implemented by
the late Reinhard Richter in collaboration with Bedrich Velicky [5]. A much extended and
completely charge-selfconsistent CPA version [6, 7] was added to FPLO by Klaus Koepernik
on the basis of the nearly forgotten pseudo-spin approach of Blackman, Esterling, and Berk.
Relativistic versions of both codes have been developed as well, by Manuel Richter for the old
code [8, 9] and, quite recently, by Ingo Opahle for FPLO [10]. Both implementations are based
on the full four component representation of the Bloch states. Finally, LSDA+U is just about
to be completed by Igor Chaplygin.

What remains to be said is organized in the following way. The next section compiles the
principles of FPLO in more detail. Sections , , and describe the implementations of CPA,
LSDA+U, and the relativistic versions, respectively. The content, the performance, and the
portability of the present release, FPLO®-2, are briefly outlined in Section . Finally, Section
brings the summary and the outlook.

Principles of FPLO

Local-Orbital Minimum-Basis Scheme

We start from the well-known ansatz for the Bloch states ¢y, (r),

1 )
Y (T) = N Eé ¢ps1(r — R — 8)CLg ne™ B9 | (1)
The basis states ¢s1, used to approximate the Kohn-Sham wave function of the crystal are local
orbitals centered at sites s in the elementary cell defined by the lattice vector R. They are
solutions of an atom-like Schrodinger equation and are denoted by a complete set of atomic

quantum numbers L = {p,l,m}.

103



The secular equation to be solved is
HC = SCe, (2)

since the basis is nonorthogonal. Hamiltonian and overlap matrices are defined according to

HS’L’,SL = Z<0S,LI|1{I|RSL>eik(R+S_S’)a (3)
R
Sepsr = _(0s'L'|RsL)e™B+s=s), (4)
R

As usual, the local basis states are divided into two classes, the core states ¢sr, and the valence

states ¢sr,,, to avoid unnecessarily large matrix problems. We define the core states by
(R'S'LL|RSL.) = 6.0 0gp/Jss’ - (5)

Provided this condition is fulfilled (in practice, to the requested level of accuracy), the core

states can be removed from the basis by an exact transformation [4]. At first, we decompose

1 cv 1 1 cv
S = Seu) _ 0 Sen) _ StSE, (6)

where left and right triangular matrices S% and SE obey the relation

the overlap matrix,

55;155) = Syv — SveSew - (7)

Further, by definition of the core states,

€cl €cSew .
H= , €. =diag(---,€sp,, ). 8
(Svcec va) ‘ g( = ) ( )

Re-writing the secular equation,
(SY)TLH(ST)THSTC) = (STC)e (9)

leads us finally to the reduced problem

HyyCyy = Cppéy » (10)

with the definition

Hyy = (Sva)_l(va - Svchcch)(Szﬁ;)_l (11)
and ~
1 =S, (SE)ICy
C= . (12)
0 (83) " Cuw
The orthogonality condition for the core states is controlled during the successive iterations and

related warnings or error messages are displayed.
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Basis Optimization

A crucial feature of the method is that the basis is readjusted at every iteration cycle and is

optimized in the course of iteration. The core states obey the equation

(f + vsat) $sL. = PsL EsL, (13)

with 3" being the crystal potential spherically averaged around the site center s. The latter
definition assures that a Bloch sum of the core orbitals and the related core eigenvalues esy,, are

very good approximations to the solution of the true crystal Hamiltonian.

On the contrary, the valence orbitals are defined in the following way:

4
. r
(t + ’U:t + ( ) ) ¢SLU = ¢va65LU (14)
T'sL,
. 3 . . . .
with rsz, = (rnN(S)zor, /2) 2, where ryN is the nearest neighbor distance and zgy, are dimen-
sionless compression parameters. The seemingly strange scaling of the 7z, is the correct one

for an empty lattice.

The effect of the additional confining potential is to compress the long-ranging orbital tails of
the valence orbitals. The power law potential has minor influence on the orbital in the core
region, while in the region far from the nucleus the orbitals undergo a drastic change, compared
to solutions without the confining potential. To be precise, the valence orbitals are usually
unbound states in the potential v2* alone. A second, even more important effect of the valence
orbital confinement is that the orbital resonance energies are pushed up to come close to the

band centers, providing the optimum curvature of the orbitals (Figure 1).
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Figure 1: Total density of states of Au and the orbital energy positions €sz,, of the optimized
local basis states. All energies are relative to the Fermi level. (This figure has been produced
with the relativistic FPLO code.)
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The parameters zy enter the total energy via the basis expansion of the valence eigenstates.
Therefore, the total energy is depending on zg as long as the basis set is incomplete. The most
important feature of the FPLO basis treatment is that the total energy is minimized with respect

to the set of compression parameters. In consequence, FPLO is not a fixed basis scheme.

