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Abstract

The 3rd-generation muffin-tin orbital formalism is reviewed and illustrated by applica-
tions to tetrahedrally coordinated semiconductors and high-temperature superconductors.

Introduction

Muffin-tin orbitals (MTOs) have been used for a long time in ab initio calculations of the
electronic structure of condensed matter. Over the years, several MTO-based methods have
been developed. The ultimate aim is to find a generally applicable electronic-structure method
which is intelligible, fast, and accurate. Our recent progress in that direction will be reported

in the present Highlight.

In order to be intelligible an electronic-structure method should, in our opinion, employ a min-
imal and flexible basis of short-ranged orbitals. As an example, the method should be able to
describe the valence electrons in sp-bonded materials using merely four short-ranged s- and
p-orbitals per atom and, for insulating phases, using merely occupied orbitals such as bond or-
bitals. Another example is materials with strong electronic correlations. For such materials, one
must first construct a realistic Hamiltonian, and this requires an accurate single-particle basis
which can be partitioned into correlated and non-correlated orbitals, without introducing too
many of the former. A flexible basis of short-ranged orbitals is thus asked for. The method
should, in other words, enable the user to construct a first-principles, solvable Hamiltonian for

the problem at hand.

Now, a small basis of short-ranged orbitals is a prerequisite for a method to be fast, but it may
be a hindrance for the accuracy, because the orbitals of a smaller basis are in general more

complicated than those of a larger basis.
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Most other ab initio methods, such as plane-wave pseudopotential, LAPW, PAW, and LCAO
methods, aim at simulation, and are therefore primarily accurate and robust. But they are
neither fast nor intelligible in the above-mentioned sense, because they employ basis sets with
about hundred functions per atom. Understanding is therefore attempted after the calculation,
by means of projections onto e.g. charge densities, electron-localization functions (ELFs), partial

waves, Wannier functions in case of insulators, a.s.o.

In this Highlight we start by explaining broadly what 3rd-generation MTOs are and, by the ex-
amples of diamond-structured Si and the CuBr - Ge series, demonstrate that they are intelligible

and accurate.

Next, we sketch the formalism, which is essentially the multiple-scattering formalism of Kor-
ringa, Kohn, and Rostoker (KKR) [1] with the following three extensions: (1) Exact screening
transformations are introduced to reduce the spatial range and the energy dependence -or the
dimension- of the structure matrix. (2) The formalism is proved to hold for overlapping MT
potentials, to leading order in the potential-overlap. (3) Energy-independent MTO basis sets
are derived which span the solutions ¥; (r) with energies ¢; of Schrodinger’s equation to within
errors proportional to (g; — €) (¢; — €1) .. (€; — en) , where €g, €1, ..., €y is a chosen energy mesh.
By virtue of the variational principle, the errors of the energies ¢; are then proportional to
(6i —€0)? (ei — €1)? .. (s — en)?. To work with a discrete energy mesh and divided, finite dif-
ferences is far more flexible and accurate than working with a condensed mesh and energy
derivatives, as was the case for the linear (N=1) MTO (LMTO) methods of the 1st- and 2nd-
generation. Moreover, in those methods the partial waves inside the MT-spheres were treated to
linear order, but the wave function in the interstitial was treated merely to zeroth order. For the
MTOs of the 3rd-generation, the MT-spheres and the interstitial regions are treated on the same
footing like in the KKR method, because only in that case is there an elegant and efficient way
of treating downfolding and overlapping MT-potentials. This, however, causes the expansion
energies €, to be global parameters, independent of the Rl-channel, and that is why we often
need to go beyond linear methods. Descriptions of how we expand the charge density locally
in screened spherical waves and of how the overlapping MT-potential, which defines the MTO
basis set, is derived from the full potential, lie outside the scope of the present Highlight, but
we refer to previous [2, 3, 4, 5] and coming [6] publications. Moreover, our production code for
those parts of the new method is still under construction [7]. The overlapping-potential feature
of the present formalism has been taken up also by Vitos et al. [8] in Green-function calculations

for closely-packed alloys with the usual cell-projection technique for the charge density.

In the final section we demonstrate how 3rd-generation MTOs have been used to discover the
material-dependent trend in the band structures of the hole-doped high-temperature supercon-

ductors and its correlation with the maximum T¢ [9].

Most readers would presumably look at merely the first and the last sections, skipping the heavy
middle part about the formalism. For the rare person who might want to know more, we refer

to the original papers [2, 3, 4, 5, 10].
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Figure 1: Band structure of Si calculated with the Si spd-QMTO basis set corresponding to the
energy mesh shown on the right-hand side. The contour plots show the Si p orbital pointing
in the [111]-direction between two nearest neighbors in the (110)-plane. Shown are the kinked
partial waves (KPWs) at the three energies and the QMTO. The KPWs are normalized to one,
times a cubic harmonics, at the central hard sphere [see Eqs. (14 and (21)]. The contours are

the same in all plots. See text.
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Figure 2: Same as Fig.1, but for the Si sp-set.
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Figure 3: Same as Figs. 1-2, but for the Si(sp)Si-set with sp-QMTOs on merely every second Si
atom, the one seen to the left in the figure. The red valence bands are obtained with this ’ionic’

Si*~Si*t basis. The blue, stippled bands are the ones from Fig. 1.
Illustrations for tetrahedrally-bonded semiconductors

At the top of Fig. 1 we show the LDA energy bands ¢; (k) of Si in the diamond structure,
calculated with the basis set of Si-centered s-, p-, and d-MTOs (9 orbitals/atom) for the energy
mesh ¢y, €1, €2 indicated on the right-hand side. These bands have meV-accuracy for the MT-
potential used for their construction, which in the present case was the standard all-electron,
SigE9 atomic-spheres potential. With three energy points, the MTOs are of order N=2, that is,
they are quadratic MTQOs, so-called QMTOs.

The p-QMTO pointing along [111], from one Si to its nearest neighbor, is shown in the (110)-
plane by the first contour plot. This orbital is localized and smooth with a few wiggles at
the nearest neighbor. The remaining three contour plots show the major constituents of this
p111-QMTO: The pi1;1-kinked partial wave (KPW) at the central site for the three energies. In
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general, the NMTOs for the energy mesh ¢, ..., €y are superpositions:

N
X (1) =3 3 e (o) Ligs s 1)
n=0 RLEA
of the kinked partial waves, ¢rr (€,r), at the N + 1 points of the energy mesh. In the present
case, the L=Im-summation is over the s-, p-, and d-KPWs, and the R-summation is over the
Si sites, that is, over mainly the nearest neighbors, as a comparison between the contour plots
of the QMTO and the KPWs should reveal. These RL-values, for which we have MTOs in the

basis set, we call the active (A) ones.

A KPW is basically a partial wave with a tail joined continuously to it with a kink at a central,
so-called hard sphere of radius ar. This kink is seen in the contour plots, and most clearly for
the lowest energy, €yp. As usual, the partial wave g (¢,rgr) Ys (Fr), where rgp = |r — R| and
tg = r/—\R, is a product of a spherical (or cubic) harmonic and a regular solution with energy

¢ of the radial Schrodinger equation,

—[rom (e,m)])" = e —va (r) =11 +1) /r?] rom (e,1), (2)

for the potential vg (r) of the MT-well at R. The tail of the kinked partial wave is a so-called
screened spherical wave (SSW), ¥rr (g,r), which is essentially the solution with energy ¢ of the
wave equation in the interstitial between the hard spheres, —A (e,r) = e (g,r), satisfying
the boundary condition that, independent of the energy, ¥ gy, (¢,r) go to Y, (Fr) at the central
hard sphere and to zero (with a kink) at all other hard spheres. It is this latter confinement,
easily recognized in the KPW contour plots, particularly at the highest energy e, which makes
the KPW localized, when the energy is not too high. At the same time, it makes the KPW
have pure L-character at the central sphere only, because outside it is influenced by the hard
spheres centered at the neighbors. The default value of the hard-sphere radii is 90 per cent of

the covalent, atomic, or ionic radius, whichever is appropriate.

The kinked partial wave thus has a kink, not only at its own, but also at the neighboring hard
spheres, inside which it essentially vanishes. ’Essentially’ because the above-mentioned boundary
condition only applies to the active components of the spherical-harmonics expansions of the
SSW on the hard spheres. For the passive components, in the present case the Si f- and higher
components, as well as all components on empty (E) spheres, the SSW equals the corresponding
partial-wave solution of Schrodinger’s equation throughout the MT-sphere. The small bump
seen in the lowest contour along the [111]-direction is caused by the slight f-character on the

nearest neighbor.

