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There has been renewed interest in spin fluctuations in materials close to magnetic order re-
cently. This is due in part to a realisation that nearly critical magnetic fluctuations may be
important factors governing the non-conventional properties of a wide range of materials which
include the high T, superconducting cuprates and heavy fermion systems [1]. The strongly cor-
related electrons in many of these systems however have meant that most theoretical work has
concentrated on parameterised models in which the electronic motion is treated rather simply.
Another complementary approach however is to use an ab initio theory such as Time Dependent
Density Functional Theory (TDDFT) [2] but apply it to materials where it can be expected to
work i.e. where the effects of electron correlations are not so important, but which otherwise
have important similarities to the systems in question. For example with its perovskite structure
containing transition metal(TM)-oxygen planes, Sro RuO, has several aspects in common with
the HTC materials. But the presence of the 4d TM Ru rather than the narrower band 3d TM
Cu means that electron correlation effects are smaller and therefore DFT-based calculations
can provide a valuable starting point. Moreover its p-wave superconductivity at low tempera-
ture seems likely to be affected by spin fluctuations [3, 4, 5]. Concerning another example, the
transition temperature separating paramagnetic and magnetically ordered phases of the cubic
transition metal compound MnS%, which has the B20 crystal structure, is driven down to zero
temperature upon the application of pressure. In the vicinity of the critical pressure for this

quantum phase transition the system exhibits non- or marginal Fermi liquid properties [6].

With the objective of investigating the spin-fluctuations in nearly magnetic materials such as

these we have recently devised and proven a new scheme for calculating the wave-vector and
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frequency dependent dynamic spin susceptibility of metallic systems [7] which is based on the
Time Dependent Density Functional Theory (TDDFT) of Gross et al. [2] and as such is an all
electron theory. This enables the temperature dependent dynamic spin susceptibility of metals
and compositionally disordered alloys to be calculated. In this article we outline the scheme and
describe briefly some of our results for systems which although structurally and compositionally

simpler than the two mentioned above, are also close to magnetic phase transitions.

Theoretical models in which an effective action for the slow spin fluctuations is written down
have contributed greatly to our understanding of the properties of itinerant electron systems
close to magnetic order [6]. Recent work which can incorporate results from DFT-based ‘Fixed
Spin Moment’ (FSM) electronic structure calculations, treats these fluctuations classically [8].
A Landau-Ginzburg-like energy functional is written down, a free energy constructed which
includes terms describing the interactions between the fluctuations (the mode-mode coupling)
and properties such as the static susceptibility, specific heat and resistivity calculated. The
FSM electronic structure calculations can be used to determine the coefficients in this func-
tional [8]. Many informative studies have been carried out. For those calculations with such
a DFT basis, these still remain qualitative investigations because of the lack of a prescription
for the effective number of modes to include in the theory and its variation with temperature
[6]. Stoner single particle excitation effects are also largely ignored. Both these issues can be
addressed by the development and application of methods to calculate the temperature depen-
dent dynamic paramagnetic spin susceptibility of nearly magnetic materials. The development
of dynamic susceptibility calculations is particularly pertinent now that inelastic neutron scat-
tering experiments, such as the time of flight measurements, have developed to the extent that

spin fluctuations in nearly magnetic metals can be accurately measured [9].

Over the past few years great progress has been made in establishing TDDFT [2]. Analogs
of the Hohenberg-Kohn [10] theorems of the static density functional (DFT) formalism have
been proved and rigorous properties found. By considering a paramagnetic metal subjected to
a small, time-dependent external magnetic field, b(r,¢) which induces a magnetisation m(r, )
and using TDDF'T in [7] an expression for the dynamic paramagnetic spin susceptibility x(q, w)
via a variational linear response approach can be derived [11]. Accurate calculations of dynamic
susceptibilities from this basis have been scarce (e.g. [12]) because they are difficult and compu-
tationally demanding. In ref.[7] we showed that these problems can be mitigated by accessing
x(q,w) via the corresponding temperature susceptibility x(q,w,) where w, denotes a bosonic

Matsubara frequency [13].
The dynamical spin susceptibility x(q,w).

The equilibrium state of a paramagnetic metal, described by standard DF'T, has density po(r)

and its magnetic response function

_ dm[b(x,?)