In the self consistent calculation, the basis is adapted to the best zg set by using relations similar

to the force theorem. One can prove the equality

8y, B = z%ekn / n(r) 8V (r)dr (15)

using 0y N = [ 0zyn(r)dr = 0. The right-hand side of Eq. (15) turns out to be exactly zero
for all zg if the basis orbitals form a complete set. Since the latter is obviously not the case, we
require O, E*™" to vanish and obtain matrix equations for the calculations of the compression
parameters, which then are solved simultaneously with the Kohn-Sham equations in every iter-
ation step. This method turns out to be very efficient. A rule of thumb is that, depending on
the starting values for x(, a calculation with basis optimization takes only 1.5...3 times more

iterations than without.

Partitioning of unity and shape functions

The representation of density and potential as locally finite lattice sums is achieved by using the

partitioning of unity. Two types of shape functions are employed in FPLO.

(i) The overlap density is a lattice sum of terms, consisting of a product of two orbitals located
at different lattice sites with a generalized occupation number. These terms have two cusps, one
at each site. Each term is split into contributions from the two sites, which are “localized” at

the corresponding site and fall off to zero at the other:
binijp; = fij(r)pinijd; + dinijd; f1i(r) , (16)
using 1D shape functions f;; with the following properties
o fij(r)+ fj(r) =1 Vr
o fij(si) = fii(s;) =1
e f;; is continuously differentiable to a certain degree

e f;; behaves like 1 — O(|r — s;|V) and O(|r — s;|) at the site i and j respectively, with a

certain order N

These properties assure that the function at one site will screen the cusp at the other site in a

controlled manner.

One possible choice of shape functions is:

fij(r) =p(x), fi(r) =p(l —z) (17)

with z = (r — s;)(s; — s;)/|sj — si|* and p(z) + p(1 —z) =1, p(z) =1 V z < 0 and
p(z)

0 V z > 1. For the profile function p(z) one may chose any function which fulfills
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Figure 2: Overlapping Voronoi cells in a 2D square lattice.

the differentiability and power law conditions given above. Any such function creates a class of

similar functions, generated by p,(z) = p(1 — pp—1(x)).

(ii) For the decomposition of the non-linear exchange and correlation potential into a sum of

locally finite contributions we use a 3D shape function. The requirements for this functions are

e Each single shape function f;(r) is centered at a certain site s;
° X filr)=1 Vr
o filr—s)=1-0((r—sy)")

e The shape function at s; (when multiplied with a lattice symmetric function) screens the

singularities at all other lattice sites s;:
filr—s) =04+ 0((x —s,)¥) Vj#i
e f; is continuously differentiable to a certain degree.

e The shape function has the “smallest possible compact support”.

Our choice of shape functions is defined as follows. The most compact supports, which may
be defined for every site in an arbitrary lattice are the Voronoi cells. Since the resulting shape
functions should be overlapping, we chose Voronoi cells 2 with an eightfold volume compared
to the standard definition. The distance between the central site and the defining boundary
planes is two times larger than usual. Figure 2 shows overlapping Voronoi cells according to our

definition in a 2D square lattice.

Each cell-defining plane is related to a certain neighboring site s;. For a given site s;, we
define dimensionless scalar variables z; and 1D profile functions h; for every neighboring site

s;j, contributing to the cell boundary definition:

hj(r) = p(z5), == . _Is?)_(ss{Z |; %) (18)

with an appropriately chosen profile p(x):
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e p(0+48)=1—0(N)
e p(1-0)=0+0(")

e p(x) continuously differentiable to a certain degree and monotonously decreasing

The product of all profile functions gives a cell-function

gi(r) =[] h;(r) , (19)

{5}
which excludes by its definition every lattice site except s;. Additionally, it falls off faster than
a given power law, when approaching the cell boundary (and thus a neighbor site). The unity
condition for the lattice sum of all shape functions is achieved by explicit normalization. Thus,

the shape function reads

filr) = % , (20)

where the sum runs over all neighboring sites whose Voronoi cells overlap the cell at site s;. This
is always a finite sum and it turns out that the numerical implementation of the shape functions

described above is extremely efficient.

Density and Potential representation

Details of density and potential calculation have been published elsewhere [1]. Thus, we con-

centrate on the key points here.

The (spin) density in a non-orthogonal local basis scheme consists of net and overlap contri-
butions. The former terms contain products of basis functions from the same site and are
site-centered by construction. The latter terms contain products of basis functions from differ-
ent sites. They are decomposed into site-centered contributions by application of the described
partitioning technique. As a result, the total density is obtained as a lattice sum of site densities

in spherical harmonics representation,

n(r) = Z ns,lm(|r_R_S|)Ylm(r_R_S) . (21)
Rs,lm
The maximum [-numbers used are 6 for the net contributions (by construction from states of

Imax = 3) and 12 for the overlap contributions.