In the valence and lowest conduction bands of Si there are only s- and p-, but no d-electrons.
We should therefore be able to use a basis with only Si s- and p-MTOs, that is, with only 4
orbitals per atom. In the language used above, we thus let the Si s- and p-partial waves remain
active, while the Si d-waves are included among the passive ones, i.e. those 'folded down’ into
the SSW-tails of the active KPWs. The results for the bands and the p;11-QMTO are shown in
Fig. 2. These bands are indistinguishable from those obtained with the Si spd-set, on the scale
of the figure, although between the energies of the mesh, the bands obtained with the sp-set
do lie slightly above those obtained with the spd-set. However, by making the mesh denser

(increasing N), the accuracy can be increased arbitrarily. The KPW of the sp-set is seen to
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Figure 4: Valence bands (red) of the series CuBr — Ge, calculated with the ionic basis sets where
the sp-MTOs are on the anion and, except for Ge, the d-MTOs are on the cation. The contour
plots show the p111-MTO on the anion (the atom to the right). From top to bottom, the ionicity

decreases and the covalency increases.
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have d-character on the nearest Si neighbor, and the QMTO and the KPW, particularly the one
at the highest energy, are seen to be somewhat less localized than those for the spd-set.

It is even possible to construct an arbitrarily accurate MTO-basis which spans merely the occu-
pied orbitals, that is, which spans the valence band with a basis of merely 2 orbitals per atom. An
advantage of this is that the sum of the one-electron energies might be calculated in real space,
without diagonalization, as the trace of the Hamiltonian, using the MTO orthonormalization
procedure described in Sect. 5 of Ref. [5]. This is a method where the amount of computation
increases merely linearly with the size of the system (or cell), a so-called order-N method (Here,
N refers to the number of atoms in the system, not the order N of the MTOs). For covalent
semiconductors like Si it is customary to take the valence-band orbitals as the bond-orbitals,
which are the bonding linear combinations of the directed sp®-hybrids of orthonormal MTOs.
It is, however, far simpler and more general, e.g. not limited to elemental semiconductors and
tetrahedral structures, to take the valence-band orbitals as the s- and p-MTOs on every second
Si atom, all partial waves on the nearest neighbors being downfolded. This corresponds to an
ionic description, Si*~Si**. As Fig. 3 shows, this QMTO-set describes merely the valence band
and it does so surprisingly well, considering the fact that the two silicons are treated differently
so that the degeneracy along the XW-Iline is slightly broken. The error between the energy
points is proportional to [g; (k) — €g] [¢; (k) — €1] [€; (k) — €2], like for the basis with 4 orbitals
per atom shown in Fig. 2 because we used QMTOs in both cases, but the prefactors are larger
for the smaller basis. This comes from the longer range and the concomitant stronger energy
dependence of the KPWs as the number of active channels decreases. However, by making the
mesh finer, the errors can be made arbitrarily small. In the present case, the basis with 2 cubic
MTOs (CMTOs) per atom turns out to yield energies with about the same accuracy as the basis
with 4 QMTOs per atom. After orthonormalization of this ionic valence-band set, the sum of
the one-electron energies may be calculated as the trace of the Hamiltonian. The directed sp3-
hybrids formed from these orbitals actually look like bond orbitals. Since the ionic Si(sp)Si-set
gives the occupied states in diamond-structured Si with arbitrary accuracy, the same procedure
with the sp-orbitals placed exclusively on the anion (but with the d-orbitals on the cation),
will of course work for any IV-IV, III-V, II-VI, and I-VII semiconductor and insulator. This is
illustrated in Fig. 4. Such ionic MTO basis sets which ’automatically’ span the occupied, and no
further, states of any non-metal could make density-functional molecular-dynamics calculations

highly efficient for such systems.

As an example of a minimal set spanning all states in a wide energy range, we show in Fig. 5 for
GaAs the LDA valence and conduction bands, 18 of which fall in the 35 eV-range displayed. The
dotted bands were calculated variationally using a basis of Ga spd- and As spdf-QMTOs. The
good accuracy obtained with this basis of merely 25 orbitals per cell demonstrates the power of
the NMTO method. Note that no principal quantum numbers were needed, even for this large
energy range which includes the Ga 3d semi-core band at -15 eV. This NMTO representation
should be useful for computing excited-state properties, e.g. with the GW method [11]. For
calculating x-ray dichroism spectra of magnetic materials, a relativistic spin-polarized version
of the NMTO method has been developed [12].
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Figure 5: Band structure of GaAs over a wide energy range, calculated with the QMTO method
and the energy mesh indicated on the right-hand side (dashed), compared with the exact result
(solid).

Formalism

In this section we review the formalism behind the illustrations in Figs. 1-5. We first consider

the tail-functions, the screened spherical waves.

Screened spherical waves (SSW5s)

The screened spherical wave at site R’ and with angular momentum L’ at the own hard sphere

is a linear combination of bare spherical waves:

ngp (1) = Y m(srr) Yo (Fr) Xfrpo (€)= D ngr(er) Xgppw (€, (3)
RLeA RLeA

whose radial parts we have here written as spherical Neumann functions, rather than decaying
Hankel functions, because we want to keep the notation of scattering theory although the energies
(k? =€) of the valence band are mostly negative when we use overlapping MT-spheres. The
screening transformation X (¢) is determined by the hard-sphere boundary condition and the
superscripts « refer to the choice of hard spheres, as well as the normalization as will later become
evident. Finally, we have written n® instead of 1)®, because in (3) we have not yet truncated the
active components and augmented the passive ones. In order to determine X (¢) in such a way
that n® (e, r) fits the boundary conditions, we need to expand n%, (¢,r) in spherical-harmonics

around all sites. For this, we have the well-known expansion:

ny (krr) YL (FR) = ij‘(m“fz) Y7 (8) K7 Byp pr (6, (4)
L
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of the bare spherical wave at site R in spherical harmonics around another site R. The expansion

coefficients are spherical Bessel functions times

K™ Bpp g () = D 4ni™ T Crpym (kR = R) Vi) (R - R) ’ (5)
ll
where B%E,RL (€)
real space. Crry = [YL (%) Y7 (%) Yy(m—m) (£) df are the Gaunt coefficients. We now define

0_
RL,RL

Hermitian. It is convenient to write the expansion (4) of the bare spherical waves, for any R’

are the bare KKR structure constants as they are usually defined, albeit in

an on-site block as zero, B (¢) = 0, and name B (¢) the bare structure matriz, which is

and R including R'=R, symbolically as:
n’(e,r) = j (e,r) K" B’ (¢) + n(e,r) (6)

where capitals denote matrices (e.g. BY), and lower case letters denote vectors (e.g. j(g,r)) or
diagonal matrices (e.g. s~ !tana (e)), specifically numbers (e.g. ). The spherical-harmonics

expansions for the screened spherical wave, we write in the analogous way:
n®(e,r) = j* (e,r) K B (e) + n (e, 1), (7)
where j¢ (e,r) = j%; (e,7) Yz (¥) and the radial function is that linear combination,

Iz (e,7) = 5i (k1) — ny (k7) tan agy, (€) (8)

which satisfies the partial boundary condition: For any active component this is that j%; (e,r)
should vanish at the hard sphere so that we can substitute that radial component of n* (e,r)
continuously inside the hard sphere by zero. For any passive component this is that j%; (e,r)
should match (have the same radial logarithmic derivative as) the radial Schrodinger solution,
g (€,7) given by (2), so that we can substitute that radial component of n® (¢,r) continuously
and differentiably by ¢g; (¢,7). With these substitutions, n%; (¢,r) becomes the SSW, i.e.,
we might write: 9%, (e,r) = 7%, (e,r) with the tilde denoting the substitutions. In conclusion,
agr (€) is the hard-sphere phase-shift for RL active (A) and the real, potential-dependent phase-
shift for RL passive (P) :

oL (€) = { arctan {j; (kag) /n; (kar)} for RL € A o

NRI (6) for RLeP

Due to the presence of the centrifugal potential in the radial Schrodinger equation (2), we have:
limy_, 7 (¢) = 0, and this ensures that the L-dimension of the matrices dealt with in the
multiple-scattering formalism is finite, i.e. max[ ~ 3. The passive partial waves with non-zero

phase-shifts we call intermediate (I) .

The subscript RL, rather than RI, on « and j® (¢,r) takes into consideration that downfold-
ing can be m-dependent, e.g. for the cuprates to be considered in the following section the

conduction-band orbital is Cu d,>_,» with all other partial waves downfolded.