X(rt; r’t’) - 5b(rl, tl) |b:pr0 (1)

is given by the following Dyson-type equation.

x(rt;v't) = x5(rt; 't +/dr1/dt1/dr2/dt2x5(rt; r1t1) Kpe(r1t1;rote)x(rata, v't')  (2)
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Xs 18 the magnetic response function of the Kohn-Sham non-interacting system with the same
unperturbed density pg as the full interacting electron system, and

Obye(r,t
Kye(rt; rltl) = W(,t,))h:()mo (3)

is the functional derivative of the effective exchange-correlation magnetic field with respect to
the induced magnetisation. As emphasised in ref.[2] eq.]1 represents an exact representation of
the linear magnetic response. The corresponding development for systems at finite temperature
in thermal equilibrium has also been described [11]. In practice approximations to K. must be
made and this work employs the adiabatic local approximation (ALDA) [2] so that
KA Arry) = e A(ggzi);f(r’ D) bl — )8t — 1)
= I(r)d(r —)o(t — ) (4)

On taking the Fourier transform with respect to time we obtain the dynamic spin susceptibility
x(r,r';w).

For computational expediency we consider the corresponding temperature susceptibility [13]
x(r,r’;w,) which occurs in the Fourier representation of the temperature function y(r7;r'7’)
that depends on imaginary time variables 7,7" and w, are the bosonic Matsubara frequencies
wy, = 2nwkpT. Now X(r,r’;w,) = x(r,r';iw,) and an analytical continuation to the upper side

of the real w axis produces the dynamic susceptibility x(r,r’; w).

We can define a general system as having a crystal structure with lattice vectors {R;} and where
there are N, non-equivalent atoms per unit cell. On the I** of the N, sublattices there are N,
possible atomic species with concentrations cq, (o =1,--+,N;). In each unit cell the N, atoms
are situated at locations a;,l = 1,---, N;. On carrying out a lattice Fourier transform over the

lattice vectors {R;} we obtain the following Dyson equation for the temperature susceptibility

Ny
Xal (xla X;/ » 4, wn) = Z X?l’n' (xla X;/, q, wn)
Y
Ny Ny
+ Z [ axy, Z X' V' (xy, X, @y wn ) Lot (X50) X7 (X, X, @, wy, ) (5)
" Yy

with x;,x}, and xj), measured relative to atomic cells centred on a;, ay and a; respectively.

In terms of the lattice Fourier transform of the DFT Kohn-Sham Green function of the static

unperturbed system

— Yy

Xs (xla X;’ »q, wn) — (6)
1 dk . .
-3 Z/ E(G(xl,x;,, K, o+ iVm)ary (G %1, K+, 4 5V + ) )
m

where the integral is over the Brillouin zone of the lattice and k, q and k + q are all wavevectors
within this Brillouin zone which has volume vgz. p is the chemical potential and v, is a fermionic
Matsubara frequency (2n + 1)7kpT. (-**)q,y, denotes an average over all configurations which
have one site on sublattice [ occupied by an «; type of atom and another on sublattice I’ occupied

by a vy atom.
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The Green function can be obtained within the framework of multiple scattering (KKR) theory
[14] and this makes this formalism applicable to disordered alloys as well as ordered compounds
and elemental metals, the disorder being treated by the Coherent Potential Approximation
(CPA) [15].

To solve equation (5), we use a direct method of matrix inversion in which, for example, ¥;
is cast into matrixform of order (ZlN;1 SiNy) x ( lN:sl SiN;) where S; is the number of spatial
grid points associated with an atomic cell on the [** sublattice. Local field effects are thus fully

incorporated. The full Fourier transform can then be constructed.

The most computationally demanding parts of the calculation are the convolution integrals
over the Brillouin Zone which result from the expression for X, eq. (6). Since all electronic
structure quantities are evaluated at complex energies z, these convolution integrals have no
sharp structure and can be evaluated straightforwardly by an application of the adaptive grid
method of E.Bruno and B.Ginatempo [16] which has been found to be very efficient and accurate.
In this method one can preset the level of accuracy of the integration by supplying an error

parameter e.

