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Abstract

Employing the Kubo-Greenwood formula the electrical conductivity of (disordered) lay-
ered systems is formulated in terms of the (Screened) Korringa-Kohn-Rostoker method and
the Coherent Potential Approximation. In particular consequences with respect to bulk-like
approaches and bulk-like concepts are pointed out. The present investigations are part of an
intensive study of transport phenomena such as the Giant Magnetoresistance (GMR) and
the Tunneling Magnetoresistance (TMR) in magnetic multilayers systems.

Introduction

A description of transport phenomena in multilayer systems requires conceptually new ap-
proaches that reflect the fact that such systems exhibit at best two-dimensional symmetry.
However, in applying a new type of description, it is also mandatory to review typical bulk-like
descriptions based on the use of three-dimensional translational symmetry, and to be able to
recover results well-known from bulk studies. It is the aim of this contribution to show exactly
these relations, but also to proof that the present numerical procedures are well-suited for theo-
retical studies of more complicated transport properties in multilayer systems such as the Giant

Magnetoresistance or the Tunneling Magnetoresistance.
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Theoretical description
General expressions

Suppose the electrical conductivity of a disordered system, namely o, is calculated using the
Kubo-Greenwood formula (see [1], [2], [3], [4])

Oup = NOQat <2J“ JE6( F—em)d(ep—en)> . (1)

In this equation p € {z,y,2}, Ny is the number of atoms, J* is a representation of the u-th

component of the current operator,

| m) is an eigenstate of a particular configuration of the random system, 4 is the atomic
volume, and (---) denotes an average over configurations. Eq. (1) can be reformulated in terms

of the imaginary part of the (one-particle) Green’s function

h

s = T (JuImG (er) JuImG (er) ®)

7 9

side limits, this equation can be rewritten [2] as

or by using "up-”" and ”down-’

1 - o - _ - _
OMM:Z{UMM(6+,6+)+UHN(€ JE ) — UW(6+,6 ) — Opule ,e+)} , (4)
where
et =ep+id , € =ep—id ; 6§20 ,
and "
aw(el,eg):—mtr (JuG(e1)JuGler)) g=¢t ; i=12 . (5)

The multiple scattering description

As in the bulk case [2], [3] for a layered system a typical contribution to the conductivity can

be expressed [5] in terms of real space scattering path operators,

Ouuler,e2) = (C/No) Zn: > Z

p=1 EIL2(]1

{ > tr<J5i(e2,el)rm‘ﬂJ'(el)Jgf(el,ea)rqf’m(ez)}} , (6)

jEI(La)

where C' = — (4m?/h*7Qy,;) and Ny = nN is the total number of sites in the intermediate region
(multilayer), as given in terms of the number of layers in the multilayer (n) and the order of
the two-dimensional translational group N (number of atoms in one layer). In here and in the

following the set of indices corresponding to the two-dimensional lattice Ly is denoted by I(Ls).

Let J;a (€1, €2) denote the angular momentum representation of the y—th component of the cur-

rent operator according to component o = A, B in a particular layer p. Using a non-relativistic
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formulation for the current operator, namely J = (ef/im) V, the elements of Jﬁa(el,q) are

given by

e h 0
Jpo/t\A’ (617 62) = = / Zﬁa (rp()a el)T Zﬁ(’l(rp()a 62)d3’rp0 ) (7)
s m i Orpo,u
WS

while within a relativistic formulation for the current operator, namely J = eca, one gets

Jhoan (€1, €2) = ec / Z3* (rp0s 1)y ZR7 (ry0, €2) dPro (8)
wsS

In Egs. (7), (8) the functions Z8(rp0, z) are scattering solutions [3] and WS denotes the volume
of the Wigner-Seitz sphere. It should be noted that

e} 0,a 7,0 .
JZ (e1,€2) = JZ (e1,€2) = JZ (e1,€2) , VielI(La) . 9)
JFrom the brackets in Eq. (6), one easily can see that for each layer p the first sum over Lo yields
N times the same contribution, provided two-dimensional invariance applies in all layers under
consideration. Assuming this kind of symmetry (see Sec. II), a typical contribution &, (€1, €2)

to the conductivity is therefore given by

n

Gl = (/)33

p=1g=1

{ Z tI’<J£0(€2,61)Tp0’qj(61)JZj(61,62)qu’p0(62)>} ; (10)

JEI(L2)

where p0 specifies the origin of Lo for the p-th layer. Just as in the bulk case [2], [3] this kind

of contribution can be split up into a (site-) diagonal and a (site-) off-diagonal part,

&““(61,62) == &211(61’62) + 5’,1“1(61, 62) - (11)

Site-diagonal conductivity

By employing the CPA condition discussed in full detail in Ref. [5] and omitting vertex correc-
tions, for the diagonal part (p0 = ¢j) one simply gets,