We finally need to express the screening transformation, X (¢), and the screened structure

matriz, B® (¢), in terms of the bare structure matrix given analytically by (5). We thus expand
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each term of the linear combination (3) in spherical-harmonics using (6), and compare with (7)

using (8):
n® (e,r) = { n® (e,r) X* (e) = j(e,r)kIB%(e) X (e) + n(e,r) X*(e)

’ i%(e,v) k7B (e) + n(e,v) = j(e,v) k7 B%(e) +n(e,r) [1 — s tana (¢) B ()]
As a result:

X%(e€) = 1—x'tana(e) B®(e), where B%(e) ! = B%(e) '+ kltana(e), (10)
or equivalently:
—1
B%(e) = kcota(e) — kcotal(e) [Fa cot a () + B? (6)] kcot a (€) . (11)

Note that B® in contrast to B® has on-site elements. The screened structure matrix (11) com-
pletely specifies the set of SSWs. Whereas the bare structure matrix (5) is long ranged and
strongly energy-dependent, the hard-sphere confinement makes the screened structure matrix
localized in real space and weakly energy-dependent. We generate B%L, w1 (€) by matrix inver-

sion for clusters in real space (R), and the L-dimension limited by max!.

In fact, for charge-selfconsistent NMTO calculations it is more efficient to compute, once for
a given structure, a strongly screened structure matrix B? (¢) defined by having hard-sphere

phase-shifts not only for the active, but also for the intermediate channels, that is:
Brr (¢) = arctan {j; (kar) /n; (kagr)} for | <maxl, i.e., for RLe A+ 1. (12)

The strongly screened scattered waves are basically cellular functions, as may be seen from the
front-page picture of Ref. [2]. In case we deal with a crystal with lattice translations T, the

strongly screened structure matrix is Block-summed to
B — : B
Bpp i (e,k) =D _exp (ik - T) Bg g7 g ()
T

Finally, the downfolded structure matrix B* (¢) , whose active block (A) will be used for solving
Schrodinger’s equation [see (19), (20), and (56)], is calculated in each iteration by partitioning:

B3a(e) = B, (6) — BS; (6) [meotnr () + BYy ()] By (e). (13)

It may be noted that although screening (3) is a linear transformation of the set of n® (¢, r)-
functions, it is not a linear transformation of the set of ¥ (e, r)-functions due to their augmen-
tation. This was not the case in the 2nd-generation formalism. Downfolding is a special case of
a screening transformation; it turns out to be a linear transformation followed by truncation of

the inactive channels.

Kinked partial waves (KPWs) and the screened KKR equations

We now come to specify the KPW which has the SSW as its tail and first return to the Si
sp-set illustrated in Fig. 2. We cut the p;11-KPW along the [111]-line from the central Si atom
through its nearest neighbor and half-way into the back-bond void. The result is shown by
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the solid curve in Fig. 6 for an energy € between ¢y and €;. The kinks at the central and the
nearest-neighbor a-spheres are clearly seen, and so is the downfolded d-character at the nearest
neighbor. In fact, the KPW shown in Fig. 6 was not constructed from the SisEs potential used
in Fig. 2, although it is indistinguishable from it on the scale of the figure, but from a potential
> rVr (rr) where the spherically symmetric potential-wells vg (r) are centered exclusively on
the atoms (no empty spheres) and have ranges sg (=MT-radii) so large that the central MT-
sphere in the present case reaches 3/4 the distance to the nearest-neighbor site. The overlap,
defined as wio = [(s1 +s2) /|R1 —Ra|] — 1, is thus 50 per cent. In Fig. 6 the extent of the
central MT-well is indicated by s. This kind of potential, where the MT-spheres can be as fat

as van der Waals spheres, we call an overlapping MT-potential.

In order to construct the KPW in Fig. 6, we integrate the radial Schrodinger equation (2)
numerically from the origin all the way to s, obtaining the partial wave ¢, (e,7) Y7, () shown by
the dot-dashed curve. From here, we continue the integration smoothly backwards from s to a
over the flat potential [v (r) = 0], obtaining the phase-shifted partial wave ¢ (e,r) Yz, () shown
by the dotted curve. ¢; (e,7) and ¢f (g,7) match in value and slope at s, but their curvatures,
which are given by the radial Schrédinger equation (2), differ because v (r) goes discontinuously
to zero at s, i.e., v (s) is finite. At the central a-sphere, ¢} (e,7) Y7, () is joined continuously but
with a kink to the SSW, 4%, (e,r), shown by the dashed curve. In terms of these contributions,
the KPW shown by the solid curve is

$re (6;1) = [k (e,7r) — @RI (6,7R)] YL (FR) + Y1 (6,1), (14)
where ¢ (r) is truncated for r > s and ¢°(r) is truncated for r < a and r > s. The first term
goes quadratically to zero at the MT-sphere:

(e gt (er) = 5(-1Po(s)ei(es) + o(s—n)?), (15)

and is therefore often called a tongue. The subscript @ on ¢ and ¢° in (14) merely labels
a normalization, which is such that the KPW is continuous. This implies that 9% (e,r) and
¢ (e,7) Yr, (F) take the same value at the own sphere. The value of the former is n; (kar) Yz (£r) ,
according to (7) and the fact that j%, (¢,ar) = 0. As a consequence:

ny (kar) . (1) = g1 (kr) — ny (kr) tanng,; ()

: =ny (kr) — cot gy, (€) inr (e,7),
gy (kag) tan agy (¢) — tanng (¢) (sr) i, (€) T, (&)

(16)
where we have used the definition (8) of 7 and j*, and we have defined n® (¢) as the phase shift

YR (e,m) =

with respect to the hard-sphere background:

tannyy (¢) = tannpg; (e) — tanagy, (€) . (17)

We may finally use (7) to obtain the spherical-harmonics expansions of the KPW, valid at, and

somewhat outside the hard spheres:

9% (1) = ¢ (er) —¢°%(e,1) + % (e,1) KT B (¢) + n(e,1)
= 9% (e,1) + 7% (e,1) & [kcotn® (e) + B (¢)]
= ¢%(g,r)+j%(e,r) s 1K (g). (18)
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Here, we have used (16) and have defined a screened KKR matriz, with the elements

Kgrrp (€) = kcotngyr (€) drrdrr + Bp gy (€)- (19)

This, or its inverse, the so-called scattering-path operator K®(¢)™' = G®(¢), is the central
quantity of multiple-scattering and MTO theory. Comparison of (19) with (11) shows that,
apart from additive and multiplicative normalizations, the screened structure matrix is the

scattering-path operator for the repulsive potential specified by the phase-shifts (9).

From the expansions (18), it is intuitively clear, and the details will be discussed below in
connection with Eq. (24), that any linear combination 3 g4 ¢%1 (i, T) c&y ; of KPWs, with
the property that

Z K r (€) ¢y = 0, for all active R'L, (20)
RLEA

is a solution ¥; (r) with energy ¢; of Schrodinger’s equation because the eigenvector CRr,;i leaves
behind the partial-wave expansions Y- p; ¢%;, (€, 1) Cgr,i» Which are solutions by construction.
The linear, homogeneous equations (20) are the screened KKR equations, and the energy ¢; is
determined by the condition that these equations have a proper solution, i.e. that det K¢ (g;) =
0.

In order to get rid of the spurious /e-dependences and to obtain a Hamiltonian formalism [see
Eq. (29)], it is convenient to renormalize the SSW to have value Y7, () at its own hard sphere
and, hence, to renormalize % (¢,7r) to be unity for g = ag, and to renormalize the partial
wave and the KPW accordingly. Denoting these renormalized functions by the superscript a,
which refers to hard-sphere radii rather than to hard-sphere phase-shifts a, we thus have:

_ Y& (&,7)

Wi ) = LIS = flen) )

% (e,arp) =1, and ¢%; (e,1r) =
PRI ( RL) ¢RL( ) n (K'aRL)

These are the normalizations used in all figures. The KKR matrix is renormalized to what we

call the kink matriz:
(6]
—ARLRL ()
kny (kag) kny (kag)’

K?zL,R/L' (e) = (22)

which obviously remains Hermitian. The expansion (18), the Wronskian relation j* (¢,a)’ =
—1/a%kn (ka) with ' = 0/0r, and the renormalizations (21) and (22) show that Kgp pip (€) 18
the kink of g1/ (,r) at the ag-sphere, projected onto Yy, (7r) /a%. The inverse of the kink
matrix we call the Green matriz:

G%(e) = K*(e)t. (23)

In the following we shall always use this a-normalization, and since from now on we shall seldom

change the screening, we usually drop the superscript a.