The Hartree potential is evaluated with the help of Ewald’s method applied to all multi-pole
components. While the local part can be used ‘as is’, the Fourier-transformed contribution is
inserted into the 3D partitioning-mill described in the previous section. This again provides us
with a locally finite lattice sum. Finally, the xc potential is partitioned in exactly the same way,

and the local contributions to the crystal potential are expanded into spherical harmonics,

V()= Y vem(lc—R—s)Yim(r—R—s). (22)
Rs,im
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Now, when it comes to evaluate the multi-center Slater-Koster integrals, we can joyfully harvest
the fruits of our endeavors. As the extension of all involved functions is finite and restricted to
few neighbor atoms, relatively few integrals have to be calculated, and no cut-off is needed. The
one- and two-center integrals are further simplified by the application of angular momentum
rules to one- and two-dimensional numerical integrations, respectively. All integration meshes
are tuned to achieve accuracies of better than 1 yHartree in the Hamiltonian integrals and better

than 10% in the overlap integrals.

Coherent Potential Approximation (CPA) for partial substitu-

tional disorder

The density- and potential representation as well as the local orbital basis set used in FPLO are
well suited to apply a variant of the CPA to describe disordered bulk materials. For this purpose
we employ a generalization of the Blackman-Esterling-Berk (BEB) matrix-CPA. This version of
CPA provides a scattering theory in matrix notation, which parallels the usual KKR-formulation.
In contrast to all other simple types of matrix CPA, the BEB-CPA does not restrict the values
of the Hamiltonian matrix elements. It completely incorporates the off-diagonal disorder effects.

Moreover, the BEB-CPA has been proven to fulfill the dilute or single impurity limit.

The main ingredients and approximations are sketched in the following. The random occupation
of the lattice sites is described by assigning pseudo spins to every site, labeled by the atom sorts,
which may occupy the site under consideration. They take values 1 or 0, depending on the
occupation of the site. This treatment is flexible and allows the description of partial disorder.
We assume statistical independence of pseudo spins from different sites, thus neglecting short

range order effects.

The main assumption is the linear dependency of all real space functions (density, potential,
and orbitals) on the pseudo spins. In this way it is possible to write down density, potential,
Hamiltonian, and Green’s function as pseudo spin dependent random objects, which model
a statistical ensemble. For a certain member of the ensemble, say a particular realization of
all pseudo spins, these objects become nonrandom and represent the behavior of exactly this

member.

The random Hamiltonian and Green’s matrix are defined in an enlarged Hilbert space (due to
the pseudo spin degrees of freedom), which to a certain extent describes the true statistical
ensemble. The equation of motion for the Green’s function is formulated in this Hilbert space.
One can write down the scattering matrix for this equation and ends up with a CPA condition,
which defines an averaged Green’s matrix in the enlarged space. It is possible to show, that the
matrix elements of this averaged Green’s function represent relevant partially averaged physical

quantities like generalized occupation numbers, which enter the density expression.

In practical calculations, the CPA condition is solved within the single site approximation (the
scattering matrix is decoupled into single site events and the CPA-condition is applied to the
single site scattering matrices only). The second simplification is done for the occupation num-

bers entering the density expression. It is assumed, that the true (random) occupation numbers
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may be replaced by conditional averages with only the sites indexing the occupation numbers
being kept random. The resulting density expression is again linearly depending on the pseudo

spins and, thus, all ingredients for a charge self-consistent calculation are defined.

The CPA method, as shortly outlined above, has been applied to the FeAl system. This system
undergoes several structural and magnetic phase transitions in dependence of concentration and
temperature. The iron rich site of the phase diagram consists of structures, derived from the bcc
structure. All atoms are at bcc sites, but the occupation is partially disordered (experiments
provide evidence for partial long range order). Depending on the actual occupation one may
describe the resulting structures by superstructures of the bcc lattice, where some sub-lattices
are occupied with iron or aluminum only, while the other sub-lattices may be occupied randomly
by iron and aluminum. Three possible structures are the Ay structure (completely disordered
bee lattice), the By structure (CsCl structure with one sub-lattice randomly occupied), and the
DOj structure (four sub-lattices, one or two occupied randomly, depending on the aluminum

concentration.)

8000

6000 r A1-B2

= 4000 r
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L L |
0 0.2 0.4
concentration Fe

Figure 3: Theoretical phase diagram of Fe-Al.

We have investigated the influence of the types of partial disorder on the magnetic and mechan-
ical properties. For every structure type and concentration we optimized the lattice constant.
The resulting energy surface was combined with a simple mixing entropy term to provide an
estimate for the enthalpy. From this we concluded a rough picture of the phase diagram at the
iron rich side, Figure 3. In the Fe concentration range 50% — 96% the DO3 phase has the lowest
enthalpy at low 7. Above 90% Fe, the Ay phase replaces the DO3 phase when temperature
increases, while below 90% Fe concentration, the DO3 phase is replaced by the By phase. Above
70% the enthalpy curve is concave, which indicates de-mixing and instability of the DO3 and

Bs phases.
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Experiments indicate only a small concentration region around 70% Fe, where a DO3 like phase is
stable. This contradicts our finding of a stable DO3 phase extending over a larger concentration
range. We believe that the experimentally observed By phase is a thermodynamically meta-
stable phase, resulting from freezing of atom exchange when cooling down the sample. On the
other hand, the enthalpy difference between Bs phase and DO3 phase becomes rather small for

concentrations close to 50% Fe.

