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ABSTRACT

The problems related to the calculation of structure of larger, finite systems are discussed
in detail. In particular, it is emphasized i) that a complete search in the multidimensional
structure space for a given system is without reach for any but the absolutely smallest
systems, i7) that systematic studies of more systems without severe assumptions about
their structure not are possible with current parameter-free electronic-structure methods,
and 7i7) that one has to rely on different kinds of ‘dirty tricks’ in order to calculate the
properties of interest. With the embedded-atom method combined with an ‘aufbau/abbav’
approach (described in the text) we study structural and energetical properties of metal
clusters, whereas for semiconductor nanoparticles we use a tight-binding method in com-
bination with the assumption that their structure can be derived from the wurtzite or
zincblende crystal structure. Finally, we study the properties of a series of T1i,,C,, metcars
for which we apply a genetic algorithm in the structure optimization in combination with
the tight-binding method for the electronic-structure calculation.
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1. INTRODUCTION

The problems we shall address in this paper may be best described through an example taken

from some recent experimental studies at the University of Konstanz in Germany.

About 10 years ago the group around Castleman in Pennsylvania produced metal-containing
carbon clusters M,,,C,,. In mass abundance spectra they observed a peak for (m,n) = (8,12)
with M being Ti [1], suggesting that this cluster was particularly stable. They proposed a cage-
like structure of cubic 7}, symmetry with 12 five-membered rings, each containing two metal and
three carbon atoms. Thus, the topology is as that of the smallest possible fullerene molecule
Coo but containing metal atoms. An alternative description of the structure is to consider it
as formed by a cube of the eight metal atoms. The 12 carbon atoms forms six Co dimers that
are placed symmetrically above the sides of the cube with the C—C bonds parallel to the edges.
Later, theoretical studies — first of all by Dance [2] — suggested that the structure had tetragonal
T4 symmetry. Compared with the 7} symmetry, the Co dimers are for the 7; symmetry lying
parallel to the diagonals of the six sides of the cube of the eight metal atoms and, in addition,
the cube becomes somewhat distorted. First recently, theoretical and experimental studies agree
that the tetragonal structure is the correct one (see, e.g., [3]). In the meantime it has been found
that also for other metals (e.g., Hf, Zr, V) those so-called metallocarbohedrenes or metcars can
be formed, and even metcars with more different types of metals have been produced. However,
whether they occur in significant amounts depend strongly on the experimental conditions,

suggesting that kinetic effects play a significant role in their production.

In order to study the properties of the Ti-based material further, the group around Gantefor in
Konstanz decided to study a whole class of M,,C,, clusters with different values of (m,n) centered
around (m,n) = (8,12) [4]. Using two different sources, Ti and C atoms were produced that
subsequently were allowed to form the clusters mentioned above. After ionization, a magnetic
field could be used to mass-separate the clusters and, finally, photoelectron spectra could be
recorded for these mass-selected clusters. Accompanying theoretical studies would then be very

useful as a support for the interpretation of the experimental results.

As one of the clusters of the experiments let us choose TigCyy, i.e., (m,n) = (6,10), whose
structure is absolutely unknown. One may consider it as been formed by removing two carbon
and two titanium atoms from the more famous (m,n) = (8,12) cluster, but the first question is
then: which four atoms shall be removed? Starting with the two proposed structures (i.e., those
of T}, and T,; symmetry) for the (m,n) = (8,12) cluster mentioned above we tried this strategy
(using a computational method that will be described below) but obtained a new structure in
each attempt. The simplest approach would then be to choose the structure of the lowest total
energy. However, it has to be remembered that the experiment is performed in a completely
different way: instead of starting with the larger (m,n) = (8,12) cluster and from that removing
some atoms, the (m,n) = (6,10) cluster is formed from essentially isolated atoms and, therefore,

it is not at all given that its structure has any resemblance to that of the (m,n) = (8,12) cluster.

Thus, the first problem in this case is that we have essentially no information about the structure
of the system of interest except for its composition but want nevertheless to calculate some of its

properties. The second problem is that finite systems of the type Ay have a very rapidly growing
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N No. of structures
7 4

8 8

9 21

10 64

11 152

12 464

13 1328

Table 1: No. of metastable structures for Lennard-Jones-Clusters LJy as a function of N. The

results are from [5].

number of metastable structures as a function of N. As a simple illustration we may consider
N identical particles interacting via Lennard-Jones potentials. This system is so simple that it
allows for exhaustive studies of the total-energy surface. Tsai and Jordan [5] have performed
such studies and in Table 1 we show their results for the number of metastable structures as a

function of N. It should be obvious that this number grows rapidly with N.

