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Abstract

We present SIESTA, a self-consistent density functional method using standard norm-conserving
pseudopotentials and a flexible, numerical LCAO basis set, which includes multiple-zeta and
polarization orbitals. Exchange and correlation are treated with the local spin density or gener-
alized gradient approximations. The basis functions and the electron density are projected on a
real-space grid, where the Hartree and exchange-correlation potentials and matrix elements are
calculatd with a number of operations that scales linearly with the size of the system. We use
a modified energy functional, whose minimization produces orthogonal wavefunctions and the
same energy and density as the Kohn-Sham energy functional, without the need of an explicit
orthogonalization. Additionally, using localized Wannier-like electron wavefunctions allows the
computation time and memory, required to minimize the energy, to also scale linearly with the
size of the system. Forces and stresses are also calculated efficiently and accurately, thus allowing

structural relaxation and molecular dynamics simulations.
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1. Introduction

The improvements in computer hardware and software is allowing the simulation of molecules
and materials with an increasing number of atoms N, thus making the use of so-called order- N
algorithms (in which the computer time and memory scales linearly with the simulated sys-
tem size) increasingly important. Although these O(N) methods were available for classical
potentials (including long range interactions) since the 1970’s and 80’s [1, 2], only in the last
5-10 years have they been developed for the much more complex quantum-mechanical meth-
ods. In these, linear scaling algorithms were first implemented in the most simple context of
empirical or semiempirical tight-binding methods [3, 4] and in ‘ab-initio’ nonorthogonal-tight-
binding and nonself-consistent Harris-functional methods [5, 6]. However, fully self-consistent
density functional theory (DFT) methods [7], more reliable but also considerably more complex,
pose the additional problem of the determination of the self-consistent Hamiltonian in O(N)
iterations [8]. While this is difficult using plane waves, a localized basis set appears to be the
natural choice. One proposed approach are the ‘blips’ of Hernandez and Gillan [9], regularly-
spaced Gaussian-like splines that can be systematically increased, in the spirit of finite-element

methods, although at a considerable computational cost.

We have developed a fully self-consistent DFT scheme, based on flexible linear combination of
atomic orbitals (LCAQ) basis sets, with essentially perfect O(N) scaling. It allows extremely fast
simulations using minimal basis sets and very accurate calculations with complete multiple-¢ and
polarized bases, depending on the required accuracy and available computational power. Apart
from that of Born and Oppenheimer, the most basic approximations concern the treatment
of exchange and correlation, and the use of pseudopotentials. Exchange and correlation (XC)
are treated within Kohn-Sham DFT [10], with either the local (spin) density approximation
[11] (LDA/LSD) or the generalized gradient approximation [12] (GGA). We use standard norm-
conserving pseudopotentials [13, 14] in their fully non-local form [15], including scalar-relativistic

effects and nonlinear partial-core-corrections for XC in the core region [16].

In previous papers [17, 18] we have described preliminary versions of this method, that we call
SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms). There is also a
review [19] of the tens of studies in a wide variety of systems, like metallic surfaces, nanotubes,
and biomolecules, and for a large number of properties. Here we present a more complete
description of the method, and illustrate the convergence of a few characteristic magnitudes
with respect to the main precision parameters that characterize our method: basis size (number
of atomic basis orbitals); basis range (radius of the basis orbitals); fineness of the real-space
integration grid; and confinement radius of the Wannier-like electron states. We also show
comparisons of results obtained with SIESTA with those of other ab-initio approaches to show
the quality of the method. In particular, we will focus on the structure of molecular systems,

including H-bonding in DNA base-pairs, and on the ferroelectric distortion in cubic BaTiOs.

2. Pseudopotentials

135



We use first principles norm-conserving pseudopotentials [13] to elliminate the core electrons and,
more importantly, to allow for the expansion of a smooth (pseudo)charge density on a uniform
spatial grid. SIESTA reads them in semilocal form (a different radial potential Vi(r) for each
angular momentum [, optionally generated scalar-relativistically [20, 21]) from a data file that
users can fill with their preferred choice. We generally use the Troullier-Martins parameterization
[22]. We transform this semilocal form into the fully non-local form proposed by Kleinman and
Bylander (KB) [15]:

VP = Vipea (r) + VEEB (3)

lKB 1 NKB
mazx

Z Z Z |len Uln len (4)

=0 m=-1 n=1

n" =< om|oVi(r)lom > (5)

where §Vi(r) = Vi(r) — Viear(1). xEB(r) = xEB(r)Y}m(#) (with Yj,,(£) a spherical harmonic)

are the KB projection functions

Uz

X B (r) = Vi(r) i (r). (6)

The functions gy, are obtained from the eigenstates 1, of the semilocal pseudopotential (screened
by the pseudo-valence charge density) at energy €, using the orthogonalization scheme proposed
by Blochl [23]:

< Qi [0Vi (1) [hin >
(Pln( "/)ln Z (Pln < (Pln’|5w ("")|§0ln’ > (7)
1 d? (l+1
“zrar Tt % F V) + V() + V) | Y1 (r) = etntbin(r) ®)

VH and V¢ are the Hartree and XC potentials for the pseudo-valence charge density, and we

are using atomic units (e = h = m, = 1) throughout this work.

The local part of the pseudopotential Viyeq(r) is in principle arbitrary, but it must join the
semilocal potentials V;(r) which, by construction, all become equal to the (unscreened) all-
electron potential beyond the pseudopotential core radius r¢ore- Thus, §Vi(r) = 0 for r > reope.
Ramer and Rappe have proposed that Vj,q(r) be optimized for transferability [24], but most
plane wave schemes make it equal to one of the Vi(r)’s for reasons of efficiency. Our case is
different because Vj,.qi(r) is the only pseudopotential part that needs to be represented in the
real space grid, while the matrix elements of the non-local part Vi p are cheaply and accurately
calculated by two-center integrals. Therefore, we optimize Vjyeq(r) for smoothness, making it

equal to the potential created by a positive charge distribution of the form [25]
P (1) o exp[—(sinh(abr)/ sinh(b))?], 9)

where a and b are chosen to provide simultaneously optimal real-space localization and reciprocal-
space convergence [26]. After some numerical tests we have taken b =1 and a =1.82/r ..

Figure 2 shows Vjyeq(r) for silicon.

Since Vi(r) = Vipeai(r) outside r¢ope, XﬁB (r) is strictly zero beyond that radius, irrespective
of the value of ¢,. Generally it is sufficient to have a single projector x; . KB for each angular

momentum (i.e. a single term in the sum on n). In this case we follow the normal practice of
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making €, equal to the valence atomic eigenvalue ¢;, and the function ¢;(r) in Eq. 6 is identical
to the corresponding eigenstate 1;(r). In some cases, particularly for alkaline metals, alkaline
earths, and transition metals of the first few columns, we have sometimes found it necessary to
include the semicore states together with the valence states [27]. In these cases, we also include
two independent KB projectors, one for the semicore and one for the valence states. Also,
since the non-local part of the pseudopotential is a relatively cheap operator within SIESTA, we
generally (but not necessarily) use a larger than usual value of [XB. in Eq. (4), making it one

unit larger than the l,,,4, of the basis functions.

V (rydberg)

1
—10 = 4. \ Ll \ —
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Figure 2: Local pseudopotential for silicon. V.4 is the unscreened local part of the pseudopo-
tential, generated as the electrostatic potential produced by a localized distribution of positive
charge, Eq. (9), whose integral is equal to the valence ion charge (Z = 4 for Si). The dashed
line is —Z/r. Va4 is the local pseudopotential screened by an electron charge distribution,
generated by filling the first-( basis orbitals with the free-atom valence occupations. Since these

basis orbitals are strictly confined to a radius rf,,,, Vx4 is also strictly zero beyond that radius.