There are other quantities supporting the stability of the DO3 phase found in our calculation.
The first result concerns the equilibrium volume at zero temperature. Starting from pure iron,
the lattice volume is linearly increasing with the aluminum concentration. Around 70% Fe the
volume stays more or less constant while for still lower Fe concentrations the volume is further
increasing. This behavior is exactly reproduced in the spin polarized DO3 phase calculations.
The reason for this finding is a magneto-strictive effect. In the same region where the lattice
constant is staying constant the magnetic moment strongly decreases with increasing Al content.
We have found two minima in the total energy versus the magnetic moment. Depending on the
lattice constant, one of the two minima is stable. This could provide a simple mechanism of
magneto-striction. As a final note, the Bs phase shows similar behavior, but the DOs-phase
magnetization and volume versus concentration curves are resembling the experimental findings

more closely.

LSDA+U

We have implemented the LSDA+U approximation for computing the electronic structure of
compounds with strong correlations, such as transition metal oxides. It is well known that LSDA
often fails to describe the transport and magnetic properties of such compounds. The reason
for this failure is primarily an insufficient description of the on-site Coulomb correlation of the

d-electrons. LSDA+U proves to give better results in many cases.

Figure 4: Antiferromagnetic unit cell of CaCuOs. Note that the cell is rotated by 7/4 about the
Z-axis with respect to the standard CuO2 plaquett, so that the d;, copper orbital is involved
in o-bonding with in-plane p-orbitals of the neighboring oxygen atoms.

111



The implemented version of LSDA+U is rotationally invariant and has few free parameters
(Slater integrals). In the considered d-systems, we restrict the number of parameters to the
Coulomb U and exchange J interaction constants. Under fixed choice of the parameters and
well-defined d-orbitals the LSDA+U ground-state energy is a functional of spin-density, which
puts a rigorous ground for using it in the framework of DFT. The chosen form of the double-
counting term ensures that the functional reduces to that of LSDA in the limiting cases of full

or zero occupation of the relevant shell.

As an example, results for the compound CaCuQq are presented. This compound does not exist
in nature in the pure form but can be stabilized by substituting about 14% of Ca by Sr. The
idealized crystal CaCuQOq has simple tetragonal structure and is made up of CuQOg planes sep-
arated by Ca layers. The elementary cell of CaCuO2 with chessboard-ordered antiferomagnetic
arrangement is shown in Fig. 4. The lattice constants ¢ = 5.46 A and ¢ = 3.20 A were used in

the calculations.

CaCuQ,
LSDA+U (U=8.1 eV,J=0 eV)
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Figure 5: Density of states of antiferromagnetic CaCuQOy projected on d-orbitals of a copper
atom. The majority and minority spin channels are drawn above and below the X-axis, respec-

tively. Empirical values U = 8.1 eV and J = 0 eV are used.

LSDA predicts the compound to be a paramagnetic metal, though its existing counterpart
Cag.g65r9.14Cu02 is an antiferromagnet with large insulating gap, the influence of the Sr substi-

tution impurity on the electronic structure being negligible.

The implemented LSDA+U version yields the correct insulating ground state. The values of the
magnetic spin moment, 0.71 ppg per Cu atom, and the width of the gap, 1.44 eV, are close to the
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experimental values (total moment 0.51 pg per Cu atom and gap width 1.5 eV). The computed
density of states projected on d orbitals of a copper atom is shown in Fig. 5. One notes that

one dgy-orbital (d,2_,2 in standard notation) is unoccupied and split off the rest Cu-3d/O-2p

y
complex.

Relativistic Versions

Four component relativistic FPLO

Our aim is to solve the Kohn-Sham-Dirac equation in local spin density approximation (LSDA),
Hlkn) = [—icaV + Bc* + V" + B, B | |kn) = elkn) , (23)

with the XC-field B = B“ 2 treated in a collinear approximation and aligned along the (arbi-
trary) Z-axis,

B (x) = 5 (Vi m] — Vi ln,m]) (24)

As usual, the effective crystal potential, V", in equation (23) contains the Hartree potential,

the external potential V' and the exchange and correlation potential V.,

Ve (r) = / n(r’) d3r' — Z F—Zﬁ + % (Vit[n, m] + Vien,m]) . (25)
Rs

v —r'|

Further, ¢ denotes the velocity of light, and «, 8 and 3, are the usual 4 x 4 Dirac and Pauli
matrices. In contrast to most other relativistic band structure methods we solve equation (23)
in a four component formalism, thus avoiding further approximations like the second variation

treatment.

