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Abstract

Accounting for a finite temperature within first-principles electronic structure calculations

for a solid allows to investigate the temperature dependence of its properties. These concern

the equilibrium properties, as for instance the magnetization and magnetic anisotropy in

magnetic materials, as well as the nonequilibrium, e.g. transport or spectroscopic, proper-

ties. Usually, the temperature regime of interest may reach up to several thousands Kelvin.

At least for metals only a relatively weak re-population of the electronic states occurs in

the vicinity of the Fermi energy for this temperature regime leading usually to a negligible

impact on their physical properties. Much more pronounced temperature induced changes

of the properties may be associated with different types of thermally induced excitations,

as for example lattice vibrations and spin fluctuations. In magnetic materials in particular

transverse spin fluctuations can be easily excited already at room temperature with a strong

impact on their magnetic properties. In the present review we describe an approach, which

allows to account for the impact of thermally induced spin and lattice excitations on the

electronic structure and related properties making use of the so-called alloy analogy. The

KKR (Korringa-Kohn-Rostoker) Green function method is a very convenient tool for corre-

sponding electronic structure calculations, as it is a well established scheme to investigate

disordered alloys by making use of the single-site Coherent Potential Approximation (CPA)

alloy theory. As the dynamics of phonons and magnons is much slower compared to the

electronic propagation the corresponding thermal displacements and spin fluctuations give

rise to a quasi static disorder in the system. The corresponding thermal average can there-

fore be treated as the chemical disorder in an alloy. Neglecting the correlation between the

thermal displacements and spin fluctuations of neighboring atoms, as it is well justified for

not too low temperatures, allows to treat them within the mean-field approximation and in

particular to use the CPA for the necessary thermal averaging. This approach, developed by

the authors and called alloy analogy model (AAM), has been applied during the last years to

deal with the temperature dependence of a large variety of properties. The great success and

applicability of this rather simple and efficient approach is demonstrated by results obtained

for various magnetic, response as well as spectroscopic properties.
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Abstract. Accounting for a finite temperature within first-principles electronic

structure calculations for a solid allows to investigate the temperature dependence

of its properties. These concerns the equilibrium properties, as for instance the

magnetization and magnetic anisotropy in magnetic materials, as well as the non-

equilibrium, e.g. transport or spectroscopic, properties. Usually, the temperature

regime of interest may reach up to several thousands Kelvin. At least for metals

only a relatively weak re-population of the electronic states occurs in the vicinity of

the Fermi energy for this temperature regime leading usually to a negligible impact on

their physical properties. Much more pronounced temperature induced changes of the

properties may be associated with different types of thermally induced excitations, as

for example lattice vibrations and spin fluctuations. In magnetic materials in particular

transverse spin fluctuations can be easily excited already at room temperature with

a strong impact on their magnetic properties. In the present review we describe an

approach, which allows to account for the impact of thermally induced spin and lattice

excitations on the electronic structure and related properties making use of the so-

called alloy analogy. The KKR (Korringa-Kohn-Rostoker) Green function method

is a very convenient tool for corresponding electronic structure calculations, as it

is a well established scheme to investigate disordered alloys by making use of the

single-site Coherent Potential Approximation (CPA) alloy theory. As the dynamics

of phonons and magnons is much slower compared to the electronic propagation the

corresponding thermal displacements and spin fluctuations give rise to a quasi static

disorder in the system. The corresponding thermal average can therefore be treated

as the chemical disorder in an alloy. Neglecting the correlation between the thermal

displacements and spin fluctuations of neighboring atoms, as it is well justified for

not too low temperatures, allows to treat them within the mean-field approximation

and in particular to use the CPA for the necessary thermal averaging. This approach,

developed by the authors and called alloy analogy model (AAM), has been applied
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during the last years to deal with the temperature dependence of a large variety of

properties. The great success and applicability of this rather simple and efficient

approach is demonstrated by results obtained for various magnetic, response as well

as spectroscopic properties.

1. Introduction

A finite temperature may have a crucial influence on the electronic structure of a solid

and as a consequence on its various properties. Accordingly, it is of great interest

to describe the modification of the electronic structure by a finite temperature while

staying within the framework of density-functional theory. The most common thermal

effect for a solid is represented by the temperature-dependent Fermi-Dirac distribution

function characterizing the population of the electronic states. Accounting for this

in a self-consistent way when calculating the electron spin and charge densities, one

should in principle obtain the temperature induced change of the electronic states and

corresponding changes of the physical and chemical properties of a material. This effect

can be crucial for the thermodynamics of solids, in particular for their phase stability;

but substantial changes of the electronic structure are normally observed only at very

high temperatures (see, e.g. Ref. [1]). As for moderate temperatures only small changes

of the Fermi-Dirac distribution occur in a narrow region around the Fermi energy its

impact can normally be ignored when considering transport and optical properties of

metallic systems for temperatures up to ∼ 1 − 2000 K. For that reason we ignore here

the impact of changes of the Fermi-Dirac distribution with temperature i.e. of a finite

electronic temperature.

Another important source for changes of the electronic structure with temperature

are temperature induced lattice and spin excitations, i.e. phonons and magnons. A

way to take this mechanism into account is to perform as a first step first-principles

calculations for the phonon and magnon eigen states and energies ω(q⃗). In the

case of magnetic systems, corresponding results can already be used to obtain the

temperature dependent magnetization in the low-temperature limit by accounting for

the temperature dependent population of the magnon states [2, 3]. Dealing in addition

explicitly with the coupling of the electron with the phonons or magnons, respectively,

allows to determine the resulting renormalization of the electronic structure. This can

be represented by the spectral function A(k⃗, E) [4, 5, 6, 7, 8]

A(k⃗, E) = − 1

π

|ℑΣ(k⃗, E)|
[E − E0(k⃗)−ℜΣ(k⃗, E)]2 + [ℑΣ(k⃗, E)]2

, (1)

where E0(k⃗) stands for the non-distorted band dispersion and Σ(k⃗, E) is a complex

self-energy. For phonons the self-energy contains full information about the electron-

phonon interaction [9] and is calculated making use of the electron-phonon spectral

function α2F (ω) (see, e.g. Ref. [10, 11, 12]). In the case of magnetic systems, the

electron-magnon self-energy has to be determined in a corresponding way [13, 14].



Investigating finite temperature effects by means of the AAM 3

The temperature dependence of the self-energy is determined by the population of the

respective boson, i.e., phonon or magnon, states raising with temperature and leading

to a corresponding temperature dependent modification of the electronic structure

expressed by Eq. (1) [4, 6, 15]. The resulting renormalization of the electronic

band structure can be monitored by angular resolved photoemission that shows in

particular the so-called phonon kink [16]. In pure and ordered metallic systems at

room temperature, the electron-phonon scattering is the dominant mechanism giving

rise to the electrical resistivity [17, 4]. As the self energy determines the relaxation

time τ−1(k⃗, T ) = 2π
ℏ ℑΣ(k⃗, T ) that represents the electron-phonon scattering within the

Boltzmann theory of electronic transport, it can be used to calculate the transport

properties as electrical or thermal resistivity [4, 18, 19, 20].

Calculating X-ray absorption spectra another simpler concept taken over from

X-ray diffraction is widely used to account for finite temperatures. In this case

lattice vibrations are represented by the Debye-Waller (DW) factor, which simulates

the observed temperature induced damping of the absorption signal by the weighting

factor e−W (T ), with W (T ) ≈ 2k2u2(T ) where k and u2(T ) are the wave number

and mean square displacement, respectively [21]. A more sophisticated approach

was used for example in a many-body description of X-ray photoelectron diffraction

(XPD) accounting for the Debye-Waller and Franck-Condon factors in XPD spectra

at finite temperature [22], as well as for the impact of displaced core wave functions

[23]. The treatment of temperature induced lattice vibrations in terms of uncorrelated

displacements of the atoms was used also to describe the temperature dependence of

transport properties [3]. The positions for the displaced atoms at finite temperature were

obtained in a first step via ab-initio molecular dynamics calculations. The resistivity was

subsequently calculated using the Landauer-Büttiker formalism. The results obtained

this way for non-magnetic systems showed good agreement with that obtained in an

alternative way Ref. [18]. A similar approach was used by the authors to account for

temperature induced spin fluctuations in magnetic materials, which also led to good

agreement with experiment. In fact, this approach is rather close to the alloy analogy

model (AAM) discussed below.

Obviously, we do not give a comprehensive overview of all approaches to account

for finite temperature effects when dealing with the electronic structure of solids and

their related properties. As this is an important issue, one can find in the literature

a large variety of works on a model and ab-initio level. Here we highlighted two ways

to account for thermal excitations treating them as quasi particles or as local thermal

perturbations. From a formal point of view, the first one is surly more satisfying than

the second one. One the other hand, the second one is computationally much less

demanding. More important, however, accounting for the finite electronic lifetime due

to thermally induced disorder via the AAM or similar approaches allows to describe the

temperature dependence of many electronic properties in a quantitative way. This will

be demonstrated by corresponding work published by the authors during the last 15

years.
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Finally, it should be mentioned that the alloy analogy concept was suggested many

years ago by Hubbard when studying the instability of the ferromagnetic state on the

basis of the model Hubbard Hamiltonian [24, 25]. In this approach the time average,

which arises because of the continuous rearrangement of the electron spin, is represented

by a configurational average that can be handled as for the alloy problem. For the

electrons having spin character σ, the corresponding two types of sites are seen as

two different atoms A and B with the electron states in atoms ϵA = 0 and ϵB = U ,

respectively (with U the intra-atomic Coulomb repulsion parameter), depending on

whether the states are occupied or not by the electrons with the opposite spin −σ.
Such a system could be seen as an effective alloy A1−n−σBn−σ , with n−σ standing for

the average number of electrons per site with spin −σ. While the coherent potential

approximation (CPA) alloy thepry was not used by Hubbard, it was applied later by

other authors, dealing with generalized Hubbard Hamiltonians and in particular with

real binary alloy systems [26, 27, 28].

The idea to take over the techniques - in particular the CPA - to deal with the

configurational average in case of a disordered alloy to deal with fluctuating states on

the atomic sites can of course be applied as well to handle other types of disorder in a

system. This is demonstrated in this contribution for the temperature induced lattice

vibrations and spin fluctuations that can be seen as quasi-static when compared to the

dynamics of the electrons and give rise to temperature dependent disorder with respect

to the spin-dependent electronic potential.

2. Theory: electronic structure and properties of disordered alloys

2.1. Electronic structure in terms of Bloch states and Green functions

The vast majority of ab-initio methods for calculating the electronic structure of solids

is based on the variational method for solving the Kohn-Sham equation, and rely on

translational symmetry. The latter property implies that the solutions of the Kohn-

Sham equations, ψjk⃗(r⃗), obey the Bloch theorem and that the corresponding Bloch

states are eigen functions of the translation operator

TR⃗ψjk⃗(r⃗) = eik⃗·R⃗ ψjk⃗(r⃗) . (2)

As a consequence, states characterized by different wave vectors k⃗ are orthogonal. This

simplifies the solution of the band structure problem essentially when using a variational

basis set of Bloch-like functions characterized by the same k⃗ vector to represent the wave

function ψjk⃗(r⃗). This leads in particular to a secular equation with finite dimension for

each k⃗-vector [
H k⃗ − Ejk⃗ S

k⃗
]
αjk⃗ = 0 (3)

with the Hamiltonian and overlap matrices, H k⃗ and S k⃗, referring to the basis functions

and Ejk⃗ and αjk⃗ the associated eigenvalues and -vectors, respectively. There is a large
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number of methods and corresponding computer codes available that are based on this

[29].

On the other hand, it is often very advantageous to represent the solution of

the Kohn-Sham equation in terms of the electronic Green’s function (GF), having

in particular a direct access to the density of states n(E) and electron density n(r⃗),

respectively:

n(E) = − 1

π
ℑTr

∫
d3r G+(r⃗, r⃗, E) (4)

n(r⃗) = − 1

π
ℑTr

∫ EF

dE G+(r⃗, r⃗, E) . (5)

where G+(r⃗, r⃗ ′, E) is the retarded single-particle Green function.