Ugu(61,62) =

n N ~ ~ 12
— (/)Y % [T, q)i(e) e @, ) e)] 12)
p=1 a:A,B
where
Jh (€2, €1) = DEP(e2)" Jh* (€2, €1) DEF (1) (13)
Site-off-diagonal conductivity
The off-diagonal part can be partitioned into two terms
Gpule1,€2) = 5, (e1,€2) + 35, (€1, €2) (14)
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where

o | (15)
{ » tr<Jﬁ°(ez,el)fpo’mel)sz(ehez>7%p°<62)>} |

JEI(L2)
and

5’2“(61,62 = (C/n) ZZépq

p=1g=1

{ 3 tr<Jﬁ0(62,el)Tpo’qj(el)Jgj(el,ez)qu’p0(62)>} . (16)

(J#0)el(L2)

As one can see 512m(61’ €2) arises from pairs of sites located in different layers, whereas 5'3“(61, €2)
corresponds to pairs of sites in one and the same layer (excluding the site-diagonal pair already

being accounted for in 5'2”(61, €2)). In general the averaging of 5,%”(61, €2) is given by

5;%“(61,62) = (C/n) { 2 Z (1—dpg) X > c;’,‘cﬂ

p=lg= jel(Ls) af=AB | (17)

P 0,97 qj q7,p0
X tr{Ju (€2,€1) <T (el)J“ (e1,€2)T (62)>p0a,qjﬁ}

By employing the CPA condition and omitting vertex corrections (see Ref. [5]), 67, (€1, €2) is

found to reduce to

5@(61,62) = (C/n) { > E (1—=13p9) X S o

p=1lg=1 JE€I(L2) o,8=A,B P (18)
X tr{Jga(ez,el)Tg’O’qJ(El)Jgﬂ(ﬁla62)7'gj’p0(62)}

Since the site-off-diagonal scattering path operators 7°%9/(z) are defined as
() = b, [ R (19)

in a manner similar as in the bulk case the orthogonality for irreducible representations of the

two-dimensional translation group can be used:

Z 7209 (1) 799P0 (€9) = Qgéz/?pq(k, €)7?(k, e9)d’k (20)
JeI(L2)
For & a (61, €2) one therefore gets the following expression

Gouler, e2) = (C/n) {pEl qu( Spq) Vs Bz ,BZ:A,B cpeq (21)

br / [T (2, )72k, €0) T8 (1, €272 (I, e2)dk )

The last term in Eq. (14) to be evaluated is &5, (e1,€2) corresponding to the case that two sites

are located in one and the same layer,

Al = © | £ 05k, 5

tr/J” €2, €1)7FP (k, 61)J Bler, e2)7PP (K, 62)d2k}

+ T (e, €)
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where lefo”" (€1, €2) arises from extending the sum to Vj € I(L2) and subtracting a corresponding

correction term of the form

5zﬁorr(€1,€2) =
n ~ ~ ~ ~ 23
—Om) Y, T i [T (e c) () 2P (e, )7 (e)] (23)
p=1a,=A,B

Total conductivity for layered systems
Combining now all terms, a typical contribution &, (€1, €2) to the conductivity is given by

6##(61562) =
= (C/m) 3 { T gt [T52 (€2, €0)72 (1) T2 (€1, €2) 727 (e)]
- ﬂz cp cﬁt [ (e2, €1 Tpp(el)Jpﬂ(el,ez)Tpp(@)]

SBZ Z > Cgc'gtf/[jﬁa(fm61)?cpq(k,61)jﬂﬁ(€1,62)?gp(ka62)d2k]
¢=1a,3=A,B

(24)

Comparing the last equation with the corresponding bulk result [2],

8##(61’62) =

= (C/) {a zA: oty [ig(@, el)?c(el)Jg(q,62)?6(62)}

— a,ﬁZ:A,B c*cPtr [Ju (€2, El)Tc(El)jg (1, 62)?6(62)] (25)

+ QEIZ > c"‘cﬂtr/ [j;f(eg, €1)7(k, el)jg(el, €2)7c(k, 62)d3k]} ,
a,f=A,B

where € is the volume of the unit cell, one easily can see that in both cases one has the same

“formal structure”, however, for layered systems a summation over layers occurs for the diagonal

term and a double sum over layers for the off-diagonal term, which is a direct consequence of

the fact that in the growth direction of multilayers no translational invariance applies.