3. Basis set

Order-N methods rely heavily on the sparsity of the Hamiltonian and overlap matrices. This
sparsity requires either the neglect of matrix elements that are small enough or the use of strictly
confined basis orbitals, i.e., orbitals that are zero beyond a certain radius [6]. We have adopted
this latter approach because it keeps the energy strictly variational, thus facilitating the test of
the convergence with respect to the radius of confinement. Within this radius, our atomic basis
orbitals are products of a numerical radial function times a spherical harmonic. For atom I,

located at R,
G1imn(r) = G1in (11)Yim (21) (10)

137



where ry = r — Ry, r = |r| and ¥ = r/r. The angular momentum (labelled by I,m) may
be arbitrarily large and, in general, there will be several orbitals (labelled by index n) with
the same angular dependence, but different radial dependence, which is conventionally called a
‘multiple-¢’ basis. The radial functions are defined by a cubic spline interpolation [28] from the
values given on a fine radial mesh. Each radial function may have a different cutoff radius and,
up to that radius, its shape is completely free and can be introduced by the user in an input file.
In practice, it is also convenient to have an automatic procedure to generate sufficiently good
basis sets. We have developed several such automatic procedures, and we will describe here one
of them for completeness, even though we stress that the generation of the basis set, like that of
the pseudopotential is to a large extent up to the user and independent of the SIESTA method
itself.

In the case of a minimal (single-() basis set, we have found convenient and efficient the method
of Sankey and Niklewski [6, 29]. Their basis orbitals are the eigenfunctions of the (pseudo)atom
within a spherical box (although the radius of the box may be different for each orbital, see
below). In other words, they are the (angular-momentum-dependent) numerical eigenfunctions
¢i(r) of the atomic pseudopotential Vj(r), for an energy ¢; + d¢; chosen so that the first node
occurs at the desired cutoff radius ry:

( 1 d?  I(i+1)

o dr? 2r2

+ VE(T)) #i(r) = (e + de)pu(r) (11)

with ¢;(rf) = 0 (we omit indices I and n here for simplicity). In order to obtain a well balanced
basis, in which the effect of the confinement is similar for all the orbitals, it is usually better
to fix a common ‘energy shift’ de, rather than a common radius r¢, for all the atoms and
angular momenta. This means that the orbital radii depend on the atomic species and angular

momentum.

One obvious possibility for multiple-( bases is to use pseudopotential eigenfunctions with an
increasing number of nodes [29]. They have the virtue of being orthogonal and asymptotically
complete. However, the efficiency of this kind of basis depends on the radii of confinement of
the different orbitals, since the excited states of the pseudopotential are usually unbound. Thus,
in practice we have found this procedure rather inefficient. Another possibility is to use the
atomic eigenstates for different ionization states [30]. We have implemented a different scheme
[31], based on the ‘split-valence’ method which is standard in quantum chemistry [32]. In that
method, the first-¢ basis orbitals are ‘contracted’ (i.e. fixed) linear combinations of Gaussians,
determined either variationally or by fitting numerical atomic eigenfunctions. The second-(
orbital is then one of the Gaussians (generally the slowest-decaying one) which is ‘released’
or ‘split’ from the contracted combination. Higher-{ orbitals are generated in a similar way
by releasing more Gaussians. Our scheme adapts this split-valence method to our numerical
orbitals. Following the same spirit, our second-{ functions ¢12<(7“) have the same tail as the

first- orbitals </>llc (r) but change to a simple polynomial behaviour inside a ‘split radius’ r;:

2 (1) = ri(a; —br?) ifr<r}
: ¢ (r) if r>rf

(12)

where a; and b; are determined by imposing the continuity of value and slope at rj. These

orbitals therefore combine the decay of the atomic eigenfunctions with a smooth and featureless
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behaviour inside rj. We have found it convenient to set the radius rj by fixing the norm of ¢l14
in r > rj; in practice, a reasonable value for this ‘split-norm’ is ~ 0.15. Actually, instead of ¢l24
thus defined, we use (/)llC — qblZC, which is zero beyond r}, to reduce the number of nonzero matrix

elements, without any loss of variational freedom.

To achieve well converged results, in addition to the atomic valence orbitals, it is generally
necessary to also include polarization orbitals, to account for the deformation induced by bond
formation. Again, using pseudoatomic orbitals of higher angular momentum is frequently un-
satisfactory, because they tend to be too extended, or even unbound. Instead, consider a valence
pseudoatomic orbital ¢y, (r) = ¢y(r)Y,(E), such that there are no valence orbitals with angular
momentum [ + 1. To polarize it, we apply a small electric field £ in the z-direction, and use
first-order perturbation theory. Selection rules imply that the resulting perturbed orbital will
only have components with I’ = [ + 1, m' = m. Since in general there will already be orbitals
with angular momentum / — 1 in the basis set, we select only the [ + 1 component. Thus we

obtain the equation

1 d? (I+1)(1+2)

" o Vi) = Bi| o (r) = —réi(r) (13)

which defines the polarization orbitals that are then added to the basis set: ¢11m(r) =

C14+1(r)Yi41,m(t), where C is a normalization constant.

We have found that the previously described procedures generate reasonable minimal single-
¢ (SZ) basis sets, appropriate for semiquantitative simulations, and double-¢ plus polarization
(DZP) basis sets that yield high quality results for most of the systems studied. We thus refer to
DZP as the ‘standard’ basis, because it usually represents a good balance between well converged
results and a reasonable computational cost. In some cases (typically alkali and some transition
metals), semicore states also need to be included for good quality results. More recently [33],
we have obtained extremely efficient basis sets optimized variationally in molecules or solids.
Figure 3 shows the performance of these atomic basis sets compared to plane waves, using the
same pseudopotentials and geometries. It may be seen that the SZ bases are comparable to
planewave cutoffs typically used in Car-Parrinello molecular dynamics simulations, while DZP
sets are comparable to the cutoffs used in geometry relaxations and energy comparisons. As
expected, the LCAOQO is far more efficient, tipically by a factor of 10 to 20, in terms of number
of basis orbitals. This efficiency must be balanced against the faster algorithms available for
plane waves, and our main motivation for using an LCAO basis is its suitability for O(N)
methods. Still, we have generally found that, even without using the O(N) functional, SIESTA
is considerably faster than a plane wave calculation of similar quality.

Table 2 shows the convergence of the lattice constant, bulk modulus and cohesive energy for
silicon for different basis sets, and the correponding values for plane waves and LAPW calcula-
tions and the experiment. It can be seen that the ‘standard’ DZP basis offers already quite well

converged results, comparable to those used in practice in most plane wave calculations.

Figure 4 shows the dependence of the lattice constant, bulk modulus, and cohesive energy of
bulk silicon with the range of the basis orbitals, showing that a cutoff radius of 3 A for both s

and p orbitals yields very well converged results, specially when using a ‘standard’ DZP basis.
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Figure 3: Comparison of convergence of the total energy with respect to the sizes of a plane
wave basis set and of the LCAQ basis set used by SIESTA. The curve shows the total energy per
atom of silicon versus the cutoff of a plane wave basis, calculated with a program independent of
SIESTA, which uses the same pseudopotential. The arrows indicate the energies obtained with
different LCAOQ basis sets, calculated with SIESTA, and the plane wave cutoffs that yield the same
energies. The numbers in parentheses indicate the basis sizes, i.e. the number of atomic orbitals
or plane waves of each basis set. SZ: single-¢ (valence s and p orbitals); DZ: double-(; TZ: triple-
(; DZP: double-( valence orbitals plus single-( polarization d orbitals; TZP: triple-( valence plus
single-( polarization; TZDP: triple-( valence plus double-{ polarization; TZTP: triple-( valence
plus triple-( polarization; TZTPF: same as TZTP plus extra single-( polarization f orbitals.

Table 2: Comparisons of the lattice constant a, bulk modulus B, and cohesive energy E,. for
bulk Si, obtained with different basis sets. The basis notation is as in Fig. 3. PW refers to
a 50 Ry-cutoff plane wave calculation. The LAPW results were taken from ref. [34], and the

experimental values from ref. [35].

Basis a (A) B (GPa) E. (eV)

SZ 5.521 88.7 4.722
DZ 5.465 96.0 4.841
TZ 5.453 98.4 4.908
SZP 5.424 97.8 5.227
DZP 5.389 96.6 5.329
TZP 5.387 97.5 5.335
TZDP  5.389 96.0 5.340

TZTP 5.387 96.0 5.342
TZTPF 5.385 95.4 5.359
Pw 5.384 95.9 5.369
LAPW 541 96 5.28
Expt. 5.43 98.8 4.63
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Figure 4: Dependence of the lattice constant, bulk modulus, and cohesive energy of bulk silicon
with the cutoff radius of the basis orbitals. The s and p orbital radii have been made equal in
this case, to simplify the plot. PW refers to a well converged plane wave calculation with the

same pseudopotential.
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4. Electron Hamiltonian

Within the non-local-pseudopotential approximation, the standard Kohn-Sham one-electron

Hamiltonian may be written as

H=T+ Z vijeeal(r Z B L vH(r) + V*(r) (14)

where 7' = —3V? is the kinetic energy operator, I is an atom index, V¥ (r) and V®(r) are the
total Hartree and XC potentials, and V¢ (r) and V/<? are the local and non-local (Kleinman-
Bylander) parts of the pseudopotential of atom 1.