Due to its kinks, an individual KPW is not a solution of Schrodinger’s equation, but any smooth
linear combination of KPWs is. For coefficients crr; such that the kink in Fig. 6 between
Oy (€isrrr) Y (Frr) and gy (€5,1) on the central sphere (R') is cancelled by the sum of the
kinks from the tails of the KPWs on the neighbors, that is, for a solution of the kink-cancellation

equations (20) (using a-normalization), we have:

O (€i,rr) e = Pri Y, YRL (€i,T) CRL,, (24)
RLEA
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Si p kinked partial wave

0.4

0.2

0.0

Si «a ag-¢s Si «q

Figure 6: Si p111-KPW for the Si sp-set and its constituents ¢Y, ©°Y, and . The MT-potential
used no empty spheres. s denotes the range of the central well. The a’s indicate the hard spheres

at the central and the nearest-neighbor sites.

where Pg/p/ projects onto an active Yz (7). This equation holds because both the left and the
right-hand sides are solutions of the radial wave equation with the same value and slope at ag
and, hence, they are identical. With (24) satisfied, the KPW-definition (14) yields

o0 l
> ¢re(eiv)crey = Y, Y. erv(enrr) Y (Br) cri (25)
RLEA V=0 m/=—
+ Y lewr(eimr) — 9% (€i,mR)] Y (BR) CRL,
R(£R')LEA

for r inside a sphere, centered at R’ and passing through the center of the nearest neighbor.
In (25) the first term is a solution of Schrédinger’s equation by construction and the {’-sum is
infinite because the partial-wave expansions of the SSWs at the neighboring sites include passive
as well as active partial waves. In the second term, ¢ — ¢° vanishes outside its own MT-sphere,
and this second term therefore vanishes outside all MT-spheres different from the central one.
If the MT-spheres do not overlap, (25) therefore solves Schrodinger’s equation exactly. If the
potential-well from a neighboring site (R) overlaps the central site (R'), then the @rr — ¢%,
tongues (15) stick into the MT-sphere at R’ and cause an error. To find its size, we operate with

the Hamiltonian for the overlapping MT-potential,

7‘[ = —V2 + Z'URI (TRI) y (26)
RI
on the smooth function
Ui(r) = Y ore (€ TR) CRL (27)
RLEA

of which (25) is the expansion around site R, and obtain:

(H—e)Wi(r) = D vr(rr) Y, ler(ei,rr) — Ok (€i,7r)] YL (FR) CRL:  (28)
=

R(#R')LEA
1 pairs ) )
~ 5 Z VR (SRI) [(SRI — ’)"RI) + (SR —‘)"R) ] VR (SR) v, (I‘) .
RR'
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This shows that the smooth linear combination (27) of KPWs, given by the solution of the
KKR equations (20), solves Schrédinger’s equation for the superposition of MT-wells to within
an error which is of second order in the potential overlap [13, 3]. If needed, the kinetic-energy
error (28) can be corrected for, and the simplest correction is to use merely:

Ag; = (V; | H — & ¥;) ~ > vr (sw) [(SR’ —rr)? + (sr— TR)Z] VR (SR) PR Ryi -

RR' €pairs

N =

to correct the KKR energy ¢;. Here, pg/r; is the probability that state 4 is inside the overlap of
the MT-spheres at sites R and R'.

Since the kink matrix (22) specifies the kinks of the KPW-set, it also specifies how the MT-

Hamiltonian operates on the set of kinked partial waves, specifically:

(H—¢)prr (e,x) == > d(rr—ar) YL (*r) Krr,r 1 (€) - (29)
RLEA

The overlap-integral between two KPWs may be obtained by use of Green’s second theorem and

the result is simply:
(prp (€) | ¢re (€)) = (Yrr (€) | PrL (€) + (30)

SR SR
rrdvn ([ onn (&) e ) e = [ty (¢07) i () 2
a

R

K K '
_ Kru,ro(e ), RLRL (€) — Kppre () i & —e
el —e¢

Here, - = 3/0¢ and the diagonal part of the integral has been calculated the ’3-fold way’ indicated
in Fig. 6. This means that all cross-terms between products of 1, ¢, and ¢°-functions, and
between ¢ or p°-functions on different sites are neglected. For solutions of the KKR, equations,
this gives the correct result due to the cancellation discussed in connection with expression (24).
The KKR eigen(column)vector ¢; should be normalized according to: 1 = c;-LI-( (¢i) ¢i in order
that (¥; | ¥;) = 1.

An accurate approximation for the charge density, which is consistent with the 3-fold way and,

hence, with the normalization has the following simple form:

p =Y [ bne(ern) Nerww () b (ervm)" de = ¥ (1) + X [ (cm) = iy (xn)]
R

RR' LL'
(31)
where the global contribution is:

MOEDY Z/gF Yri (6,Tr) Nrr,r1 (€) Yr1 (6,7Rr)" de (32)

RR' LL'

and the local contributions, p% (rg) — pﬁo (rg), which vanish quadratically at their respective
MT-sphere, are:

EF
) = S@YE® [ ewler) Nanw () en (5r)de
Lr

P ) = SV@YHE) [ o) Navaw () o (6,7) de. (33)
Lr’
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The common density-of-states matrix in these equations is:

1 .
Ner,r (€)= Y crrild (e — &) crp i = —ImGrr p 1 (€ +1i6) . (34)
1€occ &
We will evaluate the charge density locally, that is: pick a site R and find p (r) in its neighbor-
hood. For that purpose, we 'blow up’ from the downfolded a-representation specified by (9) to
the strongly screened b-representation specified by (12). We thus need

Gha(e) =K4a ()7 = Ghu(e) =G*(e) and Giy(e) = —Kpr (€)™ Kia(e) Ghale)- (35)

The P-part of G* (¢) vanishes because the P-part of K% (¢) is diagonal with diverging elements.
Note that the product K%, (¢)™" K, (¢) was used already for the downfolding (13).

Muffin-tin orbitals (MTOs) and their Hamiltonian and overlap matrices

Since computation of the kink-matrix is expensive, it is not efficient to find a one-electron
energy from: det K (g;) = 0, and then solve the linear equations for the corresponding cgp .
Rather, we shall construct an energy- and state-independent basis set of Nth-order MTOs,
so-called NMTOs (1), with the property that it spans any wave function ¥; (r) with energy
€; in the neighborhood of N+1 chosen energies, ¢g,...,€nx, to within an error proportional to

(e; — €0) ... (65 — €n) - Solution of the generalized eigenvalue problem,

Z <X%]Y2, |H — &l X%\P> brr; = 0, for allactive R'L, (36)
RLEA
then yields energies with errors proportional to (¢; — eo)2 . (gi—€ N)2 by virtue of the variational
principle. This procedure has the added bonus that perturbations to the overlapping MT-
Hamiltonian H are easily included.

It can be proved [5] that the error of the wave functions introduced by using the 3-fold way

)2N+1 (

is proportional to (rg — ag g; — €) ... (¢, — en) . The 3-fold way is therefore a consistent

approximation, not only in the KKR, but also in the NMTO method.

MTOs with N =0

We have seen that all wave functions with &; = €y may be expressed as Y ;. drL (€0,T) CRL,i-

Therefore, the MTOs with N = 0 are simply the KPWs at the chosen energy: Xg% (r) =

orr (€o,r) . In the basis of these, the Hamiltonian and overlap matrices are given by respectively:

(XOH—eo|xV) = —K () and (x| %) = K (e0), (37)

as may easily be found from Eq. (29) and the normalization chosen. Since neglect of the off-
diagonal elements of the overlap matrix, normalized to have diagonal elements 1, only causes

errors in the energy bands of second order,

. . 1 . 1

Krrrw () = —Krrrr (€0) 2 Krr,rr (€0) Kr rr (€0) 2 (38)
is a first-order, two-centre, tight-binding Hamiltonian.
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MTOs with N >0
By an equation of the usual type:
(H - 6) YRL (65 I‘) =4 (TR - aR) Y, (f'R) ) (39)

we define a contracted Green function, yrr, (¢,r), which has one of its spatial variables confined
to the a-spheres, i.e. r'—RL. Considered a function of r, this contracted Green function is a
(possibly delocalized, impurity-) solution with energy ¢ of Schrodinger’s equation, except at its
own sphere and for its own angular momentum where it has a kink of size unity. This kink
becomes negligible when ¢ is close to a one-electron energy because the Green function has a

pole there. Comparison of Eq. (39) with Eq. (29) now shows that

Y (51 I‘) =¢ (55 I') G (5) : (40)

The contracted Green function is thus factorized into a matrix, G (¢) , which has the full energy
dependence, and a vector of functions, ¢ (e,r), which has the full spatial dependence and a
weak energy dependence [14]. We now want to factorize the r and e-dependences completely
and, hence, to approximate ¢ (¢,r) G (¢) by x(™) (r) G (¢) :

We note that subtracting from the contracted Green function a function w(™) (¢,r) which is

analytical in energy,
¢(e,1) G (e) — WM (e,r) = XM (e,1) G (o), (41)

produces an equally good Green function, in the sense that both yield the same Schrédinger-
equation solutions. If we can therefore determine the vector w®¥) (g,r) of analytical functions

in such a way that each X%P (e,r) takes the same value, X%AI]J) (r), at all energies, €y, ..., €y, then

X (e,1) = Xy (1) + O((e =) (e —en)),

and hence, x(™ (r) is the set of NMTOs!