The scheme presented here is a relativistic extension of the non relativistic FPLO scheme de-
scribed in Section 2 and is built on the same numerical grounds, thus enabling us to study the
influence of relativistic effects within one and the same highly accurate scheme. To stress this
opportunity, we mention that the total energies obtained by the non relativistic FPLO code and
by the RFPLO code in a quasi non relativistic mode (c = 10°) agree within some yHartree even
for heavy elements like Au, with the main deviations stemming from the 1s electrons. The scalar

relativistic implementation (SRFPLO) is briefly described in the second part of this section.

The same kind of ansatz for the Bloch states as in the non relativistic version is used,

— L ik(R+s)
|kn) gj Vi Cusn |Rsv) e , (26)
but now in terms of localized four-spinors |Rsv). The label v = (p, k, u) denotes a complete set
of atomic quantum numbers in relativistic notation. The chosen ansatz includes only electron-
like spinors with the ratio between large and small components determined in the preceding
solution of atomic-like problems. This ensures (i) minimum size of the matrix, namely twice the
size of the non relativistic problem and (ii) a restriction of the solutions to the electron sector
of the Hilbert space.
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For our minimum basis scheme, the optimum choice of the local basis states |Rsv) is crucial for
highly accurate and efficient calculations. In analogy to the non relativistic FPLO scheme, we

define the local basis states as solutions of a single particle Dirac equation
|[—icaV + Bc? + vl + BT, Bet] $ss = *da(es + ) (27)
in a spherical, orbital dependent potential

4
1 1 -

vy (v —sf) = vg'(Ir — s|) + V™ = — /dQ V(r—s)+ 5yv%ﬁ (‘rm f‘) (28)
P

which is the sum of the spherically averaged crystal potential, 3, and an additional confining
potential term that is only applied to valence states (denoted by the symbolic writing d,,).
Further, the spherically averaged crystal XC-field is included,

BY(|r — s|) = %/dQB”(r—s). (29)

For the solution of equation (27) we neglect the magnetic coupling terms of order O(1/c?) [11]
and take an ansatz

¢pl€u(r) _ < gpnnu(T)Xnu('F)) ) + ( .gpnfw(r)X"w('F)) ) (30)

ifpmw (T)X—nu ('f'

with £ = —x — 1 and spherical spinors

X,.W(’f') _ ( anTylnu*%('f‘) ) (31)

where the ), are complex spherical harmonics and the ¢, are Clebsch-Gordan coefficients.
This ansatz gives rise to a set of four coupled differential equations, except for the case |u| =

L, + % In the case of a non magnetic calculation, the ansatz (30) reduces to

r) — gpn('r) Xliu(f) >
¢PHIL( ) ( ifpn('r) Xﬂeu('f') (32)

giving rise to two coupled equations. For both types of equations, a number of numerical
standard methods exist, such as Runge-Kutta or multi step methods. We use a predictor

corrector method of Adams-Bashford-Moulton type.

The numerical effort of a local-basis method is determined by the size of the matrix on the
one hand, and by the number of multi center integrals on the other hand. We have already
discussed the matrix size, being twice as large as in the non relativistic approximation. For
small elementary cells and moderate numbers of k points, however, the numerical effort is
primarily determined by the multi center integrals. Given a certain geometry, it depends mainly
on the number of different radial functions we have to consider. Consider at first non magnetic
calculations. Here, we have roughly twice the number of radial functions for the large components
(due to the j =1+ %-splitting of states with [ > 0) compared to the non relativistic approach,
enhancing the effort to calculate Slater-Koster integrals by a factor of 3...4. The same holds
true for the small components, giving another factor of two for the total effort. This is still
tractable and can also be done with the actual RFPLO code.
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However, in standard calculations we take advantage of the fact that the small components are
virtually confined within half of the nearest neighbor distance, so that we can neglect all the
multi center integrals between small components. With this approximation we save a factor of
two both in the calculation time and memory, while allowing for a tiny error in the absolute
value of the total energy. It is of the order of 50 pHartree per atom for gold, much smaller than

our accuracy demands (Figure 6).

*

¢

40 ’QQ
0"’

¢ o
7 20 LA SN
10

X gpproximation
O full scheme

-19037.67 %

-19037.68

3
<
I
2 19037.69
0]
c
L

-19037.7

-19037.71 a7
70 72 74 76 78 80 82 84 86

alau]

Figure 6: Total energy of Au versus lattice constant, using the Perdew-Wang 92 version of
LDA and a minimum valence basis including 5p, 6s, 6p, and 5d states. Results obtained by
including and excluding the overlap between small components on different sites are compared.

The related energy difference is shown in the upper panel at enlarged scale.