These problems become even more significant when one wants to study the semiconductor or
metal nanoparticles that are of large experimental interest currently. For these the precise
composition is often not known and, instead, one has often a certain size-distribution. Moreover,
their diameters lie typically in the range 1-100 nm, meaning that the number of atoms per

particle is from 100s to several 10 000s.

Studying such systems theoretically with electronic-structure methods one has therefore to be
very precise in identifying which questions one attempts to address. For instance, when the
so-called magic numbers (the values of N for which the clusters are particularly stable) are
sought, it is important to have a good estimate of the lowest total energy for a given value of N,
but it may not be necessary to identify the global total-energy minimum. On the other hand,
for optical properties or the electron density of either some selected or of all orbitals a good
approximation to the structure of the global total-energy minimum should be used, although
the structure may not have to be that of a local or the global total-energy minimum. For

vibrational properties it may be crucial to have identified the global total-energy minimum.

In the present contribution we shall describe some of the methods we are using in addressing
these issues. Due to the size and low symmetry of the systems of our interest and to the large
number of structures that have to be studied, we do not consider it possible to apply parameter-
free first-principles electronic-structure methods but use approximate methods. For the sake of
completeness these methods shall be described briefly in Sec. 2. Subsequently, we shall study
different properties of elemental metal clusters in Sec. 3 and of semiconductor nanoparticles in

Sec. 4. In Sec. 5 we shall return to the metcars, and a brief resumé is offered in Sec. 6.

2. ELECTRONIC-STRUCTURE METHODS
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We use two parameterized methods in our studies of the properties of the nanoparticles.

According to conventional wisdom, the electrons in metallic systems are delocalized and, there-
fore, less sensitive to the precise positions of the nuclei. For metallic nanoparticles we use, of
this reason, the embedded-atom method of Daw and Baskes [6, 7, 8, 9]. The basic idea behind
this method is to consider each atom of a metal as an impurity embedded in a host of the rest
of the atoms. This provides one contribution to the total energy of the system of interest. The
other contribution comes from the interactions between the atoms which is written as a sum of

pair potentials. Accordingly, the total energy has the following form

1
Ewr =Y Fi(p}) + §Z¢ij(Rij)- (1)
i i#]

Here, p? is the electron density felt by the ¢th atom but coming from the other atoms. In
principle, this density is structured but as a simplification we simply take the value at the site

of the nucleus ﬁz of the superposition of the atomic electron densities from the other atoms,

Pl = (Rij) (2)
J#i
with
Ry = |R; — Rj. (3)
Using this method requires information on the embedding functions Fj, the pair interactions
¢ij, and the atomic electron densities pj. The latter have been obtained from Hartree-Fock
calculations, whereas the former have been specified semiempirically using a combination of

theoretical and experimental information on various finite and infinite systems.

For systems with directional covalent bonds it is important to include a precise description of the
electronic orbitals and, accordingly, the embedded-atom method is not applicable here. Instead,
we use a parameterized density-functional method [10, 11, 12, 13]. With this method the binding

energy is approximated as

By = Y= 302 ey + 3 3 Uy @
i j my J#k

Here, e?mj is the free-atom single-particle energy of the m;th orbital of the jth atom, whereas ¢;

is the single-particle energy of the ¢th orbital of the system of interest. The latter are obtained

from the Kohn-Sham equations

2

v2 4 Veffm] Bil7) = exths(). (5)

2me

The solutions ; are expanded in a set of atom-centered orbitals
Pi(7) =D cippp(7) (6)
P

with p being a compound index that describes the site, the radial dependence, and the angular

dependence of the basis function ¢,.

The potential Vg of Eq. (5) is approximated through a superposition of free-atom potentials,

Vi) = S V(7 - B, (7
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and it is assumed that the matrix elements (¢,|V*|¢,) only then are non-vanishing when at least

one of the functions ¢, and ¢, is centered on R}-.