At this stage we need to remember that the divided differences of a function f (¢) on an energy

mesh are given by a table of the form:

e fleo) = fo
fo=fi — _Af
€0—€1 A[Ol} Af__Af
— 2
e fle)=fi A[Oel(])—é[m] = AA[01f2] ’
fi=fo — _Af
e1—ez — A[12]
e fle)=f
and that if the mesh condenses onto the energy ¢,
AN f 1 @
—_— 5 = v) - 42
A[0...N] ni /) (42)
Now, since
X(N) (60,1‘) = X(N) (61,1‘) = - X( )(eNar)a
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the Nth divided difference of x(V) (g,r) G () equals x(V (r) times the Nth divided difference
of G (€). Moreover, if we let w™) (¢,r) be a polynomial in energy of (N-1)st degree, its Nth
divided difference on the mesh will vanish. Taking the Nth divided difference of (41), therefore
leads to the following solution for the NMTO set:

ANG  ANy(r)  ANe(r)@
X ®) XN ~ AN~ AD.N (43)

In order to obtain the explicit expression for the matrix weights in (1), we need to take the
Nth divided difference of the product ¢ (e,r) G (¢). For this purpose we recall the Lagrange

expression
N N
. E—€m
M) =3 flen) 1M (e), with 1V (e)= ] —, (44)
n=0 m=0,#n €n ™ Em

for the Nth degree polynomial f(V) (¢) which passes through the N + 1 mesh points. Differen-
tiating this polynomial N times yields the desired expression for the Nth divided difference:

ANf o 1de (
A[0..N] ~ N!

sz( "o & ¢
n= ()Hm 0,#n (Gn—Gm)
This shows, by the way, that the Nth divided difference depends on the N + 1 energies to which

it refers, but not on their order. By use of (45) we obtain the desired expression:

1
L) _ G(en)_ )l ANG]] , (46)

" N (e Af0..N

in terms of the values of the Green matrix on the energy mesh. From (46) we immediately see that
>N, LV = 1, which ensures that ng]p (r) ~ ¢rr (e,r) in case the KPW-set varies little over
the mesh. We also realize that the NMTO-set (1) may be interpreted as Lagrange interpolation
of the energy-dependence of the KPW-set, with the weights being energy-independent matrices,
L%N), rather than Nth-degree scalar polynomials, Z%N) (¢). Finally, we emphasize that the size
of the NMTO basis is independent of N, but as N increases each basis function may become

more and more complicated.

We now work out the effect of the Hamiltonian on the NMTO set. It follows from (43) that
NMTOs with N > 0 are smooth, because the kinks of the functions vy (¢, r) are equal to unity and
thereby independent of energy. Since the NMTOs with N > 0 are smooth, the contributions
from the delta-function on the right-hand side of (39) for the contracted Green function will

cancel in the end, and the effect of operating on (41) is therefore effectively:
Hx™M (e,1) G (6) = Hy(e,x) — Hw™ (e,1) = ey (e,r) — Hu™) (g,1).

Taking again the Nth divided differences for the mesh on which () (¢, r) is constant, yields:

ANG ANy () _ ANey(r)
W 0 S = AN T AN

(47)

Before we continue with the evaluation of the NMTO Hamiltonian and overlap matrices to be

used in the generalized eigenvalue problem (36), we derive a few illuminating relations:
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Using again Eq. (45) and picking for instance the last mesh point, we obtain:

AN(e—en)f _ i (en—en)f(en) _ R~ (en—en)f (n) :Ni f (€n)

A [ON] n=0 H%:O,;én (Cn — 6m) n=0 H%:O,;én (Gn - GM) n=0 %;é,;én (En o 6m)
AN—lf
= AN
As a consequence:
ANG AN~ (r) ANy (r)
_ (N) - = — = ) 4

Solving for the NMTOs (43) yields:
(H—en) XM (@) = XN (x) (BM —en), (49)

where (V1) (r) is the energy-independent MTO of order N — 1, obtained by not using the last

point, and where

N-1 N -1 N N
BN = ¢ 4 AVC lAG] B AeGlAG

-1 N
AJ0.N —1] |[A]0..N]| — AJ0..N] A[O...N]] - E)%L%N)a (50)

is the energy matriz which, in contrast to x(¥=b (r) is independent of which mesh point is
omitted. The first equation (50) shows how to compute EV) and the last equation shows that
EW) is the energy weighted on the 0...N-mesh by the Lagrange matrices (46).

Let us next consider a sequence of energy meshes, starting with the single-point mesh ¢y, then
adding €; in order to obtain the two-point mesh ¢g, €1, then adding e obtaining the three-point
mesh €y, €1, €2, a.8.0. Associated with these meshes we obtain a sequence of NMTO sets: the
KPW-set x(9 (r),the LMTO-set x(! (r),the QMTO-set x(? (r), a.s.0. Working downwards,
we thus always delete the point with the highest index. Equation (49) now shows that with
respect to the order of the NMTO-set, H — ey may be viewed as a step-down operator and
E(N) — ¢y as the corresponding transfer matriz. In this sequence we may include the case N=0
provided that we define: E(®) — ¢y = —K (&) and x(~Y (r) = 6 (r). Hence, N + 1 successive
step-down operations on the NMTO-set yield:

(H—e0) . (H—en) xM (x) = 6(x) (E<°) - 60) (EUV) - EN).

This, first of all tells us that one has to operate N times with V2, that is with V2V, before
getting to the non-smoothness of an NMTO, and secondly, that the higher the N, the more
spread out the NMTO.

By taking matrix elements of (49), the transfer matrix may be expressed as:

EM ey = <X(N) | X(N—1)>_1 <X(N) 1 — en| X(N)>_ (51)

This holds also for N=0, provided that we take the value of x(%) (r) at its screening sphere to
be ¢°? (g,a) =1 [as is also dictated by the 3-fold way (30)] so that <X(O) | X(_1)> = 1. The form
(51) shows that the transfer matrices with N > 1 are not Hermitian but short ranged, as one

may realize by recursion starting from N=0. Finally, it should be remembered that the NMTOs
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considered sofar have particular normalizations (which are not: <X(N ) | xV )> = 1), and so do

the transfer matrices.

Instead of using the Lagrange form (45) to factorize the NMTO (43), one may use the step-down
property (49) to obtain:

r N r
A (1) = pew,)+ A[%QN] (B = ex) ot % (BO ). (B™ - en),
(52)
since from (29) and (48)

AN=Mg(r)  ANM=1g(r)
AM.N] _ AM.N-1°

Expression (52) for the NMTO-set is the matrix equivalent -or the quantized form- of Newton’s

(H—en)¢(en,r) = —0nd (r) K (o) and (H —en)

expression,
N

FM ) = flew)+ ﬁ(e—w) + ot % (e—e).(c—ex),  (53)
for the Nth-degree polynomial (44) passing through the N + 1 mesh points. In this case,
f (en) = ¢rL (€n,r). The Newton form (52) expresses the NMTO as a kinked partial wave at
the same site and with the same angular momentum, plus a smoothing cloud of energy-derivative
functions centered at all sites and with all angular momenta. This is clearly illustrated in Figs.
1-3. For a condensed mesh and using (42), the Newton expression (52) for the NMTO-set

obviously reduces to the matrix-equivalent of the Taylor series for the energy-dependence of
orr (g,1) .
To calculate the NMTO Hamiltonian and overlap matrices we use expression (43) for the NMTO-
set and therefore first need to evaluate the Hamiltonian and overlap matrices for the Nth
divided difference of the contracted Green function (40). Since according to (48), operation with
the Hamiltonian on this Nth divided difference yields the (N-1)st divided difference, we need
expressions for <AN')’/A [0...N] | AN~/A [ON]> and <AN7/A [0...N] | AN=1y/A[0..N — 1]>
Pre and post-multiplication of the KPW overlap matrix (30) with the appropriate Green matrices
yield

@ Ive) = L9 g = cREeE e
and taking then the Nth divided difference with respect to & and the Mth divided difference
with respect to € gives:

< ANy | AMy > B i 12”: AG/A [n'n]

Af0..N]AOM] ) = R TTN—o e (enr — ) TN i (En — €m)

It can be shown that this double-sum is simply the (N + M + 1)st Hermite divided differ-
ence AMINTIG/A[[0..M] N] of the Green matrix [5]. AMFNFTIG/A[[0..M] N] is defined as
the (M+N+1)st derivative of that polynomial of degree M+N+1 which takes the values
G () ,...,G (en) at the N+1 mesh points and the energy-derivative values G (), .., G (enr)

at the first M+1 points. The single-sum expressions for the relevant cases M = N — 1 and