The use of the Green function offers many advantages when dealing with embedded

subsystems, response functions, spectroscopy, disorder or the many-body problem. To a

large extent this is due to the Dyson equation that allows to express the Green function

G+(r⃗, r⃗ ′, E) of a complex system on the basis of that of a simpler reference system

(G+
0 (r⃗, r⃗

′, E)) and the arbitrary perturbing Hamiltonian Hpert(r⃗) that connects the two

systems:

G+(r⃗, r⃗ ′, E) = G+
0 (r⃗, r⃗

′, E) +

∫
Ω

d3r ′′G+
0 (r⃗, r⃗

′′, E)

Hpert(r⃗
′′)G+(r⃗ ′′, r⃗ ′, E) , (6)

with Ω the region for which Hpert(r⃗) has to be accounted for. For a substitutional

impurity this would include the atomic cell of the impurity and the region of the

neighboring host atoms that are distorted by the impurity.

For practical use, the retarded single-particle Green function G+(r⃗, r⃗ ′, E) can be

determined via the so-called Lehmann spectral representation [30]

G+(r⃗, r⃗ ′, E) = lim
ϵ→0

∑
jk⃗

ψjk⃗(r⃗)ψ
†
jk⃗
(r⃗ ′)

E − Ejk⃗ + iϵ
, (7)

that, however, needs the whole spectrum of the eigenvalue solutions for the underlying

electronic Hamiltonian making the scheme inefficient for applications.

2.2. Green function within multiple scattering theory

An alternative to this is offered by the multiple scattering theory-based KKR (Korringa-

Kohn-Rostoker) formalism. The approach leads to the following expression for

G+(r⃗, r⃗ ′, E) [31, 32, 33, 34]

G+(r⃗, r⃗ ′, E) =
∑
ΛΛ′

Zm
Λ (r⃗, E)τmn

ΛΛ′(E)Zn×
Λ′ (r⃗

′, E) (8)

− δmn

∑
Λ

Zn
Λ(r⃗, E)J

n×
Λ′ (r⃗

′, E)Θ(r′n − rn)

+ Jn
Λ(r⃗, E)Z

n×
Λ′ (r⃗

′, E)Θ(rn − r′n) ,
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given here in the most general fully relativistic formulation. Here r⃗, r⃗ ′ refer to points

within atomic cells around sites R⃗m, R⃗n, respectively, with Φn
Λ(r⃗, E) = ΦΛ(r⃗n, E) =

ΦΛ(r⃗ − R⃗n, E) being a a spin-angular function centered at site R⃗n. In Eq. (8), the

functions Zn
Λ and Jn

Λ stand for the regular and irregular, respectively, solutions to

the single-site Dirac equation for site n with the associated single-site scattering t-

matrix tnΛΛ′ . The corresponding scattering path operator τnn
′

ΛΛ′ accounts for all scattering

events connecting the sites n and n′. For the spin-angular representation used here, the

combined quantum number Λ = (κ, µ) stands for the relativistic spin-orbit and magnetic

quantum numbers κ and µ, respectively [35, 32, 33].

The matrix representation of scattering path operator with τnn
′

ΛΛ′ = [τnn
′
]ΛΛ′ is given

in real space representation by a solution of the following equation of motion:

τnn
′
(E) = tn(E)δnn′ + tn(E)

∑
k ̸=n

G 0,nk(E)τ kn
′
(E) , (9)

For a finite system this equation is solved straightforwardly by a matrix inversion [36]:

τ(E) =
[
t(E)−1 −G0(E)

]−1
. (10)

The inverse matrix τ−1(E) determines the so-called real-space KKR matrix M(E) =[
t(E)−1 −G0(E)

]
. The double underline indicates matrices with respect to the site

indices n and relativistic quantum numbers Λ. Thus, their dimension is determined by

the number of sites (N) in the system and the angular momentum cut-off lmax.

Dealing with a three-dimensional periodic system, Eq. (10) can be solved exactly

by Fourier transformation, given by the expression [37, 38]

τnn
′
(E) =

1

ΩBZ

∫
ΩBZ

d3k
[
(t(E)−1 −G0(k⃗, E)

]−1

eik⃗·(R⃗n−R⃗n′ ) , (11)

with the (reciprocal space) structure constants matrix G0(k⃗, E) being the Fourier

transformed of the real-space structure constants matrix G0(E).

As it was pointed out above, the GF G+(r⃗, r⃗ ′, E) gives access to most electronic

properties as indicated above for the electron density and the density of states (DOS).

For a more detailed representation of the electronic structure, the Bloch spectral function

AB(k⃗, E) may be used that is defined via the Fourier transformed Green function

G+(r⃗, r⃗ ′, E) as follows [31]:

AB(k⃗, E) = − 1

π
ℑTr

∑
n,m

eı⃗k·(R⃗n−R⃗m)

∫
d3rG+(r⃗ + R⃗n, r⃗ + R⃗m, E) . (12)

2.3. Configurational averaging for random alloys via the CPA

As was pointed out by Faulkner [39], the KKR method is one of the few first-principles

methods which can be generalized to describe the electronic structure for ordered solids

as well as for disordered alloys without making use of the super cell technique. The Green

function formalism is particularly useful when dealing with the electronic structure of

disordered systems. By using the concept of the molecular field, Soven [40] introduced

the Coherent Potential Approximation (CPA) approach when dealing with disordered
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substitutional alloys. The central idea of the CPA is represented by Fig. 1. It introduces

a hypothetical effective CPA medium playing the role of a molecular field, which is

constructed such that it represents the configurational average for the alloy. In its

Figure 1. Basic idea of the CPA: the embedding of one of the components of an alloy

AxB1−x (with xA = x and xB = 1 − x) into the CPA medium should not change its

properties if the concentration-weighted average is taken.

standard formulation, the CPA makes use of the single-site approximation (see Fig. 1),

that implies that the occupation of neighboring sites is uncorrelated. Within the KKR

approach the CPA medium is determined by requiring that for a random substitutional

AxB1−x alloy the embedding of an A- or B-atom into the CPA medium should on the

average lead to no additional scattering [34, 41]. This is expressed by the following

equation

x τnnA + (1− x) τnnB = τnnCPA , (13)

where the component-projected scattering path operators

τnnα =
[
(t−1

α − (tCPA)
−1 + (τCPA)

−1
]−1

(14)

characterize the embedding of the alloy component α into the CPA medium according

to Eq. (6). These quantities together with the corresponding component-related wave

functions Zα
Λ(r⃗, E) and Jα

Λ(r⃗, E) give access to the component-specific Green function

G+
α (r⃗, r⃗

′, E) via Eq. (8) and with this to all component-specific properties of an alloy.

Corresponding results for the disordered ferromagnetic alloy fcc-Ni0.8Pd0.2 are shown

in Fig. 2. The left panel gives the spin-resolved band structure in terms of the Bloch

spectral function AB
σ (k⃗, E) that can be seen as the Fourier transform of the real space

Green function G+
σ (r⃗, r⃗

′, E), while the middle and right panels give the spin-resolved

element-projected density of states nα
σ(E) for α = Ni and Pd, respectively. Comparison

of AB
σ (k⃗, E) on the left panel with the dispersion relation Ejσ(k⃗) of fcc-Ni clearly shows

the smearing-out of the energy bands for the alloy in particular in the regime of the d-

states, that implies a finite life time of the electronic states and reflects the fact that for

the disordered alloy the wave vector k⃗ is not a good quantum number. As a consequence

of the band smearing, the fine structure present in the DOS for pure Ni is washed out

for the case of Ni-projected DOS nNi
σ (E) for Ni0.8Pd0.2. Furthermore, the width of the

AB
σ (k⃗, E) functions for each k⃗ point can be interpreted as a measure for the electronic

life time to be used in the calculation of the residual resistivity on the basis of the

Boltzmann formalism [43].
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Figure 2. Left: spin-resolved Bloch spectral function AB
σ (k⃗, E) of the disordered

ferromagnetic alloy fcc-Ni0.8Pd0.2 calculated on the basis of the CPA. Middle and

right column: corresponding spin-resolved partial density of states nα
σ(E) for α = Ni

and Pd, respectively. The top and bottom row give results for spin up and down,

respectively. As a reference the dispersion relation Ejk⃗σ of pure Ni is superimposed as

a black line to AB
σ (k⃗, E) (left). In addition nNi

σ (E) for pure ferromagnetic Ni (middle)

and of nPd
σ (E) for pure paramagnetic Pd (right) are included in the figures as dashed

lines [42].

It is important to note that the concept of the CPA is not restricted to alloys but can

be applied to any type of disorder making use of the alloy analogy model [26, 27, 28, 44]

which will be discussed below.

2.4. Treatment of response quantities, vertex corrections

In the following special attention will be paid to the response quantities of materials, for

which any type of disorder plays a key role and should be properly taken into account.

A rather general basis for corresponding investigations is provided by Kubo’s linear

response formalism [45]. This gives access to the response shown by an observable

induced by the perturbation that are represented by the operators B and A, respectively.

In the case of A = ĵ and B = ĵ standing both for current density operators, one is led

to the Kubo equation [45] for the conductivity

σµν = V

∫ (kBT )−1

0

dλ

∫ ∞

0

dt < ĵν ĵI,µ(t+ iℏλ) > ei(ω+iδ)t , (15)

consisting primarily of a current-current correlation function.
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For a practical application of the Kubo equation the electronic system is represented

by a single-particle density matrix. Imposing more and more restrictions one is led to the

sequence Kubo-Bastin [46], Kubo-Středa [47] and the Kubo-Greenwood [48] equation,

respectively. The most general Kubo-Bastin equation giving in particular access to the

full conductivity tensor σ is given by the following expression [46]

σµν =
iℏ
Ω

∫ ∞

−∞
dEf(E)Tr

〈
ĵµ
dG+(E)

dE
ĵνδ(E − Ĥ)− ĵµδ(E − Ĥ)ĵν

dG−(E)

dE

〉
c

(16)

with ν = (x, y, z) denoting Cartesian coordinates, f(E) the Fermi-Dirac distribution

function and G±(E) = (E − Ĥ ± iδ)−1 the retarded and advanced Green function

operators, and Ω denoting the volume of the unit cell. The simpler Kubo-Středa

equation gives access to full conductivity tensor only in the athermal limit Tel = 0

K, i.e. it accounts for the contribution of the electrons at the Fermi energy. The well

known Kubo-Greenwood equation

σµν =
ℏ
πV

Tr
〈
ĵµℑG+ĵνℑG+

〉
c
. (17)

gives only the the symmetric part of the electrical conductivity tensor. It should be

noted that for other response functions the Kubo-Bastin-like equation has to be used.

Dealing with a disordered alloy, the subscript c in Eqs. 16 and 17 indicates an average

over all configurations for the distribution of the alloy components under the constrain

of their concentrations. Adopting a fully relativistic formulation for Eq. (8) [32, 33] one

gets in a natural way access to all spin-orbit induced properties as magnetoresistance

and anomalous Hall effect (AHE) [49, 50] given in the latter case by the anti-symmetric

part of σ.