In the case of magnetic calculations, the method is tedious if no additional approximations are
made. For a d-shell, e.g., there are ten states with different energies, each of them having two
different radial wave functions (except for the y = ig—states) for the large components. Taking
into account the small components as well, we easily arrive at a factor of 10° for the numer-
ical effort, in comparison with the non relativistic situation. We thus introduce the following
approximative scheme which also allows calculations for more complicated structures with an
acceptable accuracy. Again, the code allows to switch off the described approximation to allow

full control of the accuracy at the price of enhanced computational effort.

For each (p,1)-shell the radial functions of the large components are approximated by a linear

combination of two radial functions

prpo = Cprpodpl + Epmwgpl- (33)

This approach is exact in the two limiting cases of vanishing spin polarization or vanishing

spin-orbit interaction. The coefficients cjxuo, and €,x,0 are determined in such a way that the
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expression

19pruo — (Coruogpt + Cprpadpr)|| (34)
is minimized. For the functions g, and g, we take the (normalized) radial wave functions of
the large components belonging to the state with the highest and lowest energy of the specific
(p,1)-shell. The scheme is written quite general, so that an approximation with a larger set of
functions would not pose any problem. In all cases tested so far, the influence of the present
approximation on the total energies was well below 100 pyHartree per atom. The effect on
relative energy differences like magneto-crystalline anisotropy energies (MAE) is tiny and can
be neglected in comparison with other sources of errors like the finite k-mesh. This insensitivity
is reasoned by the little effect of a rotation of magnetization direction on the size of the spin

moment (apart from heavy elements, where the MAE is large).

Scalar Relativistic FPLO

For many applications, an approximate consideration of relativistic effects is sufficient. Spin-
orbit coupling is neglected in so-called scalar relativistic approaches, so that wave functions
with non-relativistic symmetry are obtained. There is, however, no unique definition of a scalar
relativistic approximation possible. Frequently used schemes are those due to Koelling and
Harmon [12] or Douglas, Kroll, and Hess, employed in Reference[13].

Our approach does not rely on solving an explicit scalar-relativistic equation but rather on
averaging the large components and related energies of the local orbitals. It was previously
implemented in the relativistic OLCAO method [8]. The advantage over other scalar relativistic
schemes is an enhanced accuracy of the charge density close to the atomic nuclei and a smaller

difference of the total energy from fully relativistic calculations.

Neglecting spin dependence for the sake of simplicity, we define scalar relativistic local basis
states |RsL) by

H|RsL) €spt |RSL) (35)
(r[RsL) = fop(r) Yim(?) (36)

as solutions of a fictitious spherical Hamiltonian H* with non-relativistic symmetry. The scalar

relativistic radial wave functions
1 J
fspl(r) = N Z Z gspﬁ(j)(r) (37)
j=ltg #=—J

are defined by averaging over the large components of all states of a (p,[)-shell, with a normal-

ization factor N'. The scalar relativistic one particle energies
1 J
€l = 1712 Do D Esonli) (38)
j=ltd n==Jj

are also averaged over the spin orbit split energies of a (p,[)-shell. The scalar relativistic Hamil-
tonian H® is defined only implicitly by Egs. (35), (37) and (38).

The remaining treatment of the valence states completely parallels the non-relativistic version,

while core states are treated in the same way as in a relativistic calculation.
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Examples

fcc—Ni: spinpolarized relativistic calculation, ¢ scaled by 0.5
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Figure 7: Band structure of ferromagnetic fcc-Ni. The velocity of light was scaled by a factor
0.5.

fcc—Ni: spin character
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Figure 8: Band structure of ferromagnetic fcc-Ni with the spin character indicated by the size
of the points. The largest size corresponds to pure majority spin character, while the smallest

size corresponds to pure minority spin character.

Band structure of fce-Ni: Lifting of degeneracies and spin characters

In the non-relativistic theory, the symmetry of the fcc-lattice implies degeneracies of the band
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structure at points of high symmetry like the I'-point. Relativistic effects usually lead to a
reduction of symmetry in ferromagnetic metals. As a consequence, the corresponding represen-
tations of all one atomic lattices become one-dimensional [14] and group theoretical arguments
do no longer imply degeneracies of the band structure, with the remaining degeneracies being
accidental. On an intuitive level this fact may be understood if one lets the lattice constant go to
infinity: The symmetry is still the same, but the bands become flat with energies corresponding
to the atomic levels, which are non-degenerate. As an example, a band structure of fcc-Ni is
shown in Fig. 7. To emphasize the effect, the bands drawn are taken from a calculation with
the velocity of light set to ¢/2.

Another effect implied by the relativistic theory is that the spin is no longer a good quantum
number. Thus a simple splitting into spin up and spin down bands is not appropriate anymore.

However, a projection onto spin states as demonstrated in Fig. 8 can be useful.

Equilibrium lattice constant of thorium
The evaluation of equilibrium lattice parameters is one of the fundamental goals of density
functional calculations. It is, within a given approximation of the xc functional, a well-defined

task and ideal for comparing the reliability of different numerical methods.

Thorium: total energy vs. lattice constant
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Figure 9: Equilibrium lattice constant of thorium: comparison of experimental data and LDA

results obtained by different numerical schemes.