M = N are respectively

AN G N-1G (en) — G (en) (Zﬁ;é#n e tan ) G (en)

en—€y
= +
A [[ON - 1] N] n—0 (€n — €n) Hrjx;(l)ﬁén (€n — 6m)2 Han;(l) (en — 6m)2

(54)
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Figure 7: Variational energy-estimates for a two-level model (g¢; = 0,1) using single NMTOs
with N = 0,1,2, and 4 as functions of the position x of the center of the energy mesh. For
N > 0, the mesh is: ¢, =2 — 0.2+ 0.4n/N.

and .
ANHIG i\’: G (en) — G (en) Xhim0,%n ﬁ (55)
AT0...NT] n=0 H%:O,;ﬁn (€n — 6m)2 .
For the overlap and Hamiltonian matrices we thus obtain the most important result [15]:
<A[0..N] "=l XpN) = Ao (™ 13—l >A[O..N]
—A%2N@g — A2N+1y

N L N W L

This expression for the NMTO Hamiltonian and overlap matrices is not only simple and beau-
tiful, but it also offers sweet coding and speedy computation. We realize that in the formal-
ism of the 3rd-generation MTO, all relevant quantities are expressed in terms of one matrix,
Ge) = <X(0) le — H| x(0)>71 = K (¢)”!. We have thus derived orbital sets exclusively from
multiple-scattering theory for MT-potentials.

At first glance on (56), it seems strange that the eigenvalues ¢; appear as ’ratios’ of energy
derivatives of Hermite interpolations of the Green matrix, which has poles inside the mesh.
One might have felt more comfortable about interpolating the kink matrix. To develop some
feeling for expression (56), let us first consider the simplest possible 1x1 Green matrix, G (¢) =
>j(e— 5j)71 , which is that of a single, normalized kinked partial wave with principal quantum

numbers j. The variational energy relatively to ey can easily be worked out as [5]:

ANG/A[0.N —1]N] _ % (ei —en) " TInso (&5 —€n)
AZNHIG/A[0...N]] 3 Tnzo (5 — en) ™

and the deviation from the exact result, &; — e, is therefore, to leading order, 37, ; (¢; — en) X
HnN:() (e — én)2 /(g5 — én)2 . This is in accord with the opening statement of this section, that the
energies have errors proportional to (g; — €o)? ... (€; — ex)?. Fig. 7 shows how for the two-level
system, G (g) = % + 6%1, this variational energy switches between the exact eigenvalues 0 and 1
as the centre z of the mesh sweeps from —1 to +2. The various curves refer to N =0, 1,2, and 4.
For N > 0, we used meshes of total width 0.4. We see that the switching curves sharpen up as
N increases, and that good results are obtained already with N = 1, the so-called chord-LMTO.

As another example, let us work out the expressions for the LMTO Hamiltonian and overlap

matrices in terms of the kink matrix which, according to (37), is essentially the first-order

106



two-centre Hamiltonian. The results obtained from (54)-(56) are:

(O —ealx®) = _[AA[gl]]_l AA[[QOTH [AA[(?H]_I

= (co— ) (Go—Go) " (~Go + AG/A[01]) (Go — G1)

— —G—lga—l = K+ KK‘ng_lK,
with G,, = G (¢,,) , and

-1 -1
<X(1) |X(1)> _ _[ AG ] A3G [ AG ]
Af01]] ATo1] LA01]
= (Go—G1) " (—Go+2AG/A[01] - G1) (Go— Gh)
G . K K., LK.,
- G50 = K-KK 5 - DK 'K+ KK 5K K.

The results for a condensed mesh in terms of the kink matrix and its first three energy derivatives
may be recognized as almost identical to those of the 2nd-generation LMTO-ASA method. To
get exactly to this LMTO-ASA form, one needs to transform to the nearly orthonormal LMTO
set: ¥ (r) = x(V (r) K=1/2, which corresponds to Lowdin orthonormalization of the Oth-order
set. However, the present formalism does not require the ASA, but it holds to leading order for
overlapping MT-potentials and can be generalized to an arbitrary energy mesh. This is a most

crucial improvement.
For a crystal and in the k-representation, one may use AN+ (k,r) /A [0...N] as basis-set, so that
inversion of ANG/A[0..N] is avoided. In this case, we solve the generalized eigenvalue problem

AQNGa (k) A2N+1 el (k) . B
<_A[[0..N Nt (5 (k) —en W) gi (k) =0,

in the downfolded representation (of size A) and normalize the eigenvectors according to:
g5 (k) (~APHGe (k) /AT0..N]]) g (k) = 1.

The wave function in the strongly localized representation (of size B > A) is then:

ANy (k,r)
Tj(kr) = Yy e hghy (k)
A=, A.N] J
N , GY (en, k)
: RL,R L' \€n;
= Z Z Z ¢%L (€n7 r— T) e'Lk T N g%’L',j (k)
RLEB T n=0 ried lm=02n (€n — €m)

N
= > 3> ¢p (€n, v —T) 5T CZRL,j (k),

RLEB T n=0
because it may be shown that downfolding merely truncates the contracted Green function
v (g,r), but leaves it otherwise unchanged. In this expression, we have been explicit about the
summations and have defined an eigenvector c’, rr,j (k). In terms of this, the localized form of

the charge density becomes

N
P (r) = Z Z Z (ﬁI;{L (Gn, r— T) Nnb(R+T)L,n’R'L’ ¢bRILI (Cnl, r)

RL,R'L'eB T n,n'=0

= )+ > [p‘;‘é (rR) — p% (TR)]’
REB
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where we use the forms analogous to those following (31), but with the density matrix

zk-ch

b b
Nn(R—|—T)L,n’R’L’ = Z € nRL,j (k) Cn'*R'L',j (k).

kj€occ

We finally remark that energy-dependent, linear transformations of the kinked partial waves:
¢ (e,r) = ¢ (e,r) T (¢) change the individual NMTOs, but not the Hilbert space spanned by them
[5]. Transformation to a nearly orthonormal representation, defined by <>2(N ) | ba _1)> =1,is
simple because this does not require taking the square root of the overlap matrix. Moreover,
in a nearly orthonormal representation, the transfer matrices are Hamiltonians, as Eq. (51)
shows, and starting from such a representation, it is a simple matter to obtain a completely

orthonormal one. This is all explained in Ref. [5].

Band structure trend in cuprates and correlation with 7, ..

In this final section, we present an extended version of a recent paper [9], which demonstrates
the use of the 3rd-generation MTO method to extract the materials-dependent trend relevant for
high-temperature superconductivity. Other applications of this method to correlated electron

systems include Refs. [16].

The mechanism of high-temperature superconductivity (HTSC) in the hole-doped cuprates re-
mains a puzzle [17]. Many families with CuQO,-layers have been synthesized and all exhibit a
phase diagram with T, going through a maximum as a function of doping. The prevailing ex-
planation is that at low doping, superconductivity is destroyed with rising temperature by the
loss of phase coherence, and at high doping by pair-breaking [18]. For the materials-dependence
of T, at optimal doping, T.max, the only known but not understood systematics is that for
materials with multiple CuQOs-layers, such as HgBasCa,—1Cu, 02,49, Temax increases with the
number of layers n, until n ~3. There is little clue as to why for n fixed, T, max depends strongly
on the family, e.g. why for n=1, T, pax is 40K for LagCuQy, 85 K for TlsBasCuOg, and 90 K
for HgBapCuOy, although the Neel temperatures are fairly similar. A wealth of structural data
has been obtained, and correlations between structure and 7, have often been looked for as
functions of doping, pressure, uniaxial strain, and family. However, the large number of struc-
tural and compositional parameters makes it difficult to find what besides doping controls the
superconductivity. Insight was recently provided by Seo et al. [19] who grew ultrathin epitaxial
Laj.9Srg.1CuQy4 films with varying degrees of strain and measured all relevant structural param-
eters and physical properties. For this single-layer material it was concluded that the distance
between the charge reservoir and the CuQOs-plane is the key structural parameter determining

the normal state and superconducting properties.