A scheme to account for the configurational average when calculating the

conductivity tensor for an alloy has been worked out by Butler [51] within the framework

of the KKR-CPA formalism. This leads in a natural way to two contributions to the

conductivity:

σµν = σ0
µν + σ1

µν (18)

with the site-diagonal and site-off-diagonal contributions, σ̃0
µν and σ̃1

µν , respectively [52]

σ0
µν = − 4m2

πℏ3Ω
∑
α

∑
Λ1,Λ2
Λ3,Λ4

xαTr J̃
αµ
Λ1Λ2

τCPA,00
Λ2Λ3

Jαν
Λ3Λ4

τCPA,00
Λ4Λ1

(19)

σ1
µν = − 4m2

πℏ3Ω
∑
α,β

∑
Λ1,Λ2
Λ3,Λ4

xαxβ Tr J̃
αµ
Λ1Λ2

[
(1− χω)−1χ

]
Λ1Λ2
Λ3Λ4

J̃βν
Λ3Λ4

, (20)

where the quantities Jαµ
ΛΛ′ are matrix elements of the µ-component of the current density

operator j⃗ for the alloy component α, and J̃αµ
Λ1Λ2

stands for renormalized matrix elements

involving, in addition, the component projected scattering path operators τα. The
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quantity χΛ1Λ2
Λ3Λ4

represents a lattice sum over products of scattering path operators

τCPA0n
Λ1Λ2

τCPAn0
Λ3Λ4

with n ̸= 0 and for that reason has four indices. This summation

can be performed by Fourier transformation leading to a Brillouin zone integral over

the product of two Fourier transformed scattering path operators τCPA
Λ1Λ2

(k⃗, E). The

additional factor [(1−χω)−1]Λ1Λ2
Λ3Λ4

in Eq. (20) represents the so-called vertex corrections

accounting for the difference between the exact configurational average ⟨ĵµℑG+ĵνℑG+⟩c
and the approximated value ⟨ĵµℑG+⟩c ⟨ĵνℑG+⟩c, that corresponds to the scattering-in

terms of the Boltzmann formalism. A corresponding scheme to calculate the resistivity

of disordered systems within the TB-LMTO-GF-CPA formalism that also accounts for

the vertex corrections has been developed by Turek et al. [53], while the spin-polarized

relativistic KKR (SPRKKR) based formulation is given in Refs. [54].

As an example of an application of this formalism to realistic materials, we represent

the residual resistivity ρ calculated for disordered alloy Cu1−xZnx, obtained with (solid

line) and without (dashed line) vertex corrections. Fig. 3 represents ρ as a function of

concentration x, demonstrating a significant impact of vertex corrections for this alloy

system, leading to a strong modification of the resistivity.

0 0.2 0.4 0.6 0.8 1
x
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15

ρ
 (
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O
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m

 c
m

)

CPA (no VC) 

CPA (VC) 

Figure 3. Residual resistivity of random Cu1−xZnx alloys, i.e. for T = 0 K. The

dashes line gives the CPA results neglecting vertex corrections, whereas the solid line

corresponds to the results accounting for them.

Concerning the AHE, one has to stress that the anomalous Hall conductivity (AHC)

is non-vanishing only for the systems with broken time-reversal symmetry. It general,

it can be splitted into the so-called intrinsic (related to the Berry curvature and fully

determined by the features of all occupied electronic states, i.e. Fermi sea) and extrinsic

contributions. The latter one arises due to any type of disorder in materials as a

consequence of SOC-driven asymmetric scattering of electrons (skew- and side-jump

scattering mechanism). It is accounted for via the vertex corrections and can be obtained

from the difference σextr = σVC
1 − σNVC

1 . It should be noted that it is determined by the

electrons at the Fermi energy, whereas vertex corrections for the Fermi sea contribution

to the AHC vanish exactly, as it was demonstrated by Turek et al. [55].
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The impact of vertex corrections on the AHC for FexPd1−x can be seen in Fig.

4 showing calculated results in comparison with experiment [56]. The circles show

theoretical results for the AHC accounting for vertex corrections while the triangles

show the results calculated without them. The difference between these quantities can

be attributed to the extrinsic contribution to the AHC.
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Figure 4. The AHC of FexPd1−x for T = 0 K. The circles show results including vertex

corrections and the triangles show results without vertex corrections. The squares show

experimental data from Ref. [56] for T = 4.2 K [54].

The KKR-CPA based implementation of the Kubo linear response formalism can

be transferred with minor modifications to deal with other response quantities. An

example for this is the Gilbert damping parameter α that can be expressed by a Kubo-

Greenwood-like equation [57]

αµµ =
g

πµtot

∑
n

Tr
〈
T µ0 τ̃ 0n T µn τ̃n0

〉
c

(21)

with the g-factor 2(1 + µorb/µspin) in terms of the spin and orbital moments, µspin and

µorb, respectively, the total magnetic moment µtot = µspin + µorb, τ̃
0n
ΛΛ′ = 1

2i
(τ 0nΛΛ′ − τ 0nΛ′Λ)

and with the energy argument EF omitted. The matrix elements in Eq. (21) are identical

to those occurring in the context of the exchange coupling [58]:

T µn

Λ′Λ =

∫
d3r Zn×

Λ′ (r⃗, E) [βσµBxc(r⃗)]Z
n
Λ(r⃗, E) , (22)

where β is one of the standard Dirac matrices, σα is a 4 × 4-Pauli matrix [35] and

B⃗xc(r) = Bxc(r)ẑ is the spin-dependent part of the exchange-correlation potential set

up within local spin-density theory [58].

Similar to the electrical conductivity, the calculation of the Gilbert damping

parameter for disordered systems requires to perform a configurational average. As

an example, Fig. 5 represents the Gilbert damping parameter for the disordered alloy

Fe1−xVx, as a function of the concentration, calculated neglecting vertex corrections,

αNVC (open symbols), and with vertex corrections taken into account, αVC (full symbols)

[59]. One can clearly see very pronounced changes of αVC at low concentrations of V.
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In particular, one finds a transition from conductivity-like to resistivity-like behavior

of αVC when varying x from 0 to 1, reflecting the dominance of intra- and inter-band

transitions, respectively [60]. However, concentration-dependent changes of the Gilbert

damping neglecting vertex corrections, αNVC, are much more pronounced. In particular,

it is found negative at small V concentrations, indicating non-physical results in this

regime. In terms of the Boltzmann transport formalism, this is a consequence of the

neglected scattering-in term [43] leading obviously to an incomplete description of the

energy transfer processes. At high V concentration, neglecting the scattering-in term

leads to an overestimation of the Gilbert damping, that may be discussed in analogy

to the spin-pumping-out mechanism in the interpretation of the Gilbert damping by

Tserkovnyak et al. [61].

3. Alloy-analogy model: theory

More or less all magnetic and response properties of materials depend on temperature.

Accordingly, it is of great importance to account for the impact of a finite temperature

within first-principles calculations in order to compare the results with experiment

and to find out the mechanisms responsible for the temperature dependence of the

considered properties. The finite temperature leads to a change in the occupation of

electronic states as well as for the electronic structure due to different types of thermal

excitations, as e.g. phonons and magnons. In general, experiments are performed in the

temperature regime kBT << EF, leading to a weak re-population in the vicinity to the

Fermi energy and usually does not have a pronounced impact on physical properties - at

least for metallic systems. On the other hand, much more pronounced thermally induced

changes are associated with thermally induced phonons and magnons. This holds in

particular for the transport properties of metals. The calculation of the corresponding

conductivity tensor σµν for finite temperature requires to account for different types of

thermal excitations, as mentioned before. As will be demonstrated below, they can be

0 0.1 0.2 0.3 0.4 0.5

concentration x

0

20

40

α
 ×

 1
0

3

without vertex corrections

with vertex corrections

Fe
1-x

V
x

Figure 5. The Gilbert damping parameter for bcc Fe1−xVx (T = 0 K) as a function

of the V concentration x. Full (open) symbols give results obtained with (without)

vertex corrections [59].
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accounted for in a relatively simple way due to the fact that the dynamics of phonons

and magnons is much slower compared to the electronic propagation. This allows to use

the adiabatic approximation in the calculations of the electronic structure and related

properties.

3.1. Treatment of thermal lattice displacement

A simple way to account for the impact of the thermal displacement of atoms from their

equilibrium positions, i.e. for thermal lattice vibrations, on the electronic structure is

to set up a representative displacement configuration for the atoms within an enlarged

unit cell (super cell technique). In this case one has to use either a very large super

cell or to take the average over a set of super cells. Alternatively, one may make use

of the alloy analogy for the averaging problem. This allows in particular to restrict to

the standard unit cell. Neglecting the correlation between the thermal displacements

of neighboring atoms they can be treated using the mean-field approximation, giving

access to the thermal average calculated by making use of the single-site CPA. This

basic idea is illustrated by Fig. 6. To make use of this scheme a discrete set of Nv

Figure 6. Configurational averaging for thermal lattice displacements: the continuous

distribution P (∆R⃗n(T )) for the atomic displacement vectors is replaced by a discrete

set of vectors ∆R⃗v(T ) occurring with the probability xv. The configurational average

for this discrete set of displacements is made using the CPA leading to a periodic

effective medium.

displacement vectors ∆R⃗q
v(T ) with probability xqv (v = 1, .., Nv) is constructed for each

basis atom q within the standard unit cell that is conform with the local symmetry and

the temperature dependent root mean square displacement (⟨u2⟩T )1/2 according to:

Nv∑
v=1

xqv|∆R⃗q
v(T )|2 = ⟨u2q⟩T . (23)

In general, the mean square displacement along the direction µ (µ = x, y, z) of the atom

i can be either taken from experimental data or represented by an expression based on

phonon calculations [62]

⟨u2i,µ⟩T =
3ℏ
2Mi

∫ ∞

0

dωgi,µ(ω)
1

ω
coth

ℏω
2kBT

, (24)



Investigating finite temperature effects by means of the AAM 14

where ℏ is the reduced Planck constant, kB is the Boltzmann constant and gi,µ(ω) is a

projected phonon density of states [62]. On the other hand, a rather good estimate for

the root mean square displacement can be obtained using Debye’s theory. In this case,

for systems with one atom per unit cell, Eq. (24) can be reduced to the expression:

⟨u2⟩DT =
1

4

3h2

π2MkBΘD

[
Φ(ΘD/T )

ΘD/T
+

1

4

]
(25)

with Φ(ΘD/T ) the Debye function and ΘD the Debye temperature [63]. Ignoring the zero

temperature term 1/4 (see, e.g. Ref. [64]) and assuming a frozen potential for the atoms,

the situation can be dealt with in full analogy to the treatment of disordered alloys on the

basis of the CPA. Using a homogeneous distortion of displacement directions ∆R⃗q
v in Eq.

(23), the probability xv for a specific displacement v may normally be chosen as 1/Nv.

The Debye temperature ΘD used in Eq. (25) can be either taken from experimental data

or calculated representing it in terms of the elastic constants [65]. In general the latter

approach should give more reliable results in the case of multi-component systems.

To simplify notation we restrict in the following to systems with one atom per unit

cell. The index q numbering sites in the unit cell can therefore be dropped, while the

index n numbers the lattice sites.

Assuming a rigid displacement of the atomic potential in the spirit of the rigid

muffin-tin approximation [66, 67] the corresponding single-site t-matrix tloc = tn with

respect to the local frame of reference connected with the displaced atomic position

is unchanged. With respect to the global frame of reference connected with the

equilibrium atomic positions R⃗n, however, the corresponding t-matrix t is given by

the transformation:

t = U(∆R⃗) tloc U(∆R⃗)−1 . (26)

The so-called U-transformation matrix U(s⃗) is given in its non-relativistic form by

[66, 67] :

ULL′(s⃗) = 4π
∑
L′′

il+l′′−l′ CLL′L′′ jl′′(|s⃗|k)YL′′(ŝ) . (27)

Here L = (l,m) represents the non-relativistic angular momentum quantum numbers,

jl(x) is a spherical Bessel function, YL(r̂) a real spherical harmonics, CLL′L′′ a

corresponding Gaunt number and k =
√
E is the electronic wave vector. The relativistic

version of the U-matrix is obtained by a standard Clebsch-Gordan transformation [35].

With Eq. (26), the various displacement vectors ∆R⃗v(T ) can be used to determine

the scattering properties of a corresponding pseudo-component of a pseudo alloy. Each of

the Nv pseudo-components with |∆R⃗v(T )| = ⟨u2⟩1/2T is characterized by a corresponding

U-matrix Uv and accordingly with an individual t-matrix tv. As for a substitutional

alloy the site diagonal configurational average can be determined by solving the multi-

component CPA equations with all quantities expressed w.r.t. the global frame of
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reference:

τCPA =
Nv∑
v=1

xvτ v (28)

τ v =
[
(tv)

−1 − (tCPA)
−1 + (τCPA)

−1
]−1

(29)

τCPA =
1

ΩBZ

∫
ΩBZ

d3k
[
(tCPA)

−1 −G(k⃗, E)
]−1

, (30)

where the underline indicates matrices with respect to the combined index Λ. As it was

pointed out in the literature [59], the cutoff for the angular momentum expansion in

these expressions should be taken l ≥ lmax+1 with lmax the value used in the calculations

for the non-distorted lattice. In all calculations we have usedNv = 14 with ∆R⃗v pointing

along [±1, 0, 0], [0,±1, 0], [0, 0,±1] and [±1,±1,±1]. Increasing the set of directions for

the atomic displacements led only to minor changes of the final results.