Figure 9 shows the dependence of the total energy of fcc thorium on the lattice constant obtained
with RFPLO using the Perdew-Wang 92 LDA [15]. The position of the minimum is indicated
by a dashed line. Further, the experimental lattice constant is given by a box, where the width
shows the scatter of experimental data from Pearson’s table. Equilibrium lattice constants
obtained by five different methods are denoted by arrows: LMTO-ASA [16]; FP-LMTO [17];
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LCGTO-FF and FLAPW [18]; FLAPW-6p,/, (unpublished data obtained as described in Ref.
[19)).

The value obtained by LMTO-ASA refers to room temperature [16], but the related zero-
temperature value (dashed line, estimated from the linear coefficient of thermal expansion)
is not so much below the former one. At the first glance, one could be happy with LMTO-ASA,
yielding a result quite close to (but above!) the experiment. If we turn to the full-potential
version, FP-LMTO, that should provide a numerically more accurate result by definition, it
becomes clear that ASA is not suited for a quantitative analysis of lattice geometries.? Note,
that both calculations used the same version of LDA (Hedin-Lundqvist) and included spin-orbit
coupling in the so-called second variational step [20]. The latter method suffers from convergence
problems of the employed basis of spin eigenstates [21]. Careful convergence of this basis in an
FLAPW calculation [18] yields a result about 2.5% below the experimental value, as commonly
obtained in LDA. In the same publication, LCGTO-FF results were presented. This method
uses an approximation for the full Dirac equation different from the second variational step. As
pointed out in Ref. [18], both calculations should provide approximate upper and lower bounds,

respectively, for the spin-orbit effects.

Going to still more accurate treatments of spin-orbit coupling, we indeed find results between
the latter two. Local 6p;/o-states were included in FLAPW recently [19], thus reducing the
convergence problem of the spin eigenstate basis considerably (FLAPW-6p;/5). Finally, the
RFPLO result is given (curve and dashed line), were spin-orbit coupling is exactly treated in
the limits of the Kohn-Sham-Dirac equation.

It is quite satisfactory that the results of the two most accurate methods are close to each other
(though not yet as close as the different experiments) and between the bounds provided by
LCGTO-FF and FLAPW. Such a level of reproducibility with completely different numerical

methods can provide a save basis for the development of improved xc functionals.

FPLO-2

The latest version of the code, FPLO®-2, has been released recently.® Licenses for using the
code are issued for a moderate fee. You can find the related conditions at the FPLO homepage,
http://www.ifw-dresden.de/FPLO/. We distribute the release by email. It consists of
source code in Fortran and C and a short documentation. The scalar relativistic version of
FPLO is included in FPLO®-2, but not the fully relativistic one. In the course of the year 2002,
we intend to distribute an update with the CPA and LSDA+U options, both included in the

present license.

*We would like to emphasize, however, that a number of important qualitative results has been obtained by

this efficient method in the past.
3The release number 2 refers to the year 2002.
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Portability

What is needed for installing and using FPLO®-2, is a UNIX-derived operating system with
ANSI-conform C compiler and f90 compiler. We have tested the portability for the following

platforms:

operating system compiler

Linux ifc

Linux pefIo
IRIX vendor 90
True64 vendor 90
AIX vendor 90
HP-UX vendor 90

Note, that we cannot guaranty the function on other platforms. In particular, other than the
mentioned f90 compilers may yield reduced performance or do not suite at all. In any case, it is

highly recommendable to use the most recent compiler release.

User interface

The user interface comprises not only the necessary tools to set up and modify the input files
for running the code, but also several tools for presentation and processing the output data.
Figure 10 shows a screen-shot of the specifically designed input-editor. It runs interactively
with the main FPLO code, is operated by hot-keys and largely error-resistant. The example
shown is BagCusO4Cly, an anti-ferromagnetic compound out of the large family of the copper-
oxides containing 22 atoms per elementary cell. More complicated elementary cells may consist

of more than one hundred atoms.

=] bt i e e i iie e bt wtenn <3 - Bebelibelte oo bnac it ity © (m s
SYMMETRY MENU

e(X)it (E)xtern edit (+) FPLO run (Help
(L) ompound : Ba3Cu204C12

(S)pacegroup : PHMA (51)

(Wnit of length : Bohr radii

(Llattice constants : [EREEINEIRT
(A)xis angles : 90. 90. 90.

(M) aximum L i

(N)umber of atoms : 8

Wyckoff positions

(& D] -th atom sort : Cu 00172

2 -th atom sort : Cu 3/4 0 0.33

3 -th atom sort : 0 .969 .22 .362

(4) -th atom sort : Ba 1/5 1/2 .445

5) -th atom sort : Ba 1/4 0 .211

(B -th atom sort : Ba 3/4 1/2 .204

7) -th atom sort : Cl 3/4 0 .087
IE |

STATUS: editing...