In order to eliminate the long range of V}/°“  we screen it with the potential V***™, created by

an atomic electron density p%t°™,

constructed by populating the basis functions with appropriate
valence atomic charges. Notice that, since the atomic basis orbitals are zero beyond the cutoff
radius 7¢ = max;(r$,), the screened ‘neutral-atom’ (NA) potential VN4 = Vocal 4 yatom jg also
zero beyond this radius [6] (see Fig. 2). Now let dp(r) be the difference between the self-consistent
electron density p(r) and the sum of atomic densities p®°™ = 3", p#°™ and let §V 2 (r) be the
electrostatic potential generated by dp(r), which integrates to zero and is usually much smaller

than p(r). Then the total Hamiltonian may be rewritten as

H= T+ZVKB+ZVNA )+ 6VE(r) + V(r) (15)

The matrix elements of the first two terms involve only two-center integrals which are calculated
in reciprocal space and tabulated as a function of interatomic distance. The remaining terms
involve potentials which are calculated on a three-dimensional real-space grid. We consider these

two approaches in detail in the following sections.

5. Two-center integrals

The overlap matrix and the largest part of the Hamiltonian matrix elements are given by two-
center integrals [36]. We calculate these integrals in Fourier space, as proposed by Sankey and
Niklewski [6], but we use some implementation details explained in this section. Let us consider

first overlap integrals of the form

S(R) = (#1l42) = [ ¥ (@)alc — Rydr, (16)

where the integral is over all space and 1,12 may be basis functions ¢;,,,,, KB pseudopotential
projectors Ximn, or more complicated functions centered on the atoms. The function S(R) can

be seen as a convolution: we take the Fourier transform
1 —ikr
V) = oy | Ve (17)

Using the planewave expression of Dirac’s delta function, [ e'® ~®rdr = (27)3§(k’ — k), we find
the usual result that the Fourier transform of a convolution in real space is a simple product in

reciprocal space:

R) = [ ik li)e Rk (18)
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Let us assume now that the functions ¥ (r) can be expanded exactly with a finite number of

spherical harmonics:

lmaa}

Z Z wlm Ylm (19)

=0 m=—1

T 27
Dim (1) = / sin 0df /0 doY;e, (0, 0)(r, 0, 0). (20)

0
This is clearly true for basis functions and KB projectors, which contain a single spherical
harmonic, and also for functions like z1(r), which appear in dipole matrix elements. We now

substitute in (17) the expansion of a plane wave in spherical harmonics [37]

00 !
e =575 driti(kr) Y, (k) Vi (), (21)
=0 m=-—1
to obtain l
Z Z 'lplm Ylm ) (22)
=0 m=—1
2. % 2,
Yun (k) = | (i)' [ r2 (k) (r). (23)
Substituting now (22) and (21) into (18) we obtain
leam N
=> Z Sim(R)Yim (R) (24)
1=0 m—=—1
where
Slm(R) = Z Z Gllml,l2m2,lmsl1m1,l2m2,l(R)a (25)
limy lama
27
Gurm tamaion = [ 50040 [ AoV, (0,0)Viama (0, )Y(6.0) (26)
Sty s (R) = dmili =12~ / K2dkg (BR)i™ 7 1,y (K)i 9, 1yms (K), 27)

Notice that "4 (k),24p9(k), and it~"2=! are all real, since I; — Iy — [ is even for all I’s for
which Gy, 1yms,im 7 0. The Gaunt coeflicients Gy, 1, 1,m.,im can be obtained by recursion from
Clebsch-Gordan coefficients [6]. However, we use real spherical harmonics for computational
efficiency:

sin(mep) ifm <0

Yirn(6, ) = Cion P™(c08 6) X { (28)

cos(myp) ifm>0
where P/™(z) are the associated Legendre polynomials and Cj,;, normalization constants [28].
This does not affect the validity of any of previous equations, but it modifies the value of the

Gaunt coefficients. Therefore, we find it is simpler and more general to calculate Gy, 1yms,im
directly from Eq. (26). To do this, we use a Gaussian quadrature [28]

N,

2w 1
/ sin 0d0 dop — 47r— Z w; sin 6; — Z (29)
0 N(p j=1

with Ny, = 1+ 3lpmaz, Np = 1 +int(3lm4./2), and the points cos 6; and weights w; are calculated
as described in ref. [28]. This quadrature is exact in equation (26) for spherical harmonics Y;,,
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(real or complex) of I < [;4z, and it can be used also to find the expansion of 9 (r) in spherical

harmonics (eq. (20)).

The coefficients Gy, 1yms,im are universal and they can be calculated and stored once and for
all. The functions Sj,m, 1,m,,1(R) depend, of course, on the functions 1, o(r) being integrated.
For each pair of functions, they can be calculated and stored in a fine radial grid R;, up to the
maximum distance Ry, = r{ + r§ at which ¢; and 2 overlap. Their value at an arbitrary

distance R can then be obtained very accurately using a spline interpolation.

Kinetic matrix elements T'(R) = (]| — %V2|¢2) can be obtained in exactly the same way, except
for an extra factor k2 in Eq. (27):

Ji—ta—t (1 . TR .
Ty, tyms 4(R) = il =071 /0 Sk kg (kR)E Y 4y, (B)i" oty (K)- (30)

Since we frequently use basis orbitals with a kink [6], we need rather fine radial grids to obtain
accurate kinetic matrix elements, and we typically use grid cutoffs of more than 2000 Ry for
this purpose. Once obtained, the fine grid does not penalize the execution time, because the
interpolation effort is independent of the number of grid points. It also affects very marginally
the storage requirements, because of the one-dimensional character of the tables. However, even
though it needs to be done only once, the calculation of the radial integrals (23), (27), and (30)
is not negligible if performed unwisely. We have developed a special fast radial Fourier transform

for this purpose, as explained elsewhere [38]

Dipole matrix elements, such as (11 |z|¢2), can also be obtained easily by defining a new function
x1(r) = z11(r), expanding it using (20), and computing (x1|¥2) as explained above (with the

precaution of using l,q, + 1 instead of lp,42)-

6. Grid integrals

The matrix elements of the last three terms of Eq. (15) involve potentials which are calculated
on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’ E.;: the maximum
kinetic energy of the planewaves that can be represented in the grid without aliasing [39].
The short-range screened pseudopotentials V¥4 (r) in (15) are tabulated as a function of the
distance to atoms I and easily interpolated at any desired grid point. The last two terms require
the calculation of the electron density on the grid. Let ;(r) be the Hamiltonian eigenstates,

expanded in the atomic basis set

Ppi(r) = Z¢u(r)cuia (31)
"

where ¢;; = (<;~Su|1/)z) and ‘Eu is the dual orbital of ¢,: (<Z>M|¢,,) = 0. We use the compact index
notation p = {Ilmn} for the basis orbitals, Eq. (10). The electron density is then

p(r) = _nilyi(r)? (32)
i
where n; is the occupation of state ;. If we substitute (31) into (32) and define a density matrix

Puv = Y CLiNiCiv, (33)

(3
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*

where ¢;, = c};, the electron density can be rewritten as

p(r) =D puwd, (1) bu(r) (34)
uv

To calculate the density at a given grid point, we first find all the atomic basis orbitals, Eq. (10),
at that point, interpolating the radial part from numerical tables, and then use (34) to calculate
the density. Notice that only a small number of basis orbitals are non-zero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once p,,, is known.
The calculation of p,, itself with Eq. (33) does not scale linearly with the system size, requiring
instead the use of special O(NN) techniques to be described below. However, notice that in order
to calculate the density, only the matrix elements p,, for which ¢, and ¢, overlap are required,
and they can therefore be stored as a sparse matrix of O(N) size. Once the valence density is
available in the grid, we add to it, if necessary, the non-local core correction [16], a spherical
charge density intended to simulate the atomic cores, which is also interpolated from a radial
grid. With it, we find the exchange and correlation potential V*(r), trivially in the LDA and
using the method described in ref. [40] for the GGA. To calculate 6V (r), we first find p®°™(r)
at the grid points, as a sum of spherical atomic densities (also interpolated from a radial grid)
and subtract it from p(r) to find §p(r). We then solve Poisson’s equation to obtain §V (r) and
find the total grid potential V(r) = V¥4(r) + 6V (r) + V*(r). Finally, at every grid point,
we calculate V (r)¢% (r)é, (r) Ar® for all pairs ¢y, ¢, which are not zero at that point (Ar? is the
volume per grid point) and add it to the Hamiltonian matrix element H, .