The first CPA equation (28) represents the requirement that embedding of a

component v into the mean-field CPAmedium should lead in the average to no additional

scattering. Eq. (29) gives the scattering path operator for the embedding of the

component v, while Eq. (30) gives the CPA scattering path operator in terms of a

Brillouin zone integral with G(k⃗, E) the so-called KKR structure constants, and tCPA

the single-site t-matrix of the CPA medium to be determined iteratively.

Having solved the CPA equations any linear response quantity of interest may

be calculated using Eq. (16) as for an ordinary substitutional alloy [68, 51]. This

implies that one also has to deal with the so-called vertex corrections [68, 51] that

take into account that one has to deal with a thermal configuration average of

the type ⟨ÂµℑG+ Âν ℑG+⟩c that in general will differ from the simpler product

⟨ÂµℑG+ ⟩c⟨Âν ℑG+⟩c.

3.2. Treatment of thermal spin fluctuations

As for the disorder connected with thermal displacements the impact of disorder due

to thermal spin fluctuations may be accounted for by use of the super cell technique

[69]. Alternatively one may again use the alloy analogy and determine the necessary

configurational average by means of the CPA as indicated in Fig. 7. As for the

thermal displacements in a first step a set of representative orientation vectors êf (with

f = 1, ..., Nf ) for the local magnetic moment is introduced (see below). Using the rigid

spin approximation the spin-dependent part Bxc of the exchange-correlation potential

does not change for the local frame of reference fixed to the magnetic moment when

the moment is oriented along an individual orientation vector êf . This implies that the

single-site t-matrix tlocf in the local frame is the same for all orientation vectors. With

respect to the common global frame that is used to deal with the multiple scattering

(see Eq. (30)) the t-matrix for a given orientation vector is determined by:

t = R(ê) tlocR(ê)−1 . (31)
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Figure 7. Configurational averaging for thermal spin fluctuations: the continuous

distribution P (ên) for the orientation of the magnetic moments is replaced by a discrete

set of orientation vectors êf occurring with a probability xf . The configurational

average for this discrete set of orientations is made using the CPA leading to a periodic

effective medium.

Here the transformation from the local to the global frame of reference is expressed by

the rotation matrices R(ê) that are determined by the vectors ê or corresponding Euler

angles [35].

Again the configurational average for the pseudo-alloy can be obtained by setting

up and solving the CPA equations in analogy to Eqs. (28) to (30).

3.3. Models of spin disorder

The central problem with the scheme described above is obviously to construct a realistic

and representative set of orientation vectors êf and probabilities xf for each temperature

T to be used in the subsequent calculation of the response quantity using the alloy

analogy model. A rather appealing approach is to calculate the exchange-coupling

parameters Jij of a system in an ab-initio way [70, 71, 58] and to use them in subsequent

Monte Carlo (MC) simulations. Fig. 8 (left) shows results for the temperature dependent

average reduced magnetic moment of corresponding simulations for bcc-Fe obtained

for a periodic cell with 4096 atom sites. These results have been obtained using

the exchange coupling parameters calculated for the disordered-local-moment (DLM)

state, modeling the disordered magnetic state above TC that gave the best agreement

with the experimental Curie temperature [72]. The MC calculations for Fe using a

classical Heisenberg Hamiltonian have been discussed in [73] in more detail. The full

line in Fig. 8 (left) gives the value for the reduced magnetic moment of the MC cell

MMC∗(T ) = ⟨mz⟩T/m0 projected on the z-axis, calculated for the last Monte Carlo

step (ẑ is the orientation of the total moment, i.e. ⟨m⃗⟩T∥ẑ; the saturated magnetic

moment at T = 0 K is m0 = |⟨m⃗⟩T=0|). This scheme is called MC∗ in the following. In

spite of the rather large number of sites (4096) the curve is rather noisy in particular

when approaching the Curie temperature. Nevertheless, the spin configuration of the

last MC step was used as an input for subsequent SPRKKR-CPA calculations using

the orientation vectors êf with the probability xf = 1/Nf with Nf = 4096. As Fig.

8 (left) shows, the temperature dependent reduced magnetic moment MKKR(MC∗)(T )
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Figure 8. Averaged reduced magnetic moment M(T ) = ⟨mz⟩T /|⟨m⃗⟩T=0| of Fe

along the z-axis as a function of the temperature T . Left: results of Monte Carlo

simulations using scheme MC* (full squares) compared with results of subsequent KKR

calculations (open squares). Middle: results of Monte Carlo simulations using scheme

MC (full squares) compared with results using a mean-field fit with a constant Weiss

field parameter wMC(TC) (open diamonds) and a temperature dependent Weiss field

parameter wMC(T ) (open squares). In addition experimental data (full circles) together

with a corresponding mean-field fit obtained for a temperature dependent Weiss field

parameter wexp(T ). Right: results of Monte Carlo simulations using scheme MC (full

squares) compared with results subsequent KKR calculations using the MC (triangles

up) and a corresponding DLM (triangle down) spin configuration, respectively [44].

deduced from the electronic structure calculations follows one-to-one the Monte Carlo

dataMMC∗(T ). This is a very important result that demonstrates that the CPA although

being a mean-field method and used here in its single-site formulation is nevertheless

capable to reproduce the results of MC simulations that go well beyond the mean-field

level.

Using the set of vectors êf of the MC* scheme also for calculations of the Gilbert

damping parameters α as a function of temperature, however, led to extremely noisy

and unreliable curves for α(T ). For that reason an average has been taken over many

MC steps (scheme MC) leading to a much smoother curve for MMC(T ) as can be seen

for the reduced magnetic moment in Fig. 8 (middle). As this enlarged set of vectors êf
got too large to be used directly in subsequent SPRKKR-CPA calculations, a scheme

was worked out to get a set of vectors êf and probabilities xf that is not too large but

nevertheless leads to smooth curves for M(T ).

The first attempt was to use the Curie temperature TMC
C to deduce a corresponding

temperature independent Weiss field parameter w(TC) on the basis of the standard

mean-field relation:

w(TC) =
3kBTC
m2

0

. (32)

This leads to a reduced magnetic moment curveMMF(T ) that shows by construction the

same Curie temperature as the MC simulations. For temperatures between T = 0 K and

TC, however, the mean-field reduced magnetic moment MMF(T ) is well below the MC

curve (see Fig. 8 (middle) ). As an alternative to this simple approach we introduced

a temperature dependent Weiss field parameter w(T ). This allows to describe the

temperature dependent magnetic properties using input data obtained beyond the mean-
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Figure 9. Overview of the different models to treat spin disorder together with

the notation used in the main text. Starting point is a temperature dependent

magnetization M(T ) either (i) taken from experiment (Mexp(T )) or (ii) obtained from

a Monte Carlo simulation (MMC(T )) that uses exchange-coupling constants from an

first-principles electronic structure calculation. Three different models abbreviated as

MC, DLM and cone are then used to obtain a representative distribution of moments

(weights and directions {xf , êf (θ, ϕ)}) that in turn reproduce M(T ). On the right in

parenthesis the source is given (“MC” or “exp” data) upon which the calculation of

response quantities is based [44].

field approximation. At the same time the statistical average can be determined treating

the underlying model Hamiltonian in terms of the mean field theory. For this reason

the reduced magnetic moment M(T ), being a solution of equation (see, e.g. Ref. [74])

M(T ) = L

(
wm2

0M(T )

kBT

)
, (33)

was fitted to that obtained from MC simulationsMMC(T ) with the Weiss field parameter

w(T ) as a fitting parameter, such that

lim
w→w(T )

M(T ) =MMC(T ) , (34)

with L(x) the Langevin function.

The corresponding temperature dependent probability x(ê) for an atomic magnetic

moment to be oriented along ê is proportional to exp(w(T )ẑ · ê/kBT ) (see, e.g. Ref. [74]).
To calculate this value we used Nθ and Nϕ points for a regular grid for the spherical

angles θ and ϕ, respectively, corresponding to the vector êf :

xf =
sin(θf ) exp[w(T )ẑ · êf/kBT ]∑
f ′ sin(θf ′) exp[w(T )ẑ · êf ′/kBT ]

(35)

Fig. 10 shows for three different temperatures the θ-dependent behavior of x(ê).

As one notes, the MF-fit to the MC-results perfectly reproduces these data for all
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Figure 10. Angular distribution P (θ) of the atomic magnetic moment m⃗ obtained

from Monte Carlo simulations (MC) for the temperature T = 200, 400, and 800 K

compared with field mean-field (MF) data, xf , (full line) obtained by fitting using a

temperature dependent Weiss field parameter w(T ) (Eq. 33) [44].

temperatures. This applies of course not only for the angular resolved distribution of

the magnetic moments shown in Fig. 10 but also for the average reduced magnetic

moment recalculated using Eq. (33), shown in Fig. 8. Obviously, the MF-curve

MMF(MC)(T ) obtained using the temperature dependent Weiss field parameter w(T )

perfectly reproduces the original MMC(T ) curve. The great advantage of this fitting

procedure is that it allows to replace the MC data set with a large number NMC
f of

orientation vectors êf (pointing in principle into any direction) with equal probability

xf = 1/NMC
f (for illustration: NMC

f = 106 MC steps have been used to calculateMMC(T )

for each T) by a much smaller data set with Nf = NθNϕ (where Nθ = 180 and Nϕ = 18

has been used in all calculations presented here) with xf given by Eq. (35).

Accordingly, the reduced data set can straight forwardly be used for subsequent

electronic structure calculations. Fig. 8 (right) shows that the calculated temperature

dependent reduced magnetic moment MKKR−MC(MC)(T ) agrees perfectly with the

reduced magnetic moment MMC(T ) given by the underlying MC simulations.

The DLM method has the appealing feature that it combines ab-initio calculations

and thermodynamics in a coherent way. Using a non-relativistic formulation, it

was shown that the corresponding averaging over all orientations of the individual

atomic reduced magnetic moments can be mapped onto a binary pseudo-alloy with

one pseudo-component having up- and downward orientation of the spin moment with

concentrations x↑ and x↓, respectively [75, 76]. For a fully relativistic formulation,

with spin-orbit coupling included, this simplification cannot be justified anymore and a

proper average has to be taken over all orientations [77]. As we do not perform DLM

calculations but use here only the DLM picture to represent MC data, this complication

is ignored in the following. Having the set of orientation vectors êf determined by MC

simulations the corresponding concentrations x↑ and x↓ can straight forwardly be fixed

for each temperature by the requirement:

1

Nf

Nf∑
f=1

êf = x↑ẑ + x↓(−ẑ) , (36)

with x↑ + x↓ = 1. Using this simple scheme electronic structure calculations have been
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performed for a binary alloy having collinear magnetization. The resulting reduced

magnetic moment MKKR−DLM(MC)(T ) is shown in Fig. 8 (right). As one notes, again

the original MC results are perfectly reproduced. This implies that when calculating

the projected reduced magnetic moment Mz that is determined by the averaged Green

function ⟨G⟩ the transversal magnetization has hardly any impact.

Fig. 8 (middle) gives also experimental data forM(T ) [78]. While the experimental

Curie-temperature T exp
C = 1044 K [78] is rather well reproduced by the MC simulations

TMC
C = 1082 K one notes that the MC-curve MMC(T ) is well below the experimental

curve. In particular, MMC(T ) drops too fast with increasing T in the low temperature

regime and does not show the T 3/2-behavior. The reason for this is that the MC

simulations do not properly account for the low-energy long-ranged spin wave excitations

responsible for the low-temperature magnetization variation. Performing ab-initio

calculations for the spin wave energies and using these data for the calculation of M(T )

much better agreement with experiment can indeed be obtained in the low-temperature

regime than with MC simulations [2].