Most theories of HTSC are based on a Hubbard model with one Cud,z_»-like orbital per CuOq

unit. The one-electron part of this model is in the k-representation:
e (k) = —2t (cos ky + cos ky) + 4t cos kg cos ky — 2t" (cos 2ky + cos 2ky) + ..., (57)

with ¢, ¢/, ¢, ... denoting the hopping integrals (> 0) on the square lattice (Fig.8). First, only

t was taken into account, but the consistent results of LDA band-structure calculations [20]
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Figure 8: Relation between the one-orbital model (¢,¢',t",...) and the nearest-neighbor four-
orbital model [20] (eq —ep ~ 1€V, tpg ~ 1.5€V, e, —egp ~ 16 —4eV, t;, ~ 2eV).

and angle-resolved photoemission spectroscopy (for overdoped, stripe-free materials)[21], have
led to the current usage of including also t', with #'/t ~ 0.1 for LagCuQO4 and ¢'/t ~ 0.3 for
YBayCu3zO7 and BisSraCaCuyOg, whereby the constant-energy contours of expression (57) be-
come rounded squares oriented in respectively the [11]- and [10]-directions. It is conceivable
that the materials-dependence enters the Hamiltonian primarily via its one-electron part (57),
and that this dependence is captured by LDA calculations. But it needs to be filtered out:

The LDA band structure of the best known, and only stoichiometric optimally doped HTSC,
YBayCusO7, is more complicated than what can be described with the ¢-t' model. Nevertheless,
careful analysis has shown [20] that the lourenergy layer-related features, which are the only
generic ones, can be described by a nearest-neighbor, tight-binding model with four orbitals per
layer (Fig. 8), Cu3d,2_,pe,

the diffuse Cu 4s-orbital whose energy, ¢, is several eV above the conduction band. Also the

Ou 2ps, Op 2py, and Cu4s, with the interlayer hopping proceeding via

intralayer hoppings t', ¢, ... beyond nearest neighbors in (57) proceed via Cu 4s. The constant-
energy contours, ¢; (k) = ¢, of the tight-binding model in Fig. 8 could be expressed simply as

[20]:

2

l—u—d(e)+(1+u)ple) = R

(58)

in terms of the coordinates u = £ (cos ks + cosky) and v = 1 (cos k; — cos ky) , and the quadratic

functions
(es —¢) (e —&p)
412, ’

d(e) = (i EZ)tQ(E ) and s(g) =

pd
which describe the coupling of O,y py/y to respectively Cud,2_,» and Cus. The term pro-
portional to p(¢) in (58) describes the admixture of O,/ p, orbitals for dimpled layers and
actually extends the four-orbital model to a six-orbital one [20]. For ¢ near the middle of the
conduction band, d(¢), s (g), and p (¢) are positive and the energy dependence of d (¢) may be
linearized (d > 0), while that of s (¢) and of p (¢) may be neglected. p = 0 for flat layers and
p = s2/ (1 + s)” for extended saddlepoints. The bilayer bonding and antibonding subbands have
es-values split by Ft. Now, if ¢, were infinitely far above the conduction band, or tsp were
vanishingly small, the right-hand side of (58) would vanish, with the result that the constant-
energy contours would depend only on u. The dispersion of the conduction band near the Fermi
level would thus be that of the one-orbital model (57) with ¢ = (1 —p) /4d and ¢’ = ¢ = 0.
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For realistic values of €5 and 5y, the conduction band attains Cu s-character proportional to v?,
thus vanishing along the nodal direction, k; = k,, and peaking at (,0), where it is of order 10
per cent. The repulsion from the Cu s-band lowers the energy of the van Hove singularities and
turns the constant-energy contours towards [10]-direction. This same v2-dependence pertains to
the interlayer splitting caused by ¢£, in a multilayer material. In order to go from (58) to (57),

1 o , 1/2
1—u+s 1—2ru’

(59)
was expanded in powers of 2ru. This provided explicit expressions such as:
. . 1
t=[1—-p+o(r)]/4d, t'=[r+o(r)] /4d, and t" = it'—l—o(r),

for the hopping integrals of the one-orbital model in terms of the parameters of the four(six)-
orbital model and the expansion energy ~ ep. Note that all intralayer hoppings beyond nearest
neighbors are expressed in terms of the range-parameter r. Although one may think of r as t'/t,
this holds only for flat layers and when r < 0.2. When r > 0.2, the series (57) must be carried
beyond #”. Dimpling is seen not to influence the range of the intralayer hopping, but to reduce

t through admixture of O/ p,. In addition, it reduces t,q.

We shall now generalize this analysis to all known families of HTSC materials using the 3rd-
generation MTO method which allows us to construct minimal basis sets for the low-energy part
of an LDA band structure with sufficient accuracy that we can extract the materials dependence.
This dependence we find to be contained solely in €, which is now the energy of the azial orbital,
a hybrid between Cu s, Cuds,2_1, apical-oxygen O, p,, and farther orbitals on e.g. La or Hg. The
range, 7, of the intralayer hopping is thus controlled by the structure and chemical composition
perpendicular to the CuOsq-layers. It turns out that the materials with the larger r (lower &)
tend to be those with the higher observed values of T.max. In the materials with the highest

Temax, the axial orbital is almost pure Cu4s.

It should be noted that r describes the shape of the non-interacting band in a 1eV-range around
the Fermi level, whose accurate position is unknown because we make no assumptions about the

remaining terms of the Hamiltonian, inhomogeneities, stripes, a.s.o.

The top of Fig. 9 shows the LDA energy bands calculated for the simplest, idealized, infinite-
layer cuprate, CaCuQOs. The red conduction band was obtained using a single Bloch-sum of the
Cudy2_,» (N=4)MTO, which is shown in the CuOgz-layer in the bottom part of the figure. All
other channels were downfolded. We see the central Cu 3d,>_,2-orbital, surrounded by four
O 2p-orbitals anti-bonding to it. At the four next Cu sites there is substantial diffuse Cu 4s-
character bonding to O 2p. This character is best recognized as a strengthening of the O 2p
back-lobes followed by sharp truncation at the outermost node of the Cu 4s orbital. Having

understood these general in-layer features, we now consider the real materials:

Fig. 10 shows the LDA bands for the single-layer LasCuO4 and T1loBasCuOg. Whereas the high-
energy band structures are complicated and very different, the low-energy conduction bands
shown by dashed lines contain the generic features. Most notably, the dispersion along I'DZ
is suppressed for TlyBayCuOg relatively to LapCuQy4, whereas the dispersion along I'XZ is the
same. This is the v2-effect. The low-energy bands were calculated using the first-order tight-
binding Hamiltonian (38) with a single Bloch sum of Cu d,>_,>-KPWs, or (N=0)MTOs, with €y
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Figure 9: LDA energy bands of idealized CaCuQOy with flat CuOsg-layers. The red band was
obtained using the Cu d,2_,2 MTO shown in the CuOs-layer in the bottom part of the figure.
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Figure 10: LDA bands calculated with the NMTO method in the bct structure. The dashed
band was obtained using the Bloch sum of MTOs with N=0 and Cu d,>_,2 symmetry at the
central site. I" (0,0,0), D (7,0,0), Z (27,0,0) = (0,0,27/¢) , X (m, 7,0).

near half-filling. The low-energy bands agree with the full band structures to linear order and,
in contrast to the N=4-bands in Fig. 9, head smoothly towards the pure Cu d,>_,2-levels at T’
and Z, extrapolating across a multitude of other bands. Now, the hopping integrals ¢, t', t”, ....
may be obtained by expanding the low-energy band as a Fourier series. This yields: ¢ = 0.43eV
in both cases, t'/t = 0.17 for LagCuO4 and 0.33 for T1;BayCuQg, and also many further inter-
and intralayer hopping integrals [22].

That all these hopping integrals and their materials-dependence can be described with a gener-
alized four-orbital model is conceivable from the appearance of the conduction-band orbital for
LapCuOy4 shown in Fig. 11 in the zz-plane perpendicular to the layer. Starting from the central
Cu atom and going in the z-direction, we see 3d,2_,» antibond to neighboring O, 2p;, which
itself bonds to 4s and antibonds to 3d3,2_; on the next Cu. From here, and in the z-direction,
we see 4s and 3ds,>_; antibond to O, 2p,, which itself bonds to La orbitals, mostly 5ds,>_.
In the y-direction, 4s antibonds and 3ds3,2 ; bonds to Op2p,. For the 85K superconductor
T1;BapCuOg, we find about the same amount of Cu3d,2_,2 and Og/, 2p,/, character, but more
Cuds, negligible Cu3ds,2_;, much less O.2p,, and T16s instead of Labds,2_; character. That
is, in TlsBasCuOg the axial part is mainly Cu4s. The situation is essentially the same in the
simple tetragonal 90 K superconductor HgBasCuQOy4. This is seen in Fig. 12: there is essentially
no apical-oxygen character, but substantial Cu 4s as recognized from the node it cuts in the

plane-oxygen orbital.

Calculations with larger basis sets than one MTO per CuOs now confirm that, in order to
localize the orbitals to the extent that only nearest-neighbor hoppings are essential, one needs
to add one orbital, Cu axial, to the three standard ones [22]. This axial (N=0)MTO obtained

from calculations with Cu d» Oq Pzy Op py, and Cu s chosen as active is shown in Fig.