To solve Poisson’s equation and find §V ¥ (r) we normally use fast Fourier transforms in a unit
cell that is either naturally periodic or made artificially periodic by a supercell construction. For
neutral isolated molecules, our use of strictly confined basis orbitals makes it trivial to avoid any
direct overlap between the repeated molecules, and the electric multipole interactions decrease
rapidly with cell size. For charged molecules we supress the G = 0 Fourier component (an infinite
constant) of the potential created by the excess of charge. This amounts to compensating this
excess with a uniform charge background. We then use the method of Makov and Payne [41]
to correct the total energy for the interaction between the repeated cells. Alternatively, we can
solve Poisson’s equation by the multigrid method, using finite differences and fixed boundary
conditions, obtained from the multipole expansion of the molecular charge density. This can
be done in strictly O(N) operations, unlike the FFT’s, which scale as N log N. However, the
cost of this operation is typically negligible and therefore has no influence on the overall scaling

properties of the calculation.

We have found it convenient for the efficiency of the calculations to use a given grid (defined
by E.yu) during the self-consistency, and then to refine the integrals using a finer grid in the
final calculation of the energy and forces (using the density obtained self-consistently with the
original grid). This provides a significant improvement in accuracy with very little computational
overhead. The grid refinement is done defining a grid-cell-sampling of several points per each

original grid point.

Figure 5 shows the convergence of different magnitudes with respect to the energy cutoff of
the integration grid. For orthogonal unit cell vectors this is simply, in atomic units, E.y: =
(n/Ax)?/2 with Az the grid interval.
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Figure 5: (a) Convergence of the total energy and pressure in bulk silicon as a function of the
energy cutoff E.,; of the real space integration mesh. Circles and continuous line: using a grid-
cell-sampling of eight refinement points per original grid point. The refinement points are used
only in the final calculation, not during the self-consistency iteration (see text). Triangles: two
refinement points per original grid point. White circles: no grid-cell-sampling. (b) Bond length

and angle of the water molecule as a function of E,;

7. Brillouin zone sampling

Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in practice
it is very useful, especially for comparisons and checks, to be able to also perform calculations
efficiently on smaller systems without using expensive superlattices. On the other hand, an
efficient k-sampling implementation should not penalize, because of the required complex arith-
metic, the I'-point calculations used in large cells. A solution used in some programs is to have
two different versions of all or part of the code, but this poses extra maintenance requirements.
We have dealt with this problem in the following way: around the unit cell (and comprising
itself) we define an auxiliary supercell large enough to contain all the atoms whose basis orbitals
are non-zero at any of the grid points of the unit cell, or which overlap with any of the basis
orbitals in it. We calculate all the non-zero two-center integrals between the unit cell basis
orbitals and the supercell orbitals, without any complex phase factors. We also calculate the
grid integrals between all the supercell basis orbitals ¢, and ¢,» (primed indices run over all
the supercell), but within the unit cell only. We accumulate these integrals in the corresponding

matrix elements, thus making use of the relation

<@VE)gy >= D <du|V(E)f()dr > (35)

()= ()

f(r) =1 for r within the unit cell and is zero otherwise. ¢, is within the unit cell. The notation

p' = p indicates that ¢, and ¢, are equivalent orbitals, related by a lattice vector translation.
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(#'v") = (') means that the sum extends over all pairs of supercell orbitals ¢,/ and ¢, such
that 4/ = p, v" =1/, and R, — R,y = Ry — Ryn. Once all the real overlap and Hamiltonian
matrix elements are calculated, we multiply them, at every k-point by the corresponding phase
factors and accumulate them by folding the supercell orbital to its unit-cell counterpart. Thus

Hyy(k) = Y Hype™ B~ (36)

v'=v

where ¢, and ¢, are within the unit cell. The resulting N x N complex eigenvalue problem,
with N the number of orbitals in the unit cell, is then solved at every sampled k point, finding

the Bloch-state expansion coefficients c¢,;(k):
pi(k,r) = Z KRy b (r)ci(k) (37)
w

where the sum in 4 extends to all basis orbitals in space, ¢ labels the different bands, ¢,/; = ¢y

if 4’ = p, and 1);(k, r) is normalized in the unit cell.

The electron density is then

o) = 3 [ mi)l e, ) Pllc = 3 s 65 (1) (1) (39)

p" U’

where the sum is again over all basis orbitals in space, and the density matrix
IEDY / cpi (k)i (k) iy, (k) e B —Ru) g (39)
— /Bz

is real (for real ¢,’s) and periodic, i.e. pu, = pyp if (v, u) = (V', ') (with ‘=" meaning again
‘equivalent by translation’). Thus, to calculate the density at a grid point of the unit cell, we
simply find the sum (38) over all the pairs of orbitals ¢,, ¢, in the supercell that are non-zero
at that point.

In practice, the integral in (39) is performed in a finite, uniform grid of the Brillouin zone. The
fineness of this grid is controlled by a k-grid cutoff [.,;, a real-space radius which plays a role
equivalent to the planewave cutoff of the real-space grid [42]. The origin of the k-grid may be

displaced from k = 0 in order to decrease the number of inequivalent k-points [43].

If the unit cell is large enough to allow a I'-point-only calculation, the multiplication by phase
factors is skipped and a single real-matrix eigenvalue problem is solved (in this case, the real
matrix elements are accumulated directly in the first stage, if multiple overlaps occur). In this
way, no complex arithmetic penalty occurs, and the differences between I'-point and k-sampling
are limited to a very small section of the code, while all the two-center and grid integrals use

always the same real-arithmetic code.

8. Total energy

The Kohn-Sham [10] total energy can be written as a sum of a band-structure (BS) energy plus
some correction terms, sometimes called ‘double count’ corrections. The BS term is the sum of

the energies of the occupied states ;:

EBS = an<¢z|ﬂ|wz> = ZHw/puu = TI'(Hp) (40)
% py
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where spin and k-sampling notations are omitted here for simplicity. At convergence, the ;s
are simply the eigenvectors of the Hamiltonian, but it is important to realize that the Kohn-
Sham functional is also perfectly well defined outside this so-called ‘Born-Oppenheimer surface’,
i.e. it is defined for any set of orthonormal ;’s. The correction terms are simple functionals of
the electron density, which can be obtained from equation (34), and the atomic positions. The

Kohn-Sham total energy can then be written as

77
=S Hupo — 5 [ Ve + [0 - vempmdr+ 3 22 (@)
224 1<J

where I, J are atomic indices, Rry = |R; —Ry|, Z1, Z; are the valence ion pseudoatom charges,
and €*(r)p(r) is the exchange-correlation energy density. In order to avoid the long range
interactions of the last term, we construct from the local-pseudopotential Vlocal, which has an

local( )

asymptotic behavior of —Z;/r, a diffuse ion charge, p , whose electrostatic potential is

equal to Vo (r): X
plIocal( ) _Ev2vlocal( ) (42)

Notice that we define the electron density as positive, and therefore plI"cal < 0. Then, we write
the last term in (41) as

>

I<J

Z1Zy

1
7 — 5 Z local IJ) + Z 5U}o]oal(R1J) . Z U}ocal (43)
Ly 17 I<J T

where U4 is the electrostatic interaction between the diffuse ion charges in atoms I and J:
U (RY) = [ Vil o)plel (v - RydPr, (44)

sU%ral is a small short-range interaction term to correct for a possible overlap between the soft

ion charges, which appears when the core densities are very extended:

7177

UL (R) = =%

Ulocal (R) (45)

and Ufocal is the fictitious self interaction of an ion charge (notice that the first right-hand sum
in (43) includes the I = J terms):

1

Ulocal local / Vlocal lgcal( )47rr2dr. (46)

local local + patom

efinin TOImM , analogously to , we have that and equation
Defining pi'* from V¥ logously to p} have that pf'4 = pf d equati

(41) can be transformed, after some rearrangement of terms, into

EKS — Z(Tlﬂ’ + VMKB puu Z RIJ z 5 local RIJ) . z U}ocal
v I<J I
+ / V¥A@)p()die + / SV H (2)5p(r)dr + / €°(r) p(r)dr
where VN4 = ZIVINA and dp=p — prva.