As the fitting scheme sketched above needs only the temperature reduced magnetic

moment M(T ) as input it can be applied not only to MC data but also to experimental

data. Fig. 8 shows that the mean field fit MMF(exp)(T ) again perfectly fits the

experimental reduced magnetic moment curve Mexp(T ). Based on this good agreement

this corresponding data set {êf , xf} has also been used for the calculation of response

tensors (see below).

An additional much simpler scheme to simulate the experimental Mexp(T ) curve is

to assume the individual atomic moments to be distributed on a cone, i.e. with Nθ = 1

and Nϕ >> 1 [79]. In this case the opening angle θ(T ) of the cone is chosen such to

reproduce M(T ). In contrast to the standard DLM picture, this simple scheme allows

already to account for transversal components of the magnetization. Corresponding

results for response tensor calculations will be shown below.

Finally, it should be stressed here that the various spin configuration models

discussed above assume a rigid spin moment, i.e. its magnitude does not change with

temperature nor with orientation. In contrast to this Ruban et al. [80] use a longitudinal

spin fluctuation Hamiltonian with the corresponding parameters derived from ab-initio

calculations. As a consequence, subsequent Monte Carlo simulations based on this

Hamiltonian account in particular for longitudinal fluctuations of the spin moments.

A similar approach has been used by Drchal et al. [81, 82] leading to good agreement

with the results of Ruban et al. However, the scheme used in these calculations does

not supply in a straightforward manner the necessary input for temperature dependent

transport calculations. This is different from the work of Staunton et al. [83] who

performed self-consistent relativistic DLM calculations without the restriction to a

collinear spin configuration. This approach in particular accounts in a self-consistent

way for longitudinal spin fluctuations.
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3.4. Combined chemical and thermally induced disorder

The various types of disorder discussed above may be combined with each other as

well as with chemical i.e. substitutional disorder. In the most general case a pseudo-

component (vft) is characterized by its chemical atomic type t, the spin fluctuation f

and lattice displacement v. Using the rigid muffin-tin and rigid spin approximations,

the single-site t-matrix tloct in the local frame is independent from the orientation vector

êf and displacement vector ∆R⃗v, and coincides with tt for the atomic type t. With

respect to the common global frame one has accordingly the t-matrix:

tvft = U(∆R⃗v)R(êf ) ttR(êf )
−1U(∆R⃗v)

−1 . (37)

With this the corresponding CPA equations are identical to Eqs. (28) to (30) with the

index v replaced by the combined index (vft). The corresponding pseudo-concentration

xvft combines the concentration xt of the atomic type t with the probability for the

orientation vector êf and displacement vector ∆R⃗v. In summary, the AAM approach

can be applied to calculate various temperature dependent properties both for ordered

and for disordered alloy systems. Below we present several examples, discussing the

role of different types of thermally induced excitations in non-magnetic and magnetic

materials.

4. Applications: Equilibrium electronic structure at finite temperature

First, we will discuss the impact of thermal lattice vibrations and spin fluctuations on

the ground state electronic structure of a solid, focusing on the temperature induced

modification of the density of states (DOS). Thermally induced lattice vibrations and

spin fluctuations lead to disorder that should have an impact on the electronic structure

in a similar way as chemical disorder in alloy systems. Using the alloy analogy model

described above, the corresponding Green function in multiple scattering representation

is given in terms of a configurational average of the scattering path operator τCPA (see

Eqs. (28)-(30)). This gives direct access to the temperature-dependent DOS n(E) by

modifying the expression in Eq. (4), accordingly:

n(E) = − 1

π
ℑTr

∫ 〈
G+(r⃗, r⃗, E)

〉
c
d3r . (38)

Obviously, the same holds for the Bloch spectral function AB(k⃗, E) given in Eq.

(12) that can be seen as a k⃗-resolved DOS function. As an example for a rather

strong temperature-induced modification of the electronic structure caused by thermal

lattice vibrations, Fig. 11 shows the Bloch spectral function AB
σ (k⃗, E) of Ag calculated

for T = 100 (left) and T = 600K (right). The strong smearing of the electronic

energy bands for T = 600K indicates a decrease of the life time of the electron states,

which is reflected by the width of the AB
σ (k⃗, E, T ) functions changing as a function of

temperature.
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Figure 11. The BSF for Ag at T = 100 (left) and T = 600 (right) K, respectively

[84].

In the second example, we consider the impact of thermal lattice vibrations and

spin fluctuations on the electronic structure of the ferromagnet bcc Fe (see Ref. [85]).

For this, we show in Fig. 12 the spin projected DOS calculated for several temperatures,

represented w.r.t. two different frames of reference: the local one with the ẑ axis seen

as a quantization axis, and the global one fixed to the crystal lattice. One can see

in Fig. 12(b) that spin fluctuations dominate the temperature induced modification

of the electronic structure, especially for temperatures approaching TC (see Fig. 13).

Therefore, we will focus mainly on the impact of thermal spin fluctuations on the

electronic structure in the following. The scattering path operator averaged over spin

fluctuations at a given temperature can be written as follows τCPA =
∑

f xfτ f , where τ f is

associated with the spin fluctuation with direction êf , giving access to a corresponding

contribution nf,σ(E) to the DOS. The spin-projected DOS nloc
f,σ(E) evaluated in the
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Figure 12. Total spin projected DOS for bcc Fe in the local (a) and global (b) frames

of reference [85].
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Figure 13. The spin projected BSF AB
σ (k⃗, E) (global frame of reference) for bcc Fe

at T = 0 K (left), T = 800 K (middle) and T = TC (right). The top and bottom panel

show the majority- and the minority-spin states, respectively.

local frame of reference with ẑf ||êf is different for different spin channels in the case of

a non-zero local magnetic moment even in the paramagnetic (PM) (i.e. magnetically

disordered) state with ⟨m̂⟩ = 0. In this frame of reference the electronic states are

well characterized by the spin quantum number, in case of a weak spin-orbit interaction

(SOI) in the material. However, the average spin-projected DOS curves calculated in

the fixed global frame of reference for the PM state are equal for the two spin channels,

i.e. ⟨n+⟩(E) = ⟨n−⟩(E). The indices ′+′ and ′−′ imply here a spin orientation along

the global ẑ direction and opposite to it, respectively. Due to the random orientation

of the atomic spin magnetic moments in the system, the ⟨n+⟩(E) and ⟨n−⟩(E) DOS

curves have contributions from the electronic states characterized by different quantum

numbers, implying a mixed-spin character of the electronic states (see also the spin

projected BSF AB
σ (k⃗, E) in Fig. 13). Fig. 12 (a) represents the DOS for bcc Fe calculated

for the PM state (⟨m̂⟩ = 0) in the local frame of reference (solid line), averaged over all

possible orientations of the magnetic moment. This result is compared with the DOS for

T = 0 K. One can see, first of all, a finite exchange splitting of the majority and minority

spin states at T > TC. The main temperature effect is a significant broadening of the

energy bands when compared to T = 0 K. However, in the global frame of reference

the difference between the majority and minority-spin states decreases approaching the

critical temperature TC = 1024 K and above. Above TC, in the PM state, the difference
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between the spin-projected DOS curves disappeared. The same can also be seen for

the spin projected BSF shown in Fig. 13. However, the situation is different when

only thermal lattice vibrations are taken into account (dashed line in Fig. 12 (b) for

T = 1025 K). In this case only a weak broadening of the energy bands occurs, which is

much weaker when compared to that due to spin fluctuations.

5. Applications:Temperature dependent exchange coupling parameters

5.1. Theoretical background

The phenomenological Heisenberg Hamiltonian

Hex = −
∑
ij

Jij(êi · êj)−
∑
ij

D⃗ij[êi × êj] . (39)

is a well established basis for the investigation of finite-temperature and dynamical

magnetic properties of materials. Compared to its standard form, the Hamiltonian

in Eq. (39) is extended to account relativistic effects, and includes apart from the

isotropic exchange coupling parameters Jij the Dzyaloshinskii-Moriya (DM) interaction

parameters D⃗ij, connected with the spin moments on sites i and j, pointing along

the directions êi and êj, respectively. Very often these parameters are derived from

experimental data. Alternatively, they can be calculated on an ab-initio level. Adopting

for example the multiple scattering formalism and restricting to T = 0 K, the full

exchange coupling tensor can be obtained from the expression [71, 58]:

J
αiαj

ij = − 1

2π
ℑ
∫
dE Tr ∆V αi(E)τ ij(E)∆V αj(E)τ ji(E) . (40)

The DMI parameters are given by the antisymmetric part of the exchange coupling

tensor J
αiαj

ij , while the isotropic exchange parameters Jij are given by the average over

its diagonal elements [71]. In Eq. (40) τ ij is the scattering path operator connecting

sites i and j with the underline indicating matrices in the Λ = (κ, µ)-representation [35].

The corresponding on-site coupling for site i is represented by the matrix ∆V αi

ΛΛ′ = Tαi

Λ′Λ

[58], with Tαi

Λ′Λ given by Eq. (22). For simplicity, below we consider only systems with

one atom per unit cell.

Considering finite temperature magnetic properties one has to account first of all for

the impact of thermally induced lattice vibrations and spin fluctuations on the electronic

structure. Its temperature dependent modification will have a corresponding impact on

the properties depending on it. As an example, we consider the temperature dependence

of the exchange parameters, that can be calculated making use of the AAM approach.

Focusing on the impact of thermal lattice vibrations and assuming a frozen potential

for the displaced atoms and neglecting correlations between the atomic displacements,

Eqs. (28) to (30) allow to perform the necessary thermal configurational averaging when

dealing with Eq. (40) for finite temperatures. This way one gets for the temperature

dependent exchange coupling tensor:

J̄
αiαj

ij = − 1

2π
ℑ
∫
dE Tr⟨∆V αiτ ij∆V αjτ ji⟩c , (41)
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where ⟨...⟩c represents the configurational average with respect to the set of

displacements. Note that here the temperature dependent change of the electron

occupation function is not taken into account, as this is normally relevant for very

high temperatures (see Ref. [1]). Furthermore, as the expression in Eq. (41) refers

explicitly to a specific pair of sites, the vertex corrections have been ignored here; i.e.

the configuration average has been simplified to ⟨∆V α τ ij ⟩c⟨∆V β τ ji⟩c.

5.1.1. bcc Fe As an example, we represent here corresponding results for the

temperature dependent exchange coupling parameters of bcc Fe, determined by thermal

lattice vibrations. The isotropic exchange coupling parameters Jij calculated for the FM

reference state of Fe are plotted in Fig. 14 (a) for different amplitudes of thermal lattice

vibrations related to a corresponding lattice temperature Tlat according to the Debye

model. As one can see, there are indeed pronounced modifications of the exchange
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Figure 14. The isotropic exchange coupling parameters Jij for bcc Fe calculated for

the FM (a) and DLM (b) reference states. The results are represented for different

amplitudes of the thermal lattice vibrations given in terms of the rms displacement

(⟨u2⟩T )1/2 that can be related to a specific lattice temperature Tlat, for example via the

Debye model.

coupling parameters due to the lattice vibrations that depend strongly on the considered

pair of sites. By far the most significant changes are found for the nearest-neighbor

interaction parameters that decrease strongly with an increase of the amplitude of the

thermal displacements or the lattice temperature, respectively. This in turn should

have a corresponding impact on the Curie temperature TC. Within the mean-field

approximation (MFA), TC is essentially given by the sum
∑

j Jij over the coupling

parameters allowing therefore in a simple way to monitor the dependence of TC on

the effective lattice temperature Tlat or, equivalently, on the temperature dependent

rms displacement (⟨u2⟩T )1/2. Fig. 15 (circles) shows corresponding results for TC as a

function of (⟨u2⟩T )1/2 obtained by summing Jij within a sphere with radius Rmax = 5a,

with a being the lattice parameter.
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Figure 15. Theoretical Curie temperature TC for bcc Fe plotted as a function of the

amplitudes of thermal lattice vibrations (⟨u2⟩T )1/2 calculated for the FM (circles) and

DLM reference states either using the MFA (squares) or MC simulations (diamonds)

together with the relation between the lattice temperature Tlat and (⟨u2⟩T )1/2. Open

squares represent the results on DLM-based mean-field TC calculated for lattice

parameter corresponding to experimental Curie temperature.