—y?;
13 for HgBayCuOy (left) and LagCuOy (right). The corresponding four-orbital Hamiltonian is
therefore the one described above in Fig.8 and in Egs. (58)-(59). Note that we continue to call
the energy of the axial orbital €, and its hopping integral with O, p,/, for ts,. Calculations
with this basis set for many different materials show that, of all the parameters, only £, varies
significantly [22]. This variation can be understood in terms of the couplings between the

constituents of the axial orbital sketched in the right-hand panel of Fig. 11: We first form the

112



Axial

Cuds

O¢ 2p,
Cu 3ds,24

e

Figure 11: Left: N=0 MTO describing the Cu d 2_,2-like conduction band in LapCuOy4. The
plane is perpendicular to the layers and passes through Cu, O,, O, and La. Right: Schematic

diagram giving the energy £, of the azial orbital in terms of the energies of its constituents and

their couplings.
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Figure 12: As left-hand side of Fig. 11 and including the conduction-band orbital for
HgBasCuOy.
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Figure 13: Axial orbital (KPW) for HgBaoCuOy4 (left) and LagCuQOy4 (right) in the zz-plane
perpendicular to the CuOs layer.

appropriate O p,-like 5-atom hybrid Cuds,2_; - 20, p, -2 La with the energy [22]

2

toet A7t? t2

e =est 1+ 2022 ez _ _cla (60)
tsp tey2 EF — €2 €La — EF

and then we couple this to the Cu s-orbital to yield the energy

2t2,

Es =€+ ——
EF — &¢

of the axial orbital. Here, the energies of the pure Cus- and O, p,-orbitals are denoted £z and
€z, respectively, while their hopping integral is t;.. The energy of the Cu d3,>_;-orbital is ¢,
and its hopping integrals to O/, p;/, and O, p, are respectively ¢,,> and f.,>. In deriving [22]
Egs. (58)-(60), we have exploited that

2
tpz2 EF — E,2 and tg;d 6F—(6p+8d)/2
t2, €5 —€F t2,  er—(ept+es)/2

Although specific for LapCuOy, Eq. (60) is easy to generalize.

In Fig. 14 we plot the r-values for single-layer materials against the distance dcy—o, between
Cu and apical oxygen. r increases with dcy—o, because € is lowered towards er when the
coupling between O.p, and Cuds,2_;/s is weakened. Since t.,2 daﬁ_oc and tz daﬁ_oc,
increasing the distance suppresses the Cuds,2_; content, which is then important in LaoCuQy,
but negligible in TlyBasCuOg and HgBasCuO4. This is also reflected in the slopes of the lines
in Fig. 14 which give r vs. dcy—o, for each material. The strong slope for LagCuQO4 explains the
findings of Seo et al. [19], provided that 7 correlates with superconductivity. That the Bi-point
does not fall on the La-line is an effect of Bi being different from La: Bi6p, couples stronger to
O¢2p, than does Labds,>_;. The figure shows that upon reaching HgBasCuQy, r is saturated,

€s ~ €3, and the axial orbital is almost purely Cu4s.

Fig. 14 hints that for single-layer materials » might correlate with the observed T.max. But

the experimental uncertainties of both T, ,,x and the structural parameters are such that we
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Figure 14: Calculated range parameter, r, for single-layer materials vs. the distance (in A)

between Cu and O,. The lines result from rigid displacements of O.

need better statistics. Therefore, we plot the observed Tymax against the calculated r-values
for 15 different HTSC families in Fig. 15. For the single-layer materials we observe a strong
correlation between r and T, may, which seems to be continued in the bonding subband for the
multilayer materials (filled squares). This indicates that the electrons are delocalized over the
multilayer [25], and that T, pax increases with the number of layers for the same reason that it
increases among single-layer materials; the multilayer is simply a means of lowering €, further,
through the formation of Cu4s-Cu4s bonding states. This is consistent with the celebrated
pressure-enhancement [24] of T, in HgBayCayCuzOg. One might attempt to increase T¢ max, say
for YBasCusOy, by substituting Y with a smaller cation, e.g. Sc. This has not been done, but a
larger cation, La, was recently inserted [23] and caused T¢max to drop from 92K to 50 K. Using
the observed structure of LaBasCu3zQO7, we have calculated the r-values and included them in
Fig. 15. Here again, the bonding subband is seen to follow the trend! That T, max eventually

drops for an increasing number of layers, is presumably caused by loss of phase coherence.

Interlayer coupling in bet LagCuO4 mainly proceeds by hopping from O.p, at (0,0, zc) to its
four nearest neighbors at (i%, j:%, (% — z) c), and is therefore taken into account by adding to
ez on the right-hand side of (60) the term

1 1 1
—8t- cos Ekw cos §ky cos §Ckz'

In primitive tetragonal materials, the corresponding term is merely proportional to cosck, be-
cause the CuQo-layers are stacked on top of each other, e.g. in HgBasCuQy, the interlayer
coupling proceeds from O.p, at (0,0, zc) via Hgbs/6p, at (0,0,c/2) to O.p, at (0,0,(1 — z)c).
Periodic interlayer coupling thus makes €; depend on k,, and this passes onto the conduction
band a k,-dispersion proportional to v? cos %km cos %ky cos %ckz in bet, and to v? cos ck, in tetrag-
onal structures. Fig. 15 shows how the k,-dispersion of r decreases with contraction of the axial

orbital onto the (multi)layer.

Our identification of an electronic parameter, r or €5, which correlates with the observed T¢ max
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Figure 15: Correlation between calculated r and observed Tymax- Filled squares: Single-layer
materials and most bonding subband for multilayers. Empty squares: Most antibonding sub-
band. Half-filled squares: Non-bonding subband. Dotted lines connect subband-values. Bars

give k,-dispersion of r in primitive tetragonal materials.

for all known types of hole-doped HT'SC materials should be a useful guide for materials synthesis
and a key to understanding the mechanism of HTSC. With current k-space renormalization-
group methods one could for instance investigate the effect of the band shape on the leading
correlation-driven instabilities [26]. Moreover, the possibility that a longer hopping-range leads
to better screening of the Coulomb repulsion, maybe even to overscreening, could be studied.
Increased diagonal hopping ¢’ might lead to higher T, ,.x by suppression of static stripe order
[27]. The Van Hove scenario [28] finds no support in Fig. 15 because it is the saddlepoint of
the anti-bonding band which is at the LDA Fermi level in YBayCu3O7; the bonding band is
about half-filled and enhances spin-fluctuations with q = (7, 7) [29]. The propensity to buckling
is increased by pushing the conduction band towards the O, p.-level [20] by lowering of ¢, but
recent structural studies [23] as well as Fig. 15 disprove that static buckling enhances T} max,
although dynamical buckling might. The interlayer-pair-tunnelling mechanism [30] is ruled
out by the fact that the additional factor cos %km cos %ky attained by ¢ (k) in bct materials
suppresses the interlayer pair-tunnelling in T13BasCuOg compared with HgBasCuQ,, and yet,
Temax ~ 90K in both cases. That the axial orbital is the channel for coupling the layer to its
surroundings is supported [31] by the observations that the k-dependence of the scattering in the
normal state is v2-like [21] and that the c-axis transport is strongly suppressed by the opening of
a pseudogap [32] with similar k-dependence. The axial orbital is also the non-correlated vehicle
for coupling between oxygens in the layer. Therefore it seems plausible that contraction of the
axial orbital around the CuQOs-layer, away from the non-stoichiometric layers, will strengthen

the phase coherence and thus increase Tpmax. Thermal excitation of nodal quasiparticles [33]
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is, on the other hand, hardly the mechanism by which the superconducting state is destroyed,

because the axial orbital does not influence the band in the nodal direction.

Finally we note that the correlation between r and T, nax does not extend to electron-doped

cuprates, where the mechanism for superconductivity thus seems to be different.

Conclusion

We have solved the long-standing problem [34] of deriving energy-independent, short-ranged
orbitals from scattering theory. What in the 1st-generation of the LMTO formalism was possible
only through the Ansatz of neglecting the energy dependence in the interstitial, was solved
in the 2nd and 3rd generations through an exact screening transformation. By treating the
interstitial on the same footing as the MT-spheres, the direct relation to scattering theory,
efficient downfolding through screening, and the extension to overlapping, but short-ranged
potentials comes ’for free.” However, since the energy ¢p around which the partial waves are
expanded is now global, Taylor expansion to linear order is not always sufficient. The final step
was therefore to generalize to arbitrary order and discrete meshes. By application of the NMTO
formalism to a few examples, we hope to have indicated how it may become of considerable

practical importance.
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