With these approximations the Hamilton and overlap matrix elements can be calculated once and
for all as a function of interatomic distance through calculations on diatomic molecules once the
basis functions have been specified (we use Slater-type orbitals). Finally, the pair potentials Uy,
of Eq. (4) are obtained by requiring that results of parameter-free density-functional calculations

on the diatomics are reproduced accurately.

3. ELEMENTAL METAL CLUSTERS

Metal clusters My with M being a simple metal like Na, K, Rb, Cs have attracted considerable
attention during the last two decades since the discovery of so-called magic numbers (for reviews,
see [14, 15]), i.e., values of N for which the clusters are particularly stable. These experimental
findings can be explained by a simple shell-filling argument: Considering a spherical jellium and
focusing only on the valence electrons, these will occupy orbitals of s, p, d, --- symmetry, and
for those values of N where these shells are filled a particularly stable system is obtained. These

values match those found in experiment.

However, the jellium model represents a simplification that may not be justified for any other
metal clusters than those of the simple metals. In addition, for clusters of transition metals it
is not obvious how many electrons per atom should be considered as valence electrons. Instead,
the embedded-atom method provides a more accurate description (including that of the nuclear
positions, which is lacking within the jellium model) although it can be argued that in particular
for 3d transition metals the approximations behind this method may be inadequate. Despite
these considerations we have chosen to use this method for transition-metal clusters, since its
simplification allows for the calculation of the total energy for very many structures as will be
needed for a largely unbiased systematic study of energetical and structural properties of these

clusters.

The identification of the magic numbers for these clusters requires good estimates of the lowest
total energy for a given N. Experimental information can not be used in determining relevant
structures (for a more detailed discussion, see [16]) and, therefore, we need an approach that
gives good estimates of the structures and total energies of the global total-energy minimum. We
have used the following strategy that partly has been devised as a simple means of simulating

an atom-by-atom growth process.

1. For a given N we consider of the order of 500-1000 random start geometries. Close local-

energy minima for these are found using a quasi-Newton approach.

2. The structure of the lowest total energy is disturbed by moving randomly a part of the atoms.
This is repeated some 300-500 times and the thereby resulting lowest-total-energy structure is
kept.

3. These two steps are repeated for a cluster with N+ M atoms, where we have found empirically
that M ~ 5 — 10 is useful.

4. Starting with the structure of N atoms we add one atom randomly to the cluster and the
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structure is optimized. This is done in total some 300-500 times and leads to a structure for
the cluster with NV + 1 atoms.

5. Step 4 is repeated until the cluster with N + M atoms is obtained.

6. In parallel to the steps 4 and 5, one atom is removed from the cluster with N + M atoms that
was found in step 3 and determine the closest total-energy-minimum structure. This is done for
each of the N + M atoms one by one and leads to a structure for the cluster with N + M — 1

atoms.
7. Step 6 is repeated until the cluster with N atoms is obtained.

8. In total these calculations lead to two sets of optimized structures with the number of atoms
ranging from N to N + M. Oanly if no new structures with lower total energies are generated,

it is assumed that the structures of the global-total-energy minima have been identified.

We would like to stress that our ‘aufbau/abbau’ approach does not guarantee that the global
total-energy minima have been identified. Only a complete information about the total-energy
surface in the (3N — 6)-dimensional space can guarantee this, but this information is without
reach for any but the absolutely smallest values of N.

Binding energy per atom (eV)

0
0O 10 20 30 40 50 60 70 80 90 100
N

Figure 1: Optimized binding energy per atom for Niy and Cuy clusters with 2 < N < 100.
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Figure 2: The stability function for (lower panel) nickel and (upper panel) copper clusters with
2 < N <100.
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Figure 3: The binding energy per atom for nickel clusters with 2 < N < 700. Compared with

Figure 1, here only relazed finite segments of the FCC crystal structure were considered.

Figure 4: Optimized structures of Niy3, Niig, Niss and Nizg.
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As an illustration of the application of our approach we show in Figure 1 the binding energy
per atom for clusters of either nickel or copper atoms as a function of N up to NV = 100. The
results show that the binding energy per atoms roughly monotonically approaches the N — oo
value, although the curves have some structure that suggests the existence of magic numbers.
In order to identify these clearly, the stability function

S(N) = Etot (N + 1) + Eiot (N — 1) — 2E401(N) (8)

is particularly useful. This has maxima (minima) at particularly stable (unstable) structures
and is shown in Figure 2 for the nickel and copper clusters. Comparing the two curves in Figure
2 shows that many magic numbers are similar for the two materials, but also that there are
material-specific differences. It should be added at this point, that in [16] we compare our
results with the somewhat limited information from more exact studies on smaller systems as

well as with other theoretical and experimental information and found a very good agreement.