Keeping in mind that the mean field approximation (MFA) normally overestimates

the critical temperature when compared to results obtained from Monte Carlo (MC)

simulations or RPA (random phase approximation) based calculations, one notes that

the MFA result for TC of bcc Fe, evaluated without accounting for the lattice vibrations,

is rather close to the experimental value, T exp
C = 1043 K. However, a finite amplitude of

the lattice vibrations leads to a significant monotonous decrease of TMF
C with (⟨u2⟩T )1/2

implying a corresponding deviation from experiment.

As mentioned above, more reliable results for the Curie temperature can be obtained

on the basis of the exchange coupling parameters calculated for the PM reference

state described here within the disordered local moment (DLM) approximation. The

significant difference of the electronic structure for the magnetically disordered state

compared to that for the FM state (see Fig. 12) leads to a corresponding difference for

the exchange coupling parameters. Figure 14 (b) gives the resulting exchange coupling

parameters for the DLM reference state of Fe. The MFA Curie temperature (≈ 1700 K)

exceeds the value obtained for the FM reference state in an appreciable way when

thermal lattice vibrations are ignored. This observation was already reported in the

literature before (see, e.g. [86]). However, a finite amplitude of the thermal atomic

displacements leads again to a lower MFA-based Curie temperature, as it is shown

in Fig. 15 (squares), reaching the value TMF
C ≈ 1200 K when requiring that the Curie

temperature and lattice temperature coincide. In order to compare the impact of thermal

lattice vibrations on the exchange interactions with the impact of a thermal lattice

expansion, the DLM-based calculations have been performed also for bcc Fe with the



Investigating finite temperature effects by means of the AAM 27

lattice parameter a = 5.48 a.u. as determined for the Curie temperature [87]. The

mean-field results for TC obtained in this case show only a rather small increase when

compared to the case without account of the lattice expansion (open squares in Fig. 15).

This implies a dominating influence on Jij for thermal lattice vibrations when compared

to the impact of the thermal lattice expansion.

Fig. 15 gives also results for the Curie temperature obtained by MC simulations

considering 15 atomic shells around each atom using DLM-based exchange parameters

(diamonds). In this case, the Curie temperature TMC
C , calculated for an unperturbed

lattice slightly overestimates the experimental value. When the amplitude of thermal

lattice vibrations increases, TMC
C also goes down and coincides with the lattice

temperature Tlat at around 1000 K underestimating slightly the experimental Curie

temperature this way. This small deviation might among others be ascribed to the

approximate treatment of lattice vibrations when calculating Jij that in particular

neglects correlations in the thermal motion of the atoms.

To get more insight concerning the impact of lattice vibrations on the temperature

dependence of the exchange coupling parameters, one can represent them in terms

of the spin-lattice coupling (SLC) parameters J diag,µ
ij,k and J diag,µν

ij,kl characterizing

the corrections of Jdiag
ij caused by atomic displacements uµk . The temperature

dependent parameters ⟨Jij⟩T may be estimated by averaging over all lattice excitations

corresponding to a given temperature T . This can be expressed as follows

⟨Jij⟩T = J0
ij +

∑
k,µ

J diag,µ
ij,k ⟨uµk⟩T +

∑
kl,µν

J diag,µν
ij,kl ⟨uµku

ν
l ⟩T + ... . (42)

As the average ⟨uµk⟩T of the linear term vanishes, the second-order SLC parameters give

rise to the lowest-order contribution to the temperature dependence of the exchange

parameters, leading to [88]

⟨Jij⟩T = J0
ij + ⟨u2⟩DT

∑
µ

[
J diag,µµ

ij,ij + J diag,µµ
ij,ii + J diag,µµ

ij,jj

]
. (43)

Note that ⟨u2⟩DT stands for the mean square displacement corresponding to a certain

temperature T is estimated via the Debye model used also when applying the AAM to

calculate the thermal average of the exchange parameters. The values for ⟨Jij⟩T obtained

this way for bcc Fe are compared in Fig. 16 with corresponding results calculated on

the basis of the alloy analogy model [89]. One can see that in this particular case the

contribution due to displacements of the interacting atoms are dominating, while in

general one might have to account also for contributions due to the displacements of all

surrounding atoms l and k different from i and j.

6. Applications: Transport properties of metals at finite temperature

As we will show in this section, the AAM approach is a very useful tool to investigate

finite temperature behavior of various types of linear response functions. First we will

discuss transport properties, calculated using using Kubo’s linear response formalism by
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Figure 16. The dependence of the nearest-neighbor exchange coupling parameters

⟨Jij⟩T of bcc Fe on the root-mean-square thermal displacement
√
⟨u2⟩DT of the atoms.

Corresponding temperatures are attached to some data points. Open symbols represent

the results based on the SLC parameters using Eq. (43) while full squares correspond

to results obtained via the alloy-analogy model [89].

means of Eq. (17). We will consider separately non-magnetic and magnetic systems. In

the first case only thermal lattice vibrations give rise to temperature dependent changes

of the transport properties, e.g. the electrical resistivity, while in the latter case both

thermal lattice vibrations as well as spin fluctuations contribute to the temperature

dependence of their transport properties.

6.1. Temperature dependent conductivity of non-magnetic systems

6.1.1. Electrical conductivity of fcc Cu To give an impression on the impact of

thermally induced atomic displacements alone on the electrical resistivity, Fig. 17 shows

the temperature dependent resistivity ρ(T ) for pure Cu (ΘDebye = 315 K), that is found

in very good agreement with corresponding experimental data [90]. This implies that the

alloy analogy model that ignores any inelastic scattering events should in general lead to

rather reliable results for the resistivity induced by thermal displacements. Accordingly,

comparison with experiment should allow for magnetically ordered systems to find out

the most appropriate model for spin fluctuations.

The finite temperature [84] SHE and OHE have been investigated for elemental non-

magnetic 3d, 4d and 5d transition metals [84]. Again, this implies the impact of only

thermal lattice vibrations characterized by the lattice temperature Tlat, therefore we will

use everywhere in this section the term ’temperature’ instead of ’lattice temperature’.

Fig. 18 shows the total (full circles) and extrinsic (open circles) OHC for some selected

transition metals, plotted as a function of temperature. Similar plots are shown also for

the total (full squares) and extrinsic (open squares) SHC.
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Figure 17. Temperature dependent longitudinal resistivity of fcc-Cu ρ(T ) obtained

by accounting for thermal vibrations as described in section 3.1 compared with

corresponding experimental data [90]. In addition results are shown based on the

LOVA (lowest order variational approximation) to the Boltzmann formalism [18].

For all systems the intrinsic OHC and SHC are dominating in the low-temperature

limit, as the extrinsic contributions have to vanish for T approaching 0 K. For the

temperature window shown in Fig. 18, on the other hand, the extrinsic contributions

are almost unchanged. As it is concluded in Ref. [84] concerning the properties of the

OHC and SHC originating from thermal lattice vibrations: the contribution due to

skew scattering to the extrinsic OHC and SHC in pure metals is rather small, and the

extrinsic OHC and SHC are dominated by the side-jump scattering mechanism, which is

in line with theoretical predictions for the anomalous Hall effect, reported by Crépieux

and Bruno [91].

The results presented in Fig. 18 show substantial temperature-dependent changes

of the intrinsic OHC in pure transition metals, associated with corresponding changes

of the Fermi sea contribution. This can be attributed to the changes of the electronic

structure caused by thermal lattice vibrations leading first of all to a smearing of the

energy bands implying a decreasing lifetime for the electronic states. In contrast to the

OHC, a weak temperature-induced change can be seen for both the intrinsic and extrinsic

contributions to the SHC. To gain insight into to origin for this different behavior we

have performed calculations for the OHC and SHC as a function of the occupation of the

electron states, using Ag as a representative system as its OHC varies quite strongly with

temperature. In the calculations, the occupation is controlled by the upper energy limit

Eocc which is equal to EF under normal condition. The calculations have been done for

two lattice temperatures, T = 100 and 600 K. Fig. 19 shows the results for the total OHC

and SHC, which, however, are mainly determined by the intrinsic contributions, as it is

shown in Fig. 18. One can see in Fig. 19 (bottom) a minor difference between the results

for the SHC obtained for two different temperatures, that, however, is not the case for

the OHC (Fig. 19 top). The difference between the results for the OHC at T = 100 and

600 K increases with increasing occupation, i.e. Eocc, of the d-states, and almost does
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Figure 18. OH and SH conductivities (full red circles and full blue squares,

respectively) for selected elemental 3d, 4d and 5d non-magnetic metals, calculated

accounting for thermal lattice vibrations and plotted as a function of temperature.

Empty symbols represent the extrinsic contributions to the OHC and SHC [84].

not change when Eocc goes beyond the top of the d-band. This occupation dependence,

in particular, may be responsible for a weaker temperature dependence of the OHC for

the early transition metals. The strong temperature-induced modification of the OHC

can be attributed to the impact of thermal lattice vibrations on the electronic structure

leading to a strong smearing of the energy bands, increasing with temperature. This can

be seen in Fig. 11 that gives the Bloch spectral function AB(k⃗, E, T ) for Ag, calculated

for T = 100 (left) and 600K (right). Furthermore, it is crucial that the temperature-

induced lattice distortion breaks the local symmetry at each lattice site. When the origin

of the OHE is associated with the k⃗-dependent orbital texture controlled by symmetry

[92, 93, 94, 95, 96], the OHC variation at finite temperature may stem from broken local

symmetry at every atomic position, leading to a modification of the orbital texture,

increasing with temperature (see also discussions in Ref. [95]). Interestingly, only minor

changes occur for the SHC, in conflict with the idea that the SOC-driven spin Hall

current density originates from the orbital Hall current density [92]. This indicates in
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Figure 19. The OHC, σOH(Eocc) (top) and SHC, σSH(Eocc) (bottom) calculated for

Ag at T = 100 (open symbols) and T = 600 K (full symbols), represented as a function

of occupation of electron states Eocc [84].

particular a rather weak impact of the temperature-induced lattice distortions on the

SOC-driven spin texture within the Brillouin zone, in contrast to the SOC-independent

orbital texture.

6.1.2. Temperature effect in doped systems In the case of doped materials, the impact

of temperature induced lattice vibrations on the OHE and SHE is quite different

when compared to pure metals. Fig. 20 demonstrates this for the OHC (circles)

and SHC (squares) for Ir0.99Rh0.01 (a) and Ir0.99Au0.01 (b), plotted as a function of

temperature, and compared with the results for pure Ir. The most pronounced difference

between the results for the doped and undoped systems occurs at low temperature.

This difference gradually vanishes in the high-temperature regime, when the OHC

and SHC for doped and undoped systems approach the values mainly given by their

intrinsic contributions. The strong temperature dependence of the OHC and SHC

for Ir0.99Rh0.01 at low temperature (see Fig. 20 (a)) stems from the extrinsic skew-

scattering contributions arising due to chemical disorder, that quickly decrease with

raising temperatures. As σskew
OH/SH ∝ ⟨Vs⟩3/⟨V 2

s ⟩2, at finite temperature the scattering

potential can be split into ’atomic’ and ’electron-phonon’ parts. While the nominator

⟨Vs⟩ ≈ ⟨Va⟩, as ⟨Ve−ph⟩ = 0 [91], the denominator accounts for both types of scattering

contributions, i.e. ⟨(Va + Ve−ph)
2⟩, increasing with temperature due to an increasing

amplitude of the lattice vibrations.