:/VINA(r)pf]VA(r_ :——/ V2V A —R)dPr  (47)
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is a radial pairwise potential that can be obtained from V¥ A(r) as a two-center integral, by the

same method described previously for the kinetic matrix elements:

;w = <¢u| - _v2|¢u - /¢M V2(/)u( ,uu)dgr (48)

VEB ig also obtained by two-center integrals:

V;LISB = Z<¢M|Xa>U§B<Xa|¢U) (49)

o

where the sum is over all the KB projectors x, that overlap simultaneously with ¢, and ¢,.

The last three terms in Eq. (47) are calculated using the real space grid. In addition to getting
rid of all long-range potentials (except that implicit in §V#(r)), the advantage of (47) is that,
apart from the relatively slowly-varying exchange-correlation energy density, the grid integrals
involve dp(r), which is generally much smaller than p(r). Thus, the errors associated with the
finite grid spacing are drastically reduced. Critically, the kinetic energy matrix elements can be
calculated almost exactly, without any grid integrations.

It is frequently desirable to introduce a finite electronic temperature 7' and/or a fixed chemi-
cal potential y, either because of true physical conditions or to accelerate the self-consistency

iteration. Then, the functional that must be minimized is the free energy [44]
F(Ry,¢i(r),n:) = BX(Ry, i(r) uznz

—kBTZ(ni logn; + (1 —n;)log(1l — n,)) (50)

The functional is built in such a way that minimization with respect to n; yields the usual
Fermi-Dirac distribution n; = 1/(1 + eleéi—#)/ksT),

9. Atomic forces and stress

Atomic forces and stresses are obtained by direct differentiation of (47) with respect to atomic
positions (at finite temperture, really corresponding to the derivatives of the free energy). They
are obtained simultaneously with the total energy, mostly in the same places of the code, under
the general paradigm “a piece of energy = a piece of force/stress” (except that some pieces are
calculated only in the last self-consistency step). This ensures that all contributions, including

Pulay corrections, are automatically included.

The force contribution from the first term in (47) is

0 Opy dT,,
8—R.1 Z(TMU " V;EB)PV“ - Z(Tuy + VKB p “ + Z Z de:wpuli
v )
o WL SIS S L
n vel a W el

where a are KB projector indices, € I indicates orbitals or KB projectors belonging to atom I,

and we have considered that
0SSy, 0SS,  dSu

oR;,  O0R;, dRy,’

(51)
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where R, is the position of atom I, to which orbital ¢, belongs and R, = R;, — Ry,.

Leaving aside for the moment the terms containing dp,,/0R[, the other derivatives can be
obtained by straightforward differentiation of their expansion in spherical harmonics (Eq. (24)).
However, instead of using the spherical harmonics Y;,, () themselves, it is convenient to multiply

them by 7!, in order to make them analytic at the origin. Thus

dSw(R) Sim (R)
—m = Zv<l R’Ylm(R)>

% % (Sl%(lR)> R'Yim(R)R + Z S% V(R'Yim(R)) (52)

In fact, it is S} (R)/R!, rather than S!”(R), that is stored as a function of R on a radial grid.
Its derivative, d(Sh (R)/R')/dR, is then obtained from the same cubic spline interpolation used
for the value itself. The value and gradient of R'Y;,,,(R) are calculated analytically from explicit
formulae (up to [ = 2) or recurrence relations [28]. Entirely analogous equations apply to
dT,,/dR .

The second and third terms in Eq. (47) are simple interatomic pair potentials whose force
contributions are calculated trivially from their radial spline interpolations. The fourth term is
a constant which does not depend on the atomic positions. Taking into account that VN4 (r) =
>, VNA(r — Ry), and therefore 9V N4 (r) /0R; = —VV/N4(r — Ry), the force contribution from
the fifth term is

0 NA 3 / NA(p a59(1‘) 3
BRI/V (r)é Sr = — /V r)ip(r)d’r+ [V aRldr (53)

The sixth term is the electrostatic self-energy of the charge distribution dp(r):

3(5p
SV )ipw)d's = [V (e dr 4
aR,z/ VAo dr = [OVEK) TR, (54
In the last term, we take into account that d(pe™)/dp = v*¢ to obtain
8 xc mC
OR; / ‘ / v aR, (55)

Now, using Eq. (34) and that, for v € I, 0¢,(r)/0R; = —V¢,, the change of the self-consistent

and atomic densities are

Opy
=Re3 9R LG (1) (r) — 2Re Y0 D pud (1) Vb () (56)
BI{I w vel
apatom(r) _ atom
T OR; —2Rel%ﬂ (r)Veyu(r) (57)

where we have taken into account that the density matrix of the separated atoms is diagonal.
Thus, leaving still aside the terms with 0p,,/OR[, the last term in Eq. (53), as well as those in
(54) and (55), have the general form

Re Y0 S pu [ VS0V ()d's = Re 3 3 o (6l V ()| V). (58)

b vel b ovel
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These integrals are calculated on the grid, in the same way as those for the total energy (i. e.
(dulV (r)|¢py)). The gradients V¢, (r) at the grid points are obtained analytically, like those of
¢, (r) from their radial grid interpolations of ¢(r)/r':

¢Iln( )

" )lYlm() m”

V (rYim(£)). (59)

Véiimn(r) = ar (

In some special cases, with elements that require hard partial core corrections or explicit inclu-
sion of the semicore, the grid integrals may pose a problem for geometry relaxations, because
they make the energy dependent on the position of the atoms relative to the grid. This ‘eggbox
effect’ is small for the energy itself, and it decreases fast with the grid spacing. But the effect
is larger and the convergence slower for the forces, as they are proportional to the amplitude
of the energy oscillation, but inversely proportional to its period. These force oscillations com-
plicate the force landscape, especially when the true atomic forces become small, making the
convergence of the geometry optimization more difficult. Of course, the problem can be avoided
by decreasing the grid spacing but this has an additional cost in computer time and memory.
We have found it useful to minimize this problem by recalculating the forces using the grid-cell
sampling described in section 6. This is equivalent to computing the forces averaging over a set
of positions, determined by translating the whole system by a set of points in a finer mesh, and

thus minimizing the error associated with the translational symmetry breaking.

We now turn to the force terms containing dp,,/0Rr. Substituting the first term of Eq. (56)
into Egs. (53-55) and adding the first term of Eq. (51) we obtain a simple expression that
contains all those terms: ) L H,,0pu, /0OR;. The derivative of p,, with respect to the atomic
positions is non-zero for atomic orbitals bases, since the orbitals move with the atoms, and the
orthogonalization of the wave-functions must be imposed upon atomic displacements. It can be

shown [6, 45] that this term can be expressed as:

orthog -9 Z Z Euu aR (60)

n vel
where E,,, is the so-called energy-density matrix:

1 _
E;w = 5 Z (S/WIH ¢PCv + Pun WCS v ) Z Cpai€iCiv (61)
n¢
where ¢; are the eigenstate energies. This equation has been derived in different ways, and
Ordején et al [45] found it also for the O(N) functional, even though it does not require the oc-
cupied states to be orthogonal. In this case, Eq. (61) must be substituted by a more complicated

expression [45].