For N — oo one would expect that the Ni clusters have the structure of the FCC crystal
structure. We studied also finite segments of the FCC crystal structure obtained by considering
spherical parts of the crystal structure with an atom at the center. Thereby, not all values of
N can be considered, but, on the other hand, the structure optimization is orders of magnitude
simpler thus allowing also systems with larger values of N to be considered. Figure 3 shows the
resulting binding energy per atom. It turns out that for N = 79 the FCC structure is that of
the lowest total energy of Figures 1 and 2. The structure of this system together with those of

some smaller clusters are shown in Figure 4.

In contrast to the results obtained by considering only the spherical parts of the crystal structure,

those of our ‘aufbau/abbau’ approach permits a detailed study of a number of other properties:

1. The radial distribution of the atoms as a function of N. This gives information on whether

the clusters grow in a shell-like fashion.

2. Starting with the optimized structures, a harmonic approximation can be used in calculating

the vibrational properties.

3. These can in turn be used in calculating specific heat capacities as functions of N and

temperature.

4. Through the knowledge of Fi; as a function of N for the complete series of N, dissociation

channels can be identified.

5. The pair distribution function that is of experimental relevance and that gives information

on structural characteristics.
6. The moments of inertia that give information of the overall shape of the clusters.

These studies are currently in progress and their results will be presented later.

4. SEMICONDUCTOR NANOPARTICLES

The existence of directional bonds for typical semiconductors implies that an accurate description
of the properties of these materials has to include a treatment of the electronic orbitals. Also

when using an efficient parameterized method like the one discussed in Sec. 2, the computational
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costs are increased compared with those of the embedded-atom method. Accordingly, it becomes
more difficult to carry through detailed structural studies. On the other hand, these directional,

often tetragonal, bonds put also certain restrictions on the possible structures.

A further complication is that experimental studies on AB semiconductor nanoparticles often
are carried through in some solution and that the nanoparticles often have surfactants that
passivate dangling bonds. The fact that the precise size and stoichiometry of those often is not

known does not make theoretical studies of their properties easier!

On the other hand, exactly the directional bonds suggest that the structure of the nanoparticles
resembles that of the infinite crystal, at least in the inner parts of the nanoparticles. Therefore,
as a first approximation one may study finite parts of the crystalline material. This approach
is the one we have used in studying more different II-VI and III-V semiconductor nanoparticles
and we shall here illustrate the approach by reviewing our results for CdS nanoparticles [17]. We
would like to stress that despite these assumptions about the structure, our study represents one
of the very few systematic studies of structure-property relations of such materials with more

than roughly 50 atoms where structural degrees of freedom have been optimized.

An interesting property of the infinite CdS material is that the wurtzite and zincblende crystal
structures are energetically very close [18] which may have interesting consequences for the
finite systems. We studied accordingly finite parts of those two crystal structures obtained by
considering spheres of different radii with the center at the mid-point of a Cd-S bond. Through

this construction only stoichiometric Cd,,S,, nanoparticles are considered.

—206

—208

Energy per CdS Pair [eV]
—-210

O 10 20 30 40 50 60 70 80 90 100

No. of CdS Pairs

Figure 5: Variation in the total energy per CdS pair as a function of n for zincblende- (solid

curve) and wurtzite-derived Cdy,S, clusters (dashed curve).

It turned out (cf. Figure 5) that the relative stability for clusters derived from the two crystal
structures in fact was dependent on the size of the system which actually also has been seen in

experiment [19]. Further studies on other semiconductor nanoparticles (ZnO, CdSe, InP) have
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given similar results.

For each structure the calculation leads to a large amount of information and in order to identify

general trends we proceed as follows. First we define the center of the cluster
. 1 XML
Ro =+ Z R; (9)
i=1
where the summation runs over the N (= 2n in our case) atoms. Subsequently

4 = |Bi — Tl (10)

defines the distance of the ith atom to the center. We can then plot various properties as

functions of d;.