Figure 10: Screen-shot of the FPLO input tool.

120



Understanding the geometrical structure of a compound is an important condition for under-
standing its bonding and, in succession, all other chemical and physical properties. For this aim,

a related presentation tool is utterly useful. Figure 4 has been produced with this tool.

Other tools are available for the presentation of Fermi surfaces and band structures on symmetry

lines, including weighted (‘fat’) bands, and for the supervision of the iteration process.

Benchmarks

There are two quantities that chiefly determine the computing time and the memory allocation:
the number of atoms in the elementary cell, and the number of k-points.* We present two
example benchmarks here, the dependence of computing time per iteration cycle and memory
allocation on the number of k-points, and the memory allocation in dependence of the complexity
of the elementarv cell Maore extended henchmark tests will he nrecented at the FPLO homepage
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Figure 11: Example benchmark: ScBs with 3 atoms per unit cell, self consistent calculation
with different numbers of k-points. Left axis: computing time per iteration cycle and memory

allocation; right axis: total energy. The calculation was done on Origin3800, running TRIX6.5.

Figure 11 shows the dependence of computing time and memory allocation on the number of
k-points in the irreducible part of the Brillouin zone for the example compound ScBy with 3
atoms per unit cell. As expected, both the computing time per iteration cycle and the memory
allocation scale linearly with the number of k-points. There is a significant constant contribu-

tion to the computing time, i.e., choosing a large number of k-points does not significantly slow

“In a strict sense, the number of k-points is of course determined by the accuracy requirements and cannot be
chosen arbitrarily.
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Table 1: Example benchmark: Memory allocation (on Origin3800, IRIX6.5) in dependence of

the structure and number of k-points.

Compound atoms/u.c. | k-points in IBZ | Memory [MB]

Al 1 72 6

Fe 1 72 9

ScBy 3 191 63
SrCo03 cubic 5 35 27
SrC003 orthorhombic 5 1331 555

down the calculation for small unit cells (up to about 10 atoms). Another important feature is
that the total energy of the self consistent calculation is stable (for sufficiently large number of

k-points) within 1 pgHartree.

Some examples of the memory needed for different structures are compiled in Table 1. In cases
were large numbers of k-points in the irreducible part of the Brillouin zone (IBZ) are needed the
memory allocation is considerable already for unit cells of moderate size. We plan to implement

a version with reduced memory demand in the forthcoming release.

Workshop “Hands-on-FPLO”

From March 3 to 7, 2002, IFW Dresden hosted the workshop “Hands-on-FPLO” that was sup-
ported by the ESF, STRUC-vy. Purpose of the tutorial workshop was to provide an introduction
into the concept, the code, and the handling of the FPLO package including the ability to cope

with simple problems that may arise when using the code.

The workshop programme consisted of lectures held by the code developers and by experienced
users of the code primarily in the morning hours, and exercises in the afternoon. While the
first exercise was focussed on “getting started” (fcc-aluminum: how to create the input file,
meaning and handling of the output), all participants were able to work on systems of their
individual choice during the second and third day of the workshop. The number of participants
(30 trainees from 9 different countries and 11 lecturers) was almost twice the originally planned
number, demonstrating the need of fast and accurate DFT code. Twelve X-terminals, each
connected to a separate dual node of our LINUX cluster, were available to the participants.
In this way, the group size could be kept moderately small and (almost) individual work was

possible.

As the main result of the workshop, all participants are able to handle the code for routine
calculations. The participants further started calculations on systems of their choice. In cases
were difficulties with the code handling encountered, they could be solved together with the
tutors. Licenses to use the code for academic purposes were issued to the home departments of
all participants (15 in total). The second workshop “Hands-on-FPLO” is scheduled for March,
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2003.

Summary and Outlook

We finally summarize the features of the recently developed full-potential local-orbital minimum-
basis (FPLO) scheme in brief.

e FPLO uses a locally finite lattice sum for the representation of the full potential by a
partitioning of unity. This enables a treatment of the multi-center integrals both efficient

and accurate.

e The algebraic dimension of the problem is reduced by a fast and exact elimination of the

core states.

e FPLO uses a variable local orbital basis which is readjusted to the potential at each

iteration step of self-consistency.

e During the iterations of self-consistency, the basis orbitals are simultaneously optimized

by individual parameter variation to minimize the total energy.

e Given a density functional, FPLO has a thoroughly tested numerical accuracy of better

than 2 mHartree per atom for the absolute value of the total energy.

e Up to about N=100 atoms per unit cell, FPLO performs approximately as N'®. It is
extremely efficient with a large number of k-points, an important issue in applications to

metals.

e There exist a fully 4-component relativistic version, a scalar relativistic version, and a
flexible CPA implementation for substitutional alloys. Rotationally invariant LSDA+U is

implemented as well.

As an outlook, we intend to release FPLO®-3, comprising the present release and the fully

relativistic code, in 2003.
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