The derivation of the stress formulas follows the same lines. We define the stress tensor as the

positive derivative of the total energy with respect to the strain tensor

8EKS

Hey (62)

Oaf =

where «, 8 are Cartesian coordinate indices. To translate to standard units of pressure, we must
simply divide by the unit-cell volume and change sign. During the deformation, all vector posi-

tions, including those of atoms and grid points (and of course lattice vectors), change according
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to

3

Z af T €ap)Tp (63)
The shape of the basis functions, KB prOJectors, and atomic densities and potentials do not
change, but their origin gets displaced according to (63). From this equation, we find that

ory
Ocap

= 0yaTp (64)

The change in EXS

is essentially due to these position displacements, and therefore the calcula-
tion of the stress is almost perfectly parallel to that of the atomic forces, thus being performed

in the same sections of the code. For example:

ary,

aeag — Orjw Beaﬂ ors, "

Since 9T}, /0ry, is evaluated to calculate the forces, it takes very little extra effort to multiply
it also by rﬂ for the stress. Equally, force contributions like (58) have their obvious stress

counterpart

Zpuu<¢u|v(r)|(va¢u)r,3> (66)
uv

However, there are three exceptions to this parallelism. The first concerns the change of the
volume per grid point or, in other words, the Jacobian of the transformation (63) in the integrals

over the unit cell. This Jacobian is simply d,g, and it leads to a stress contribution

[ / (VNA(r) + %5VH(r)> 5p(r)dr + B 6,5 (67)

Notice that the the renormalization of the density, required to conserve the charge when the
volume changes, enters through the orthonormality constraints, and yields to a contribution to

the stress:

orthog Z Euu aRa (6 8)

The second special contribution to the stress lies in the fact that, as we deform the lattice,
there is a change in the factor 1/|r — r'| of the electrostatic energy integrals. We deal with this
contribution in reciprocal space, when we calculate the Hartree potential by FFTs, by evaluating

the derivative of the reciprocal-space vectors with respect to ey4g. Since G, = > 3G 3(08a — €8a):

0 1 2G.Gy
Oeap G2 G*

(69)

The third special stress contribution arises in GGA exchange and correlation, from the change
of the gradient of the deformed density p(r) — p(r'). The treatment of this contribution is

explained in detail in reference [40)].
10. Order-N functional

The basic problem for solving the Kohn-Sham equations in O(N) operations is that the solutions

(the Hamiltonian eigenvectors) are extended over the whole system and overlap with each other.
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Just to check the orthogonality of N trial solutions, by performing integrals over the whole
system, involves ~ N3 operations. Among the different methods proposed to solve this problem
[4, 8], we have chosen the localized-orbital approach [46, 5, 47] because of its superior efficiency
for non-orthogonal basis sets. The initially proposed functional [46, 5] used a fixed number of
occupied states, equal to the number of electron pairs, and it was found to have numerous local
minima in which the electron configuration was easily trapped. A revised functional form [47]
which uses a larger number of states than electron pairs, with variable occupations, has been
found empirically to avoid the local minima problem. This is the functional that we use and

recommend.

Each of the localized, Wannier-like states, is constrained to its own localization region. Each
atom T is assigned a number of states equal to int(Z?%/2+1) so that, if doubly occupied, they
can contain at least one excess electron (they can also become empty during the minimization
of the energy functional). These states are confined to a sphere of radius R, (common to all
states) centered at R;. More precisely, the expansion (Eq. (31)) of a state 1; centered at R;

may contain only basis orbitals ¢, centered on atoms J such that |R;;| < R.. This implies

max
4

maxr

that 1;(r) may extend to a maximum range R, + r .

, where r is the maximun range of
the basis orbitals. For covalent systems, a localization region centered on bonds rather than
atoms is more efficient [48] (it leads to a lower energy for the same R.), but it is less suitable
to a general algorithm, especially in case of ambiguous bonds. Therefore, we generally use the

atom-centered localization regions.

In the method of Kim, Mauri, and Galli (KMG) [47], the band-structure energy is rewritten as:
EfMG =2 (205 — Sj) (Hij — nSij)
—

J
= 42 Z Cz’u(SH/u/Cui —2 Z Z ciaSaﬂclBjcjudHuyclji (70)
i pv ij afuv
Where Si; = (vilv;), Hiyj = (Wi|Hpj), 6Huy = Hyy — 1Su, and we have assumed a non-
magnetic solution with doubly occupied states. The ‘double count’ correction terms of Eq. (41)
remain unchanged and the electron density is still defined by (34), but the density matrix is

re-defined as

Puv =2 Z cui (265 — Sij)cjy =4 Z CpiCiv — 2 Z Z CuiCiaSaBCAiCjv (71)
i i ij ap

The parameter 7 in Eq. (70) plays the role of a chemical potential, and must be chosen to lie
within the band gap between the occupied and empty states. This may be tricky sometimes,
since the electron bands can shift during the self-consistency process or when the atoms move.
In general, the number of electrons will not be exactly the desired one, even if 5 is within
the band gap, because the minimization of (70) implies a trade-off in which the localized states
become fractionally occupied. To avoid an infinite Hartree energy in periodic systems, we simply
renormalize the density matrix so that the total electron charge >, Suvpuyu equals the required

value.
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Figure 6: Convergence of the lattice constant, bulk modulus, and cohesive energy as a function
of the localization radius R, of the Wannier-like electron states in silicon. We used a supercell

of 512 atoms and a minimal basis set with a cutoff radius r. = 5 a.u. for both s and p orbitals.

For a given potential, the functional (70) is minimized by the conjugate-gradients method, using

its derivatives with respect to the expansion coefficients

BEKMG
— = 42 5HIWCVi —2 Z Z (Su,,cyjcja(SHaﬂcgi + (SHMUCijjaSagCgi) (72)
v

6ci“ j afv

The minimization proceeds without need to orthonormalize the electron states ;. Instead, the
orthogonality, as well as the correct normalization (one below 7 and zero above it) result as a
consequence of the minimization of EXM¢  This is because, in contrast to the KS functional,
EKMG is designed to penalize any nonorthogonality [47]. The KS ground state, with all the oc-
cupied 1);’s orthonormal, is also the minimum of (70), at which EXM¢ = EXS_ If the variational
freedom is constrained by the localization of the 1);’s, the orthogonality cannot be exact, and
the resulting energy is slightly larger than for unconstrained wavefunctions. In insulators and
semiconductors, the Wannier functions are exponentially localized [49], and the energy excess
due to their strict localization decreases rapidly as a function of the localization radius R., as

can be seen in Fig. 6.

If the system is metallic, or if the chemical potential is not within the band gap (for example
because of the presence of defects), the KMG functional cannot be used in practice. In fact, al-
though some O(N) methods can handle metallic systems in principle [8], we are not aware of any
practical calculations at a DFT level. In such cases we copy the Hamiltonian and overlap matri-
ces to standard expanded arrays and solve the generalized eigenvalue problem by conventional
order-N?3 diagonalization techniques [50]. However, even in this case, most of the operations,
and particularly those to find the density and potential, and to set up the Hamiltonian, are still

performed in O(N) operations.
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Table 3: Average number of selfconsistency (SCF) iterations (per molecular dynamics step) and
average number of conjugate-gradient (CG) iterations (per SCF iteration) required to minimize
the O(N) functional, during a simulation of bulk silicon at ~ 300 K. We used the Verlet method
[63] at constant energy, with a time step of 1.5 fs, and a minimal basis set with a cutoff radius
re = 5 a.u. R, is the localization radius of the Wannier-like wavefunctions used in the O(N)

functional (see text). N is the number of atoms in the system.

R.=4A | R, =5A
N | CG SCF|CG SCF
64 |58 93 |84 84
512 | 49 114 | 88 10.1

1000 | 4.3 115 | 9.9 11.5
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Figure 7: CPU time and memory for silicon supercells of 64, 512, 1000, 4096, and 8000 atoms.
Times are for one average molecular dynamics step at 300 K. This includes 10 SCF steps, each
with 10 conjugate gradient minimization steps of the O(N) energy functional. Memories are
peak ones. Although the memory requierement for 8000 atoms was determined accurately, the

run could not be performed because of insufficient memory in the PC used.
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Irrespective of whether the O(N) functional or the standard diagonalization is used, an outer self-
consistency iteration is required, in which the density matrix is updated using Pulay’s Residual
Metric Minimization by Direct Inversion of the Iterative Subspace (RMM-DIIS) method [51, 52].
Even when the code is strictly O(N), the CPU time may increase faster if the number of
iterations required to achieve the solution increases with V. In fact, it is a common experience
that the required number of selfconsistency iterations increases with the size of the system.
This is mainly because of the ‘charge sloshing’ effect, in which small displacements of charge
from one side of the system to another give rise to larger changes of the potential, as the size
increases. Fortunately, the localized character of the Wannier-like wavefunctions used in the
O(N) method help to solve also this problem, by limiting the charge sloshing. Table 3 presents
the average number of iterations required to minimize the O(N) functional and the average
number of selfconsistency iterations, during a molecular dynamics simulation of bulk silicon at
room temperature. It can be seen that these numbers are quite small and that they increase
very moderately with system size. As might be expected, the number of minimization iterations
increase with the localization radius, i.e. with the number of degrees of freedom (c,; coefficients)

of the wavefunctions. But this increase is also rather moderate.