Defining finally layer-diagonal terms as

omene) = (C/n) © (i [Jeena)ie) e, w)ie)]
L - (26)
-3 cgtr [Jﬁa(eg, 61)?5’7’(61)Jﬁﬂ(61,62)?g’p(62)] } ,
B=A,B
and layer-off-diagonal terms as
Jﬁ%(fl,ﬁQ) = (C/nQSBz)
(27)

DY cﬁtr [/ Jp (€2,€1)TPI(k, 61)Jqﬂ(61,62)7'qp(k eg)ko] ’
a,f=A,B

Tuu(€r, €2) can be written as

Tuul€L, €2) Z{ (€1, €2 +252Z(61,€2)} : (28)

p=1 g=1
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Numerical applications

All calculations reported here are based on the fully relativistic spin-polarized Screened KKR
method for generating the corresponding selfconsistent scattering potentials as well as for the
evaluation of the electric conductivity tensor. In the former case a total of 45 k; points in
the irreducible wedge of the surface Brillouin zone is used, for the latter 1830 k|| points. The
following systems were investigated as precursor cases for a study of the giant magnetoresistance

in Co/Cu multilayers

Substrate | Cu(100) Substrate | Cu(100)
Multilayer (Cu), ,n=1,45 Multilayer (Co),, ,n=1,39
Cap Cu(100) Cap Cu(100)

Substrate | Cu(100)
Multilayer (Cug.g5Coo.15), ,n =1,30
Cap Cu(100)

As is well-known from bulk theory, (at zero temperature) for fcc Cu the resistance is exactly

zero, whereby for the tensor elements the relation

Prx = Pyy = Pzz

applies. Quite clearly by using Eq. (28) this will only be the case if the number of layers to be
summed over is sufficiently large, a fact, which of course supplies an excellent test of the applied

numerical means.

In Figure 1 the resistivities pgq(= pyy) and p,, (puu = 1/0y,) are shown as a function of the
number of layers of Cu on top of a Cu(100) substrate and capped semi-infinitely by Cu(100).
Since np,, shows a linear behavior with respect to n (for sufficiently large n) the curves can be
extrapolated to very large n. As one can see in this Figure p,, and p,, indeed go exactly to zero
as in Eq. (28) the number of layers increases. In addition, for a large enough number of layers

one loosely could state that cubic symmetry is “restored”.

In order to understand this Figure and also the following ones properly, it is necessary to recall
that this reflects nothing but the fact that as compared to the bulk expression Eq. (25) in
Eq. (28) the “missing” lattice Fourier transformation in one direction, namely in direction of
the surface normal, shows up as a finite sum. In principle, therefore, only as n approaches the
order of the translational group for translations along the surface normal, a bulk-like result can
be expected. This has important consequences for realistic multilayer systems, in which the
number of layers can be rather small: “confinement” effects apply in such systems and even for

a system with growth direction (100) in general

It is very reassuring that the numerical procedures applied indeed show the correct behavior

discussed above (as n becomes very large).
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Figure 1: pge(= pyy) and p,, for Cu(100)/Cu,/Cu(100) as a function of the number of Cu-layers
n. The symbols mark the n-values for which the calculations were performed, the lines refer to

the extrapolation for large n (see discussion in the text).
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Figure 2: pgq(= pyy) and p,, for Cu(100)/Co,/Cu(100) as a function of the number of Co-layers
n. The symbols mark the n-values for which the calculations were performed, the lines refer to

the extrapolation for large n (see discussion in the text).
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Figure 3: pzz(= pyy) and p,, for Cu(100)/(Cug.85Cog.15)n/Cu(100) as a function of the number
of (Cug.g5Cog.15)-layers n. The symbols mark the n-values for which the calculations were

performed, the lines refer to the extrapolation for large n (see discussion in the text).
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In Figures 2 and 3 the same type of display is shown when the multilayer consists of a finite num-
ber of Co-layers and a finite number of statistically disordered (Cug g5Cog.15) layers, respectively.
In these two cases as the number of layers increases the resistivities cannot approach zero, but
have to tend to a constant. As one can see this is indeed the case. In the case of pure Co layers
one could call this constant a “contact” contribution to the resistivity. For the alloy case it is
interesting to observe, that for large enough n the resistivity is of the same order of magnitude
that characterizes the resistivity of noble metal rich alloys with transition metals. Of course the
constant obtained and to be seen in Figure 3 is not quite the resistivity for a bulk alloy of fcc
Cug.85Coq.15 since (a) the lattice constant and the Fermi energy of pure Cu apply and (b) the
meaning of a “contact” resistivity pertains. Ouly in the case that the (semi-infinite) substrate
and the (semi-infinite) cap are of the same material — Cug g5Cop.15 in the present example — the
resistivity for large enough n picks up the meaning of a residual resistivity. It should be noted
that even though the present examples are meant to serve as numerical tests, it is evident that
such systems very well can serve as example for an ab-initio calculation of “contact” resistivities

which otherwise are computationally inaccessible.

Presently the method and numerical techniques illustrated in this contribution are applied to a
study of the giant magnetoresistance (GMR) in Co/Cu multilayer systems and also for studying
the effect of repetitions (“repeats”) of multilayers as is the case in most experimental systems
on the GMR.
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