Once the temperature susceptibility ¥(q, q; wy,) has been calculated the dynamic susceptibility
can be found. As discussed in ref. [13], for example, we can define the retarded response function
x(a, q, 2) of a complex variable z. Since it can be shown [13] formally that lim, ., x(2) ~ 1/22
and we can obtain y(iwy) from the above analysis it is possible to continue analytically to values
of z just above the real axis, i.e. z = w+1n. In order to achieve this we fit our data to a rational

function s
(142057 Uk(qwk)
(1+ 4%, Dr(q)wk)

in which M is an even integer. This form ensures that the sum rule involving the static suscep-

(7)

x(a,9,wn) = x(q)

tibility x(q) is satisfied, i.e.

x@) =2 [* i) ®

We find that very good fits are obtained with small M for a wide range of w,’s, M = 4 for Pd
whereas for C'r and its dilute alloys M = 2 making the analogy with an overdamped harmonic

oscillator model very close.
Antiferromagnetic paramagnons in Cr and its dilute alloys.

This new scheme has been demonstrated very recently by an investigation into the nature of
the spin fluctuations in paramagnetic C'r and compositionally disordered C'rg5V5 and CrgsRes
alloys with good agreement with experimental data [7]. For example, recent inelastic neutron
scattering experiments [17, 9] have measured incommensurate AF ‘paramagnons’, persisting up

to high frequencies in Crgs Vs which were also shown in our calculations.

Chromium is the archetypal itinerant anti-ferromagnet (AF) whose famous incommensurate
spin density wave (SDW) ground state is determined by the nesting wave-vectors qes: identi-
fied in the Fermi surface [17]. Chromium alloys also have varied AF properties [17] and their
paramagnetic states have recently attracted attention owing, in part, to analogies drawn with

the high temperature superconducting cuprates especially (La.Sr1_.)2CuOy4 [17]. For example,
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<m? (q) > of paramagnetic chromium: direction (0,0,1)
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Figure 1: The variance of the spin fluctuations in paramagnetic Cr < m?(q) > in u% for
wave-vectors q along the {0,0,1} direction at 350K (full line) and 700K (dotted).

CrgsMns or CrgsRes are simple commensurate AF materials which on lowering the electron
concentration by suitable doping develop incommensurate spin fluctuations promoted by im-
perfectly nested Fermi surfaces. In [7] we explored the temperature dependence, variation with
dopant concentration and the evolution of the spin fluctuations in these systems from incom-
mensurability to commensurability with increasing frequency and provided the first ab-initio
description of these effects [7]. Although there have been several simple parameterised models
to describe the magnetic properties of Cr and its alloys [17], these have all concentrated on
the approximately nested electron ‘jack’ and slightly larger octahedral hole pieces of the Fermi
surface [17] and, at best, have only included the effects of all the remaining electrons via an
electron reservoir. Whilst finding similarities between our results and results from such models
we showed that a complete picture is obtained only when an electronic band-filling effect which
favours a simple AF ordering at low temperature is also considered. We also found that the
spin fluctuations are given an accurate description as overdamped diffusive simple harmonic
oscillator modes which are at the heart of theories of the effects of spin fluctuations upon the

properties of itinerant electron systems [6].

The nature of the spin fluctuations can be succinctly described via the variance < m?(q) >. From
the fluctuation dissipation theorem, < m?(q) >= (1/7) [* dw(1l — exp(—pw)) ' Imx(q,q, w).
Fig.1 shows < m?(q) > at two temperatures for Cr where we have used a frequency cutoff of
500 meV and so have not included the faster of the quantum fluctuations. Near T the magnetic
fluctuations have their greatest weight around the quest- At higher T' the peak diminishes and
weight grows at q’s nearer {0,0,1} reflecting the shift in the peak in Imyx(q,q,w) from qpes: to

commensurate q’s with increase in frequency w.
The paramagnons of nearly ferromagnetic Pd.

We finish this article with a brief examination of the timescales associated with the spin fluc-

tuations of Pd, a 4d transition metal so close to being a ferromagnet. Much has been written
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< m?(q) > of paramagnetic palladium: direction (0,0,1)
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Figure 2: < m?(q) > for wave-vectors q along {0,0,1} in Pd at 100K with a frequency cutoff
500 meV (full line) and 50 meV (dotted).

about the low temperature spin fluctuations in this 4d transition metal especially those slow
modes with long wavelength and in the context of possible p-wave superconductivity mediated
by ferromagnetic paramagnons [18]. Fig.2 shows the magnetic correlations < m?(q) > for Pd
at 100K calculated using energy cutoffs of 500meV and 50meV. The paramagnons are clearly

visible for a narrow region of small wave-vectors q.
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