As is discussed in Ref. [84], in the case of Ir0.99Rh0.01, the large value of the skew

scattering conductivity at T = 0 K estimated by σskew
OH/SH ∝ 1

x
1
∆d

[91] with ∆d ≈ 0.2

eV, decreases at finite temperature due to electron-phonon scattering (with values up
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Figure 20. OH (circles) and SH (squares) conductivities for Ir0.99Rh0.01 (a) and

Ir0.99Au0.01 (b) plotted as a function of temperature. Full symbols represent total

values calculated accounting for vertex corrections, while open symbols show only the

extrinsic contribution to the OHC and SHC. Triangles represent the results on the

OHC and SHC for pure Ir.

to ⟨V 2
e−ph⟩1/2 ∼ 0.1 eV) according to σskew

OH/SH ∝ ⟨Va⟩3/⟨(Va + Ve−ph(T ))
2⟩2. In the case of

Ir0.99Au0.01, however (see Fig. 20(b)), ∆d >> Ve−ph as ∆d ≈ 1.6 eV, leading to a weak

dependence on the temperature according to σskew
OH/SH ∝ 1

x
1
∆d

(1− O(⟨V 2
el−ph⟩/⟨V 2

a ⟩)). At
high temperatures σSH and σOH approach the intrinsic SHC and OHC, as it was seen

also for Ir0.99Rh0.01.

6.1.3. Electrical conductivity of random alloys Fig. 21 represents the calculated results

for the electrical resistivity of the non-magnetic random alloy Ni0.33Co0.33Cr0.33 in

comparison with experiment, for which a detailed discussion is given in Ref. [97]. As

the Ni0.33Co0.33Cr0.33 alloy is nonmagnetic, the temperature dependence of the resistivity

is determined by lattice vibrations only. As seen in Fig. 21 a rather good agreement

with experiment is achieved also in the case when chemical and thermal disorder are

present at the same time. It should be noted that the calculations assume an undistorted

lattice. Corrections to this simplification may indeed increase the resistivity remarkably

(for further discussions see Ref. [98]).

7. Applications: Temperature dependent conductivity for magnetic systems

7.1. 3d transition metals

Fig. 22 (a) shows theoretical results for ρ(T ) of bcc-Fe due to thermal displacements

ρv(T ), spin fluctuations described by the scheme MC ρMC(MC)(T ) as well as the

combination of the two influences (ρv,MC(MC)(T )). First of all one notes that ρv(T ) is

not influenced within the adopted model by the Curie temperature TC but is determined

only by the Debye temperature. The resistivity ρMC(MC)(T ), on the other hand, reaches
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Figure 21. Electrical resistivity of the non-magnetic alloy Ni0.33Co0.33Cr0.33: theory

vs experiment. Calculated results are shown by red circles, while cyan triangles

represent experimental data [97].
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Figure 22. Temperature dependent longitudinal resistivity of bcc-Fe ρ(T ) obtained

by accounted for thermal vibrations and spin fluctuations as described in section 3.1.

(a) Accounting for vibrations (vib, diamonds), spin fluctuations using scheme MC

(fluct, squares) and both (vib+fluct, circles). Dashed line represents the sum of the

resistivities contributed by lattice vibrations or spin fluctuations only. (b) Accounting

for spin fluctuations êf = ê(θf , ϕf ) using the schemes (see Fig. 9): MC(MC) (squares),

DLM(MC) (triangles up), and cone(MC) (triangles down). The full and open symbols

represent the results obtained with the vertex corrections included (VC) and excluded

(NVC), respectively.

saturation for TC as the spin disorder does not increase anymore with increasing

temperature in the paramagnetic regime. Fig. 22 also shows that ρv(T ) and ρMC(MC)(T )

are comparable for low temperatures but ρMC(MC)(T ) exceeds ρv(T ) more and more

for higher temperatures. Most interestingly, however, the resistivity for the combined

influence of thermal displacements and spin fluctuations ρv,MC(MC)(T ) does not coincide

with the sum of ρv(T ) and ρMC(MC)(T ) but exceeds the sum for low temperatures and
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lies below the sum when approaching TC.

Fig. 22 (b) shows the results of three different calculations including the effect of spin

fluctuations as a function of the temperature. The curve ρMC(MC)(T ) is identical with

that given in Fig. 22 (a) based on Monte Carlo simulations. The curves ρDLM(MC)(T )

and ρcone(MC)(T ) are based on a DLM- and cone-like representation of the MC-results,

respectively. For all three cases results are given including as well as ignoring the vertex

corrections. As one notes, the vertex corrections play a negligible role for all three spin

disorder models. This is fully in line with the experience for the longitudinal resistivity

of disordered transition metal alloys: as long as the the states at the Fermi level have

dominantly d-character the vertex corrections can be neglected in general. On the other

hand, if the sp-character dominates inclusion of vertex corrections may alter the result

in the order of 10 % [99, 53].

Comparing the DLM-result ρDLM(MC)(T ) with ρMC(MC)(T ) one notes in contrast to

the results for M(T ) shown above (see Fig. 8 (right)) quite an appreciable deviation.

This implies that the restricted collinear representation of the spin configuration implied

by the DLM-model introduces errors for the configurational average that seem in general

to be unacceptable. For the Curie temperature and beyond in the paramagnetic regime

ρDLM(MC)(T ) and ρMC(T ) coincide, as it was shown formally before [100].

Comparing finally ρcone(MC)(T ) based on the conical representation of the MC

spin configuration with ρMC(MC)(T ) one notes that also this simplification leads to

quite strong deviations from the more reliable result. Nevertheless, one notes that

ρDLM(MC)(T ) agrees with ρMC(MC)(T ) for the Curie temperature and also accounts to

some extent for the impact of the transversal components of the magnetization.

The theoretical results for bcc-Fe (ΘDebye = 420 K) based on the combined inclusion

of the effects of thermal displacements and spin fluctuations using the MC scheme

(ρv,MC(MC)(T )) are compared in Fig. 23 (top) with experimental data (ρexp(T )). For the

Curie temperature obviously a very good agreement with experiment is found while for

lower temperatures ρv,MC(MC)(T ) exceeds ρexp(T ). This behavior correlates well with

that of the temperature dependent reduced magnetic moment M(T ) shown in Fig. 8

(middle). The too rapid decrease of MMC(T ) compared with experiment implies an

essentially overestimated spin disorder at any temperature leading in turn to a too large

resistivity ρv,MC(MC)(T ). On the other hand, using the temperature dependence of the

experimental reduced magnetic moment Mexp(T ) to set up the temperature dependent

spin configuration as described above a very satisfying agreement of ρv,MC(expt)(T ) is

found with the experimental resistivity data ρexp(T ). Note also that above TC the

calculated resistivity reaches saturation in contrast to the experimental data where the

continuing increase of ρexp(T ) can be attributed to the longitudinal spin fluctuations

leading to a temperature dependent distribution of local magnetic moments on Fe atoms

[80]. However, this contribution was not accounted for because of the restriction in

present calculations using a fixed value for the local reduced magnetic moments.

Fig. 23 (right) shows corresponding results for the temperature dependent resistivity

of fcc-Ni (ΘDebye = 375 K). For the ferromagnetic (FM) regime the theoretical results are
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Figure 23. Left: Temperature dependent longitudinal resistivity of bcc-Fe ρ(T )

obtained by accounted for thermal vibrations and spin fluctuations using the

scheme MC (vib+fluct(MC(MC)), squares) and a mean-field fit to the experimental

temperature magnetic moment Mexp (vib+fluct(MC(exp)), diamonds) compared with

experimental data (circles) [90]. Right: corresponding results for fcc-Ni. In addition

results are shown accounting for thermal displacements (vib) only for the ferromagnetic

(FM) as well paramagnetic (PM) regime. The dashed line represents the sum of the

resistivity contributed by lattice vibrations or spin fluctuations only. Experimental

data have been taken from Ref. [101].

comparable in magnitude when only thermal displacements (ρv(T )) or spin fluctuations

(ρMC(expt)(T )) are accounted for. In the later case the mean field w(T ) has been

fitted to the experimental M(T )-curve. Taking both into account leads to a resistivity

(ρv,MC(expt)(T )) that is well above the sum of the individual terms ρv(T ) and ρMC(expt)(T ).

Comparing ρv,MC(expt)(T ) with experimental data ρexp(T ) our finding shows that the

theoretical results overshoots the experimental one the closer one comes to the critical

temperature. This is a clear indication that the assumption of a rigid spin moment is

quite questionable as the resulting contribution to the resistivity due to spin fluctuations

is much too small. In fact the simulations of Ruban et al. [80] on the basis of a

longitudinal spin fluctuation Hamiltonian led in the case of fcc-Ni to a strong diminishing

of the average local magnetic moment when the critical temperature is approached from

below (about 20 % compared to T = 0 K). For bcc-Fe, the change is much smaller

(about 3 %) justifying in this case the assumption of a rigid spin moment. Taking

the extreme point of view that the spin moment vanishes completely above the critical

temperature or the paramagnetic (PM) regime only thermal displacements have to be

considered as a source for a finite resistivity. Corresponding results are shown in Fig.

23 (bottom) together with experimental data. The very good agreement between both

obviously suggests that remaining spin fluctuations above the critical temperature are

of minor importance for the resistivity of fcc-Ni.
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Figure 24. (Color online) Temperature-dependent electrical resistivity of hcp Gd:

in-plane (a), and out of plane (b) components. The various symbols represent: black

solid circles – experimental results [103], empty blue triangles – only thermal lattice

vibrations, empty green diamonds – only spin fluctuations, empty red circles – total

resistivity including both effects simultaneously, brown dashed line corresponds to the

sum of individual contributions [102].

7.2. The ferromagnetic hcp Gd

Impact of finite temperatures on the transport properties of Gd has been studied

in Ref. [102]. One of the central transport properties of metallic systems is their

electrical resistivity. The experimentally measured temperature-dependent resistivity

of Gd exhibits an anisotropy with different magnitudes along the hexagonal axis (ρzz)

and in the basal plane (ρxx) [103] (see Fig. 24). Both ρ(T ) curves are characterized by

an abrupt slope change close to the Curie temperature.

In addition, the temperature dependence caused separately by different

contributions to the total ρ(T ), i.e. only by lattice vibrations (vib) or only by

magnetic fluctuations (fluct), have been investigated in Ref. [102], which appear to

be of comparable magnitude. This led to the conclusion that these sources of the

temperature-dependent resistivity are additive only in the case of the weak disorder (low

temperatures), which does not hold when approaching the Curie temperature (strong

disorder) [104]. In this regime they must be taken into account simultaneously, since

only then the overall behavior of the resistivity curves agrees well with experiment.

This allows to conclude that the maximum of the experimental ρzz (close to the Curie

temperature) is not a result of short range magnetic order as it was suggested in the

earlier literature [103], since the present calculations are based on the single-site CPA.

The results in Ref. [102] suggest its origin to be a combination of two competitive

mechanisms. On the one hand side, this is the thermally induced increase of disorder,

leading to an increase of the electrical resistivity. On the other hand side, the DOS

around EF , characterizing quantitatively the electrical conductivity, increases with

increasing temperature at T < Tc, which effectively reduces the resistivity.

While the calculated resistivities agree with the experiment rather well, there is a

quantitative underestimation (see Fig. 24). This can have various sources. One could be
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the so-called ’frozen’-potential approximation used in the calculations. A second reason,

which is more crucial for ρzz, might be the neglect of the anisotropy of the thermal

atomic displacements. A third source for discrepancy may be the use of the single-site

approximation by the CPA, which neglects the coherent scattering or interference effects

which might show up in multiple scattering.

The results for the anomalous Hall resistivity (AHR) of Gd are shown in Fig. 25 (a)

in comparison with experimental results (for polycrystalline samples as well as single

crystals) and theoretical results, obtained on the basis of model calculations by Fert

[105]. One can see that the anomalous Hall resistivity shows a pronounced temperature

dependence: the resistivity increases from zero at T = 0 K to a maximum value just

below the Curie temperature and then drops to zero as the magnetization vanishes with

further increasing temperature. Overall there is qualitative and quantitative agreement

of our first principles results with experiment as well as with the model calculations.