Figure 7 shows the essentially perfect O(N) behaviour of the overall CPU time and memory. This
is not surprising in view of the completely strict enforcement of O(N) algorithms everywhere
in the code (except the marginal Nlog N factor in the FFT used to solve Poisson’s equation,

which represents a very small fraction of CPU time even for 4000 atoms).

11. Other features

Here we will simply mention some of the possibilities and features of the SIESTA implementation
of DFT:

e The most recent version of SIESTA is partially writen in Fortran-90, and implements dy-
namical memory allocation, so that the same executable can be used for any system under
study. Also, parallelization has been achieved using MPI. In benchmark calculations per-
formed on an SGI Origin computer, using the Kim et al. Order-N functional, a system

with 131,072 silicon atoms was solved using 64 processors.

e A general-purpose package [54], the flexible data format (fdf), initially developped for the
SIESTA project, allows the introduction of all the data and precision parameters in a simple
tag-oriented, order-independent format which accepts different physical units. The data
can then be accessed from anywhere in the program, using simple subroutine calls in which
a default value is specified for the case in which the data are not present. A simple call
also allows the read pointer to be positioned in order to read complex data ‘blocks’ also

marked with tags.

e Non-collinear spin polarized systems [55, 56, 57| can be studied with SIESTA [58]. The
spin direction is defined in the real space grid points, and therefore no atomic sphere

approximation is used.

e The systematic calculation of atomic forces and stress tensor allows the simultaneous
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relaxation of atomic coordinates and cell shape and size, using a conjugate gradients

minimization or several other minimization/annealing algorithms.

It is possible to perform a variety of molecular dynamics simulations, at constant energy
or temperature, and at constant volume or pressure, also including Parrinello-Rahman
dynamics with variable cell shape [53]. The geometry relaxation may be restricted, to

impose certain positions or coordinates, or more complex constraints.

The auxiliary program VIBRA processes systematically the atomic forces for sets of dis-
placed atomic positions, and from them computes the Hessian matrix and the phonon

spectrum. An interface to the PHONON program [59] is also provided within SIESTA.

A linear response program (LINRES) to calculate phonon frequencies has also been de-
veloped [60]. The code reads the SCF solution obtained by Siesta, and calculates the
linear response to the atomic displacements, using first order perturbation theory. It then

calculates the dynamical matrix, from which the phonon frequencies are obtained.

The calculation of the electric polarization, as an integral in the grid across the unit cell, is
standard and almost free for molecules, chains and slabs (in the directions perpendicular
to the chain axis, or to the surface). For bulk systems, the electric polarization cannot
be found from the charge distribution in the unit cell alone. In this case, we use the so-
called Berry-phase theory of polarization [61, 62], which we have implemented in SIESTA
[63]. This allows us to compute quantities like the dynamical charges [61] and piezoeletric
constants [64, 65].

A number of auxiliary programs allows various representations of the total density, the total
and local density of states, and the electrostatic or total potentials. The representations
include both two-dimensional cuts and three-dimensional views, which may be colored to

simultaneously represent the density and potential.

Thanks to an interface with the TRANSIESTA program, it is posible to calculate transport
properties across a nanocontact, finding self-consistently the effective potential across a

finite voltage drop, at a DFT level, using the Keldish Green’s function formalism [66].

The optical response can be studied with SIESTA using different approaches. An approxi-
mate dielectric function can be calculated from the dipolar transition matrix elements be-
tween occupied and unoccupied single-electron eigenstates using first order time-dependent
pertubation theory [67]. For finite systems, these are easily calculated from the matrix
elements of the position operator between the basis orbitals. For infinite periodic systems,
we use the matrix elements of the momentum operator. It is important to notice, however,
that the use of non-local pseudopotentials requires some correction terms [68]. We have
also implemented a more sophisticated approach to compute the optical response of finite
systems, using the adiabatic approximation to time-dependent DFT [69, 70]. The idea is
to integrate the time-dependent Schrédinger equation when a time depedent perturbation
is applied to the system [71]. From the time evolution, it is then possible to extract the

optical adsorption and dipole strength functions, including some genuinely many-body
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effects, like plasmons. Using this approach we have succesfully calculated the electronic

response of systems such as fullerenes and small metallic clusters [72].

12. Some applications to benchmark systems

12.1 Ferroelectric perovskites

DFT calculations are making a big impact is the study of ferroelectric materials, and in partic-
ular, ferroelectric perovskite oxides. The combination of accurate DFT calculations with Monte
Carlo approaches are allowing to advance very significantly in understanding the basic physics of
the ferroelectric transition in these systems. However, the advance in this field has been limited
by the fact that the relevant energies involved in the ferroelectric distortions are very small, and
therefore very accurate calculations are required to produce reasonable results [73, 74]. This
poses a problem even for standard methods like pseudopotential-plane-waves, because of the
important role played by the semicore states, which must be included explicitly in the calcula-
tion and makes it very costly, since very large plane-waves cutoff are needed to describe these

states.

Due to these difficulties and the high computational cost, only the simplest ferroelectric per-
ovskites have been studied so far by means of first principles methods. More complex and
technologically more important materials, or complex combinations of these (heterostructures,
thin films, etc) are therefore quite out of reach so far. It seems obvious that a method which
would produce the accuracy necessary while keeping a low computational cost would be of great
importance in this field. Here we present results for BaTiOg that show that SIESTA is able
to provide such accuracy for a variety of properties such as lattice constant, energy surfaces,

phonon frequencies and effective Born charges.

The calculations presented here were done as follows. We have used the LDA functional of
Perdew and Zunger. Due to the importance of semi-core states, the 3s and 3p electrons of
Ti and the 5s and 5p of Ba were included explicitly in the calculation. The Troullier-Martins
[22] pseudopotentials were generated with those states in the valence, and with the following
reference configurations: 3s23p®3d? for Tit?, 5525p8 for Bat? and 2s%2p* for O. The radii used
were: for Ti, 1.3 a.u for the s, p and d states, and 2.0 for the f states; for Ba, 1.75, 2.0, 2.5
and 2.5 a.u. for the s, p, d and f states, respectively; and for O, 1.15 a.u. for the s, p and d
states and 1.5 a.u. for the f states. The basis set used here was single-( for the semicore states
of Ti and Ba, and double-( plus a single shell of polarization functions for the valence states of
all atoms. For Ba, an extra single shell of 5d orbitals was added. This amounts to a total of 19
orbitals for Ti, 14 orbitals for Ba and 13 orbitals for O.

To obtain the integrals of the Hamiltonian that are computed on a real space grid, we have
used an equivalent cutoff of 200 Ry to represent the charge density. Once self-consistency was
achieved, the grid was refined (reducing the spacing between grid points by half) to compute
the total energy, atomic forces and stress. The sampling of reciprocal space was done using a
(6 x 6 x 6) Monkhorst-Pack mesh. Although BaTiOj3 is an insulator, it has been shown that

this large sampling is necessary to reproduce properly the energetics of the system [73, 74].
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Figure 8: Energy versus distortion for cubic BaTiOs, for tetragonal (circles) and rhombohedral
(squares) distortions. The full symbols are the results of SIESTA, whereas the open symbols are
the FPLAPW results. The patterns of the distortions were taken from the experiment. The
calculations were done at the experimental lattice constant. The lines are fit to the results of
SIESTA, to guide the eye. Energies are referred to that of the cubic phase at the experimental

lattice constant.

We have first considered the undistorted cubic phase. We obtain an equilibrium lattice constant
of 7.46 a.u., very close to previous LDA results from LAPW (7.45 a.u.) [75] or with plane-waves
(7.456 a.u.) [73] calculations. The LDA results underestimate significantly the lattice constant

of the cubic phase, which experimentally is found to be 7.57 a.u.