As one example, Figure 6 shows the number of atoms as a function of distance to the center
both before and after structure relaxation. A Comparison of the two sets of curves for all the
different clusters shows that — as expected — structural relaxations are confined to an outer
region, whose thickness, moreover, is 2.5-3 A independent of size and structure of the cluster.
Furthermore, it turns out that in this surface region two types of relaxations occur: the metal
(Cd) atoms move inward towards the center (the metal atoms seek a high coordination), whereas
the sulphur atoms move outward (sulphur atoms are often satisfied with a lower coordination).

These differences can not be identified in the curves in Figure 6.

The separation of the system into a bulk and a surface part can also be identified in the electronic
properties. E.g., the radial distribution of the Mulliken populations of the valence electrons (cf.
Figure 7) shows that in the inner parts these populations deviate only marginally from those
of the neutral atoms (i.e., 12 for Cd and 6 for S), but in the surface region the atoms become

significantly more ionic.

A further result was that the highest occupied molecular orbital (HOMO) is spread out over
the entire cluster independent of n, whereas the lowest unoccupied molecular orbital (LUMO) is
confined to the surface region. Therefore, the LUMO is very sensitive to the precise structure of
the surface and its energy shows a much more irregular behaviour as a function of n compared to
the energy of the HOMO. This also means that surfactants may modify first of all the energy of
the LUMO. Excitons play an important role for these nanoparticles, and when assuming that the
exciton wavefunction is derived first of all from those of the HOMO and LUMO, our results are
in agreement with experimental findings that relaxation processes take place at low-symmetry

sites, e.g., at the surface [20].

An interesting observation (Figure 8) is that there is a strong correlation between stability and
band gap: large band gap implies larger stability. This can to some extent be considered a
generalization of the results discussed above for the clusters of simple metals where the jellium

model could be applied.

The overall behaviour of the band gap as well as of the total energy per atom pair is that they
are decreasing as a function of nanoparticle size. The decrease of the band gap is observed
experimentally: nanoparticles of different sizes have different colours, and the decrease of the
total energy is similar to the results for the metal clusters. On the other hand, the fact that the

total-energy curve is structured may imply that the size distribution for experimentally produced
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samples is less regular than most often is assumed, which in turn could imply that only those
clusters for which the stability (and hence band gap) is particularly large are produced. But

once again, the presence of surfactants may modify this proposal.

5. METCARS

Let us now return to the materials that were discussed in the Introduction, i.e., the so-called met-
cars. Since these have directional bonds (for instance between the carbon atoms), the embedded-
atom method is inapplicable and we have to use the computationally somewhat more heavy pa-
rameterized density-functional method. For a given Ti,,C,, cluster we know essentially nothing
about the structure and in order to reduce the search for the global total-energy minimum in
the (3n+ 3m — 6)-dimensional space we have adapted the methods of genetic algorithms [21, 22].
The general idea behind these methods is that of combining the keeping of ’good building blocks’
with randomness. This combination leads to a significant reduction in the number of structures
for which the total energy shall be calculated but, nevertheless, we estimate that we in many

cases need to consider 1-20 million structures.

There exist different variants of the genetic algorithms but let us describe one of those through
a simple example. Let us assume we want to optimize the structure of a cluster of 20 identical
atoms. We generate, e.g., 8 different structures at random. For each of those, separately, we
find the closest local-total-energy minimum resulting in 8 — most likely different — structures.
These 8 structures define the so-called parents. From these 8 we form 4 pairs at random. For
any pair we cut each of the two clusters in two halves, whereby the directions of the normals to
the cutting planes are generated randomly, and interchange one halfpart from each of the two
clusters. Also for these so-called children (of which we have 8 in total) the closest local-total-
energy minimum structures are calculated. Thereby we have in total 8 parents and 8 children
and out of those 16 optimized structures we choose those 8 with the lowest total energy. These
8 define the parents of the next generation of clusters. This process is continued until the lowest
total energy does not change any more as a function of generation number. It should be added

that in practice one can never be sure that the last criterion is exactly fulfilled!

There are various ways of modifying this basic principle. E.g., instead of interchanging the halves
of two clusters, one may consider only a single cluster for which the two pieces outside a random
slice in the middle may be interchanged. Furthermore, so-called mutations may be introduced

in which some randomly chosen atom may be moved at random with a certain probability.

We have generalized the method so that we can treat clusters with two types of atoms. Having
established that the method worked (by studying Lennard-Jones clusters which are computa-

tionally easy to treat) we applied it to the metcars [23] and obtained the following results.

In Figure 9 we show the optimized structure of two of those metcars that turned out to have
particularly high symmetry and that were aesthetically particularly appealing, i.e., the (m,n) =
(6,10) and (m,n) = (8,12) metcars. Whereas the latter is the one that is well-known from
experimental and theoretical studies (and in fact has a Ty symmetry as originally proposed by

theory), to our knowledge the former plays essentially no role in experiment.
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Figure 9: Optimized structure of (right) TigCio and (left) Tig C1o. Light (dark) spheres represent
C (Ti) atoms.

The fact that the large abundance of the (m,n) = (8, 12) metcar in experiment is obtained only
under certain experimental conditions suggests that not only energetical arguments are required
in explaining the special role of the (m,n) = (8,12) metcar. This is supported by the results
presented in Figure 10. Here, we have considered the properties of the whole Ti;C,, and TigC,,
series as functions of n. The energy gain upon addition of a C atom [i.e., —FE;o(TinCp) +
E;ot(Tiy,Cp—1)] shows that the n = 12 metcar is particularly stable for m = 7 but not for
m = 8. Moreover, the correlation between stability and band gap that we observed for the
semiconductor nanoparticles suggests that the (m,n) = (8,12) metcar is particularly unstable.
And, finally, also in the number of nearest-neighbour bonds, the (m,n) = (8,12) metcar shows no
particular properties. Thus, the somewhat disappointing conclusion of our study on the metcars
is that total-energy arguments can not explain the experimentally observed large abundance of

the (m,n) = (8,12) metcar but that, most likely, also kinetic effects play a significant role.

6. CONCLUSIONS

In this paper we have discussed the problems related to the determination of the structure of
large but finite systems. We emphasized that it is important to identify clearly which proper-
ties are of interest in the theoretical studies and, accordingly, whether the structure of a local
total-energy minimum, that of the global total-energy minimum, or just some realistic structure
is required. Also in the computationally simplest case when ‘just some realistic structure’ is
required, a systematic study of several different systems combined with the size and low sym-
metry of the individual systems make parameter-free first-principles calculations essentially too
involved. Instead of limiting the number of structures and/or systems to very few as well as
to impose certain, more or less justified, symmetry constraints we have chosen to use simpler
computational methods like the embedded-atom method for metallic systems with delocalized
electrons and a semi-empirical tight-binding method for systems with directional chemical bonds

and localized electrons.
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With these choices we were able to study larger classes of systems systematically. For metallic
clusters we presented a largely unbiased ‘aufbau/abbaw’ method (partly inspired by a simple
picture about how clusters are formed in the gas phase) that allowed us to obtain very good
candidates for the structures of the global total-energy minima for clusters with up to over 150
atoms. These results, obtained with the embedded-atom method, give immediately information
about the so-called magic numbers and are currently been used in obtaining a number of other

structural, vibrational, energetical, and thermodynamical properties.

The tight-binding method is computationally somewhat heavier than the embedded-atom method
and a systematic study like the one for the metal clusters was only possible if further restrictions
were made on the structure. We considered, as one example, stoichiometric CdS nanoparticles
derived from either the zincblende or the wurtzite crystal structure. Our results, that we have
seen confirmed for other stoichiometric and non-stoichiometric semiconductor nanoparticles,
showed a clear size-dependence of the relative stability of the two types of structures. Moreover,
we observed a well-defined separation into a bulk and a surface part. Most interesting was a
correlation between HOMO/LUMO energy gap and stability as well as the fact that neither of
these two quantities was a monotonic function of the size of the system. These results may have

important consequences for the size distribution of the experimentally produced nanoparticles.

Finally, the Ti,,C,, metcars represented a class of materials where an essentially unbiased struc-
ture optimization was important. To this end we used a variant of the so-called genetic algo-
rithms which was described in some detail. To our surprise the results for the metcars were
not able to explain the large abundance of the TigCio metcar that is observed in some exper-
iments (depending on the experimental conditions). This we interpret as meaning that this

experimental result is determined largely by kinetic effects.
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