We have next considered the energy gain for a ferroelectric distortion. At high temperature,
BaTiO3 shows a cubic symmetry with no net polarization. Upon lowering the temperature,
three ferroelectric transitions appear: first, to a tetragonal, then an orthorombic and finally a
rhombohedral phase. We have calculated the energy as a function of ferroelectric displacement
for two different distortions: the rhombohedral and the tetragonal. In the calculation, we have
used a cubic cell with a lattice constant at the experimental value, although experimentally the
unit cell is found to deform slightly according to the symmetry of the ferroelectric distortion.
We will neglect this deformation, since our goal is to validate the results of SIESTA by comparing
them with benchmark DFT calculations. To that end, we use the FPLAPW method [76, 77],
which is the most accurate DFT approach which can be used to study these systems. The
comparison is presented in Figure 8, which shows the energy as a function of the displacement
of the Ti atom (the distortion vector is taken from the experiment [78]). We can observe that
the agreement between both methods is excellent. Both calculations are able to reproduce the
minimum of the energy for a value of the distortion parameter very close to the experimental
one. The energy gain in the rhombohedral phase is more than twice as much as that of the
tetragonal phase. This is consistent with the experiment, where the tetragonal phase occurs at

higher temperature than the rhombohedral one, which is the low temperature stable phase.

Many of the features of the ferroelectric behavior of BaTiO3 can be explained by looking at

the phonon structure of the undistorted cubic phase. The appearance of unstable modes (with
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Figure 9: Phonon dispersion relations for cubil BaTiOj3, calculated with SIESTA (top panel) and
with plane waves (taken from [79]). The colors indicate the main atoms that participate in each
vibration: blue, green and red correspond to O, Ti and Ba, respectively. Unstable modes are

indicated by imaginary frequencies.

imaginary frequency) indicate the presence of instabilities which cause the ferroelectric transi-
tions. Figure 9 shows a plot of the phonon spectra of cubic BaTiO3, computed with SIESTA
(upper panel) and with plane-waves (lower panel) [79]. We see that the agreement is very good.
In particular, SIESTA is able to reproduce all the unstable branches throughout the Brillouin
zone. The colors represent the character of each mode: blue, green and red correspond to O,
Ti and Ba displacements, respectively. Both the frequencies and the character of all modes are

well described with SIESTA.

We have also computed the Born effective charges of the cubic phase. These are important
because they determine the value of the polarization for a ferroelectric distortion, as well as
other properties such as the IR response, or the LO-TO splitting. The symmetry of the cubic
BaTiO3 phase reduces the number of nonzero elements of the dynamical charge tensor to four:
Z*(Ti) and Z*(Ba) for the two metal atoms (their effective charge tensor is isotropic), and
Z*(0Oy) and Z*(Oyy) for the oxygen, corresponding to displacements parallel or normal to BaO
planes. We have calculated the Born charges by finite differences, using the Berry phase method
[61, 62] implemented in SIESTA [63], to compute the net polarization of the system for finite
values of the atomic displacements. These were taken as about 0.3% of the value of the lattice
constant. We used a (4 x 4 x 20) k-point grid, to allow for a larger number of k-points in
the direction of the atomic displacement. We summarize our results in table 4, together with
those obtained with plane-waves calculations by other authors [80, 81]. Again, we find good
agreement, although the differences between our results and those of plane waves are larger (but

comparable) to those between different plane-waves calculations. As with plane-waves, we find
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Table 4: Born charges for cubic BaTiO3 computed with SIESTA and with plane waves [80, 81].

SiestA  PW [80] PW [81]

Ba  2.72 2.77 2.75
Ti 7.60 7.25 7.16
O -2.18 2.15 2.11
O;  -5.96 -5.71 -5.69

values quite larger than the nominal valences of the atoms in the compound, pointing out the

importance of covalency in this material.

12.2 Molecular systems

Here, we show some results of a thorough study of the ability of SIESTA to tackle complex organic
and inorganic molecules [82]. In these calculations, we used a double-( basis set plus a single
shell of polarization orbitals on all the atoms. The radii of the orbitals were obtained using
an energy shift parameter of 0.005 Ry, resulting in relatively long orbitals. Troullier-Martins
pseudopotentials [22], and the GGA functional of Perdew, Burke and Erzenhof [12] were used.
The real space integrals grid cutoff was set to 150 Ry.

In a first study, we focus on the structure of a set of 103 molecules. For details, the complete
list of molecules is available (http://ugbar.ncifcrf.gov/ rcachau/Siesta). The set was selected to
include some of the most difficult cases reported in the evaluation of semiempirical methods as
well as highly stressed (e.g. very polar bonds) and very similar (e.g. alcohol series) geometries
for sensitivity analysis. They also include several H-bonded complexes. We compare our results
with those obtained from calculations using gaussian basis sets, with the B3LYP functional [83],
and with semiempirical methods like AM1 and PM3 [84]. B3LYP, AM1 and PM3 calculations
were performed using Gaussian 98 A.7 [85] with 6311G(2d,2p) atomic basis sets and standard
cutoffs for SCF, and geometry optimization. All semiempirical (AM1 and PM3) calculations

were performed using the amide molecular mechanics correction where required.

Figure 10 shows a comparison of the geometries obtained with the different methods. The bond
angles and bond distances were selected to exclude symmetry related redundancy. Note the
extremely good correlation between SIESTA and B3LYP calculations. The correlation of B3LYP
geometries with experimental values is well known, and also translates to the SIESTA geometries.
The bond distances were presented as squared values to expand the scale. This helps observe the
clustered aspect of the semiempirical plots (not observed in the SIESTA vs. B3LYP correlations),
which is a direct result of the parametrization procedure. More details of these results can be
found in Ref. [82] and http://ugbar.ncifcrf.gov/ rcachau/Siesta).

In a second test case [86], we will discuss the description of H-bonds and the comparison with
the results of accurate quantum-chemical second-order Moller-Plesset (MP2) calculations . In
particular, we will focus on the study of DNA base pairs due to their biological relevance and

the availability of extensive MP2 calculations [87]. H-bonding interactions are of paramount
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Figure 11: Binding energies of a set of 30 DNA base-pairs, comparing the results obtained with
SIESTA with those of MP2 calculations (by Sponer et al. [87])
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importance in the description of DNA systems, among the many factors that stabilize the dou-
ble helix. In order to validate the capability of SIESTA to describe DNA, we considered first
the interactions between nitrogenated base pairs (adenine, guanine, thymine and cytosine). A
thorough study of 30 nucleic acid pairs was performed, addressing the precision of the approx-
imations (basis sets, grids, etc) and the accuracy of the GGA functional. Our calculations,
presented in detail elsewhere [86], show that the PBE functional [12] provides excellent results.
In figure 11 we show a comparison of the binding energies (difference between the energy of the
H-bonded pair and the free bases) for 30 different base pairs, with those obtained by Sponer
et al. [87], by means MP2 calculations. In both cases, the coordinates were the same: those
obtained by Sponer and co-workers at the Hartree-Fock level (due to the numerical workload,
it was not possible to optimize the structures at the MP2 level). The results of figure 11 show
that the correlation of the energies obtained with SIESTA and those of MP2 are excellent, with
an average deviation of only 0.73 kcal/mol. This is considerably better than the accuracy that
can be expected from total energies in DFT, showing the very nice performance of the PBE
functional for these systems, and validating SIESTA as an accurate method for the study of hy-
drogen bonds in DNA complexes. We have also performed structural optimizations with SIESTA
to obtain the first geometries for many of the base-pairs under study. Former DFT works had
only considered the structures of the most common Watson-Crick base-pairs. For these, our
result agree closely (always within 2% for the bonding distances at the H-bonds) with those of

previous calculations. Further details can be found on [86].

13. Conclusions

The SIESTA approach for DFT calculations has been thoroughly described, with illustrations of
the convergence with respect to the main precision parameters that characterize the method.
We have shown that the method is able to produce very fast calculations with small basis sets,
allowing to compute systems a thousand of atoms in single processor workstations (and many
more in parallel platforms). At the same time, the use of more complete and accurate bases
allows to achieve accuracies comparable to those of standard plane waves calculations, still at
an advantageous computational cost. We have shown some examples of the accuracy of the
method, in the context of ferroelectric materials and molecular systems, although many others
have been studied so far (see http://www.uam.es/siesta/). The capabilities, performance and
flexibility of the method make it a very useful tool for the study of large molecules and complex,

and we hope it will serve an increasing number of groups in our community.
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