In Fig. 25 (b) the individual contributions arising from the scattering by the lattice

vibrations and spin fluctuations are shown. One can see that both mechanisms provide

contributions nearly of the same order of magnitude. The qualitative behavior of the

total AHR is determined by the scattering due to spin disorder, while the contribution

due to lattice vibrations shows, as expected, a monotonous increase with temperature.

It is interesting to compare the sum of the individual contributions with the total AHR.

From Fig. 25 (b) one can see that the total AHR significantly exceeds the sum of these

contributions. Therefore for the correct description of the total AHR it is necessary

to account simultaneously for the combination of scattering due to the thermal lattice

vibrations and spin fluctuations.

Comparing the calculated anomalous Hall resistivity with experimental data, one
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Figure 25. Anomalous Hall resistivity for Gd as a function of temperature: (a) in

comparison with experimental results (Exp. 1 – Ref. [106], Exp. 2 – Ref. [106], Exp.3 –

Ref. [107, 108]) and results from model calculations [105]; (b) individual contributions.

The used symbols represent: empty blue triangles – only thermal lattice vibrations,

empty green diamonds – only spin fluctuations, empty red circles – total resistivity

including both effects simultaneously, brown dashed line corresponds to the sum of

individual contributions.
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notices that the discrepancy is more pronounced at low temperatures, and is rather

weak at the temperature approaching TC (see Fig. 25).

7.3. AFM-FM phase transition of FeRh

The finite temperature properties of the electrical resistivity of FeRh making use of the

AAM were studied in Ref. [109]. To account for the effect of spin fluctuations in these

calculations, the temperature dependent magnetization of the Fe sublattice has been

obtained via Monte Carlo simulations, using exchange coupling parameters calculated

in an ab-initio way [110].

Figure 26(a) shows the electrical resistivity, ρxx(T ), calculated for ordered FeRh

with CsCl structure, accounting for the impact of thermal spin and lattice excitations,

in comparison with the experimental data. One can clearly see a rather good agreement

between the theoretical and experimental results. In particular, this concerns the

difference ρAFM
xx (Tm) − ρFM

xx (Tm), that is a result of a steeper increase of the AFM-

resistivity with temperature, when compared to that for the FM state. Note that the

experimental measurements have been performed for a sample with 1% intermixing

between Rh and Fe sublattices leading to a finite residual resistivity at T → 0 K, and as

a consequence in a shift of the experimental ρxx(T ) curve with respect to the theoretical

results [83].

The separate contributions of spin fluctuations and lattice vibrations to the

electrical resistivities, ρfxx(T ) and ρvxx(T ), calculated for the AFM and FM states are

shown in Fig. 26(b). For both magnetic states spin moment fluctuations have a dominant
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Figure 26. (a) Calculated longitudinal resistivity (closed circles - AFM state, open

circles - FM state) in comparison with the experiment [111]. The dashed line represents

the results for Fe0.49Rh0.51, while the dash-dotted line gives results for (Fe-Ni)0.49Rh0.51
with the Ni concentration x = 0.05 to stabilize the FM state at low temperature); (b)

electrical resistivity calculated for the AFM (closed symbols) and FM (open symbols)

states accounting for all thermal scattering effects (circles) as well as effects of lattice

vibrations (diamond) and spin fluctuations (squares) separately. The inset shows the

temperature dependent longitudinal conductivity for the AFM and FM states due to

lattice vibrations only [109].
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impact on the resistivity when compared to the thermal lattice displacements. One can

also see, that both components, ρfxx(T ) and ρvxx(T ), in the AFM state have a steeper

increase with temperature when compared to the FM state.

In order to clarify the origin of such a behavior, the results were discussed using

Mott’s model [112] that distinguishes between delocalized sp-electrons that primarily

determine the transport properties due to their high mobility, and localized d-electrons.

This allows in particular to consider separately the following factors which determine

the conductivity (see, e.g. [113]): (i) the carrier (having essentially sp-character)

concentration n and (ii) relaxation time τ ∼ [V 2
scattn(EF )]

−1, where Vscatt is the

average scattering potential and n(EF ) the total density of states at the Fermi level.

Corresponding discussions were done on the basis of the electronic structure.

This model was applied in particular to explain the abrupt change of the ρ(T )

dependence in the vicinity of the Curie temperature using the element projected DOS

for Fe and Rh shown in Fig. 27 for two temperatures just below and above TC . In

particular, Fig. 27 demonstrates the induced spin-splitting of the Rh electronic states

Figure 27. Comparison of the element resolved Fe (left) and Rh (right) DOS

calculated for the FM (solid line) and PM (dashed line) states at finite temperatures

T = 600 K (M/M0 = 0.66) and T = 700 K (M/M0 = 0) [109].

in FeRh for T < TC (T = 600 K (left panel)), which disappears above TC (T = 700

K (right panel)), so that the Rh DOS increases at the Fermi level. As a consequence,

the differences in the ρ(T ) behavior in the vicinity to TC for different systems may

be attributed to specific features of their electronic structures relevant to their PM

states. In particular, an increase of the Rh DOS at the Fermi level should lead to the

sharp increase of the resistivity as the critical temperature is approached, since ρ(T ) is

inversely proportional to the relaxation time τ , i.e. ρ(T ) ∼ [V 2
scattn(EF )] [109].

Fig. 28(a) shows the calculated anomalous Hall resistivity for FeRh in the FM state

(ρxy), represented as a function of temperature, in comparison with experimental data
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[114]. As the FM state is unstable in pure FeRh at low temperatures, the measurements

were performed for (Fe0.965Ni0.035)Rh, for which the FM state has been stabilized by Ni

doping. The calculations have been performed both, for the pure FeRh compound as well

as for FeRh with 5% Ni doping, (Fe0.95Ni0.05)Rh, that is found from the calculations to

be ferromagnetically ordered down to T =0 K. As can be seen, the magnitude of ρxy(T )

increases in a more pronounced way for the undoped system. Nevertheless, both results

are in rather good agreement with experiment.

Figure 28. The temperature dependence of the anomalous Hall resistivity for the FM

state of (Fe0.95Ni0.05)Rh in comparison with experimental data [114].

7.4. Fe-intercalated 2H-TaS2

The finite temperature transport properties of the 2H-Fe0.28TaS2 alloy were calculated

[115] accounting for both temperature induced lattice vibrations and spin fluctuations

[44]. The information on the temperature dependent magnetization has been taken from

experiment [116]. The electrical resistivity ρxx(T ) as well as ρxy(T ), characterizing the

AHE, are shown in Fig. 29 as a function of temperature. As the occupation of the Fe

sublattice is incomplete, the Fe concentration is non-stoichiometric implying xFe ≈ 1/3,

’chemical’ disorder has an additional impact on the resistivity leading to a finite residual

resistivity in the system.

As one can see, the resistivity ρxx(T ) contribution due to spin fluctuations has a

very weak dependence on temperature. On the other hand, the temperature induced

lattice vibrations result in a strong temperature dependence of ρxx(T ), leading to a

change of the slope at a temperature close to the Curie temperature. This implies

that the temperature dependence of ρxx(T ) around TC cannot be associated with the

direct impact of the temperature induced magnetic disorder on the electron scattering

by spin fluctuations and with this on the electron transport, but with the impact of the

magnetic disorder on the ’electron-phonon’ scattering. The ρzz(T ) component shows a

higher residual value at T = 0 K when compared to ρxx(T ), and also a change of the slope

close to TC , approaching the ρxx(T ) curve with increasing temperature. It is worth to
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mention again the temperature induced modifications of the electronic structure, namely,

the smearing of the energy bands due to electron scattering via lattice vibrations. This

can result in a rather fast increase of the resistivity due to an increasing cross-section for

the interband scattering. However, a further smearing with increasing the temperature

leads to a saturation of the number of channels for the interband scattering and as a

result - to the observed change of the slope of the ρxx(T ) curve. Another consequence

of the smearing of the electronic states is the decrease of the anisotropy of the transport

properties at high temperature. Note also that in general, the results of the present

calculations are in good agreement with experiment and demonstrate the leading role

of lattice vibrations for the temperature dependence of ρxx(T ).

The off-diagonal resistivity ρxy(T ) as a function of temperature is compared in Fig.

29(b) with experimental results showing reasonable agreement. It has a maximum at

T ≈ 30 K and goes to 0 at the Curie temperature due to magnetic disorder in the system,

demonstrating the crucial role of spin fluctuations for the temperature-dependence of

ρxy(T ).
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Figure 29. (a) Temperature-dependent longitudinal resistivities, ρxx(T ) = ρyy(T )

and ρzz(T ) (filled and open squares),for ferromagnetic disordered Fe0.28TaS2. The

dots [117] and the dashed line [118] represent corresponding experimental data. (b)

Temperature-dependent transverse resistivity, ρxy(T ). Results for ρxx(T ) and ρxy(T )

that were obtained accounting only for lattice vibrations and spin fluctuations are

represented in both cases by up and down triangles, respectively [115]

.

7.5. Doped Permalloy (Py)

The temperature dependence of the electrical resistivity of chemically disordered

Permalloy (Py) Fe0.19Ni0.81, studied in Ref. [119] using the AAM is shown in Fig. 30 in

comparison with the experimental data and with the results of calculations by Starikov

et al. [69], who modeled the temperature induced disorder by means of the supercell

technique. The SPRKKR calculation of ρaver =
1
3
(2ρxx+ρzz) accounts quite well for the

trend with a reasonable agreement with experiment. Some discrepancy with the results

of Starikov et al. [69] may be attributed to the different models used to describe the
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thermal disorder by Starikov et al. [69] (supercells) in contrast to the CPA-based AAM

used in the SPRKKR calculations.

Figure 30. Dependence of the resistivity ρaver of undoped Py on the temperature

as obtained by our calculation (blue solid line), by calculations of Starikov et al. [69]

(green dashed line), and by experiment [101] (red squares) [119].

In addition to Py, the electrical conductivities as well as the AHE and SHE have

been investigated for Py doped by 3d elements. Fig. 31 represents the temperature

dependence of the transverse charge and spin conductivities, σxy (left) and σz
xy (right),

respectively, for undoped Py (diamonds) and for Py doped with 6% of V (asterisks),

Co (crossed circles), Pt (triangles), and Au (squares). A strong impact of the vertex

corrections on the AHE and SHE in the low-temperature region can be seen in Fig. 32

for Co and Au doped Py, which decreases however rather quickly when the temperature

increases. As is discussed in Sec. 6.1.2 as well as in Ref. [84], this effect can be attributed

to the competition of the electron scattering due to chemical disorder and on thermally

induced atomic displacements with their amplitude increasing with a temperature.

7.6. The high entropy alloy Ni0.33Co0.33Fe0.33

The electrical resistivity calculated for FM-ordered Ni0.33Co0.33Fe0.33 [97] is plotted

in Fig. 33. The rapid increase of the resistivity at T ≲ TC is determined by a

dominating scattering by thermal spin fluctuations. This contribution reaches saturation

above TC , i.e. in the magnetically disordered state, for which the strength of the

electron scattering on thermal spin fluctuations also saturates. As a consequence,

the temperature dependence of the resistivity above TC is determined by the electron

scattering on lattice vibrations, which grows linearly with temperature. The difference

between the experimental and theoretical results on ρ(T ) below TC is ascribed to a

discrepancy between the experimental temperature dependence of the magnetization

and the magnetization calculated within the Monte Carlo simulations based on the

classical Heisenberg model [97].
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Figure 31. Theoretical temperature-dependence of σxy (left) and σz
xy (right) for

undoped Py (diamonds) and for Py doped with 6% of V (asterisks), Co (crossed

circles), Pt (triangles), and Au (squares) [119].

Figure 32. The temperature-dependence of the contributions to σxy (lines) and σz
xy

(markers) due to the vertex corrections for Py doped by 6% of V, Co, Pt, and Au [119].

7.7. Solid solutions of the 3d-transition metals

In the case of random alloys, two types of atomic displacements with different origin

may occur. One is due to thermally induced lattice vibrations, which were already

discussed above as they are responsible for temperature dependence of the transport

properties. Another type of displacements stems from the different atomic size of

neighboring atoms in a chemically disordered system, which leads in turn to randomly



Investigating finite temperature effects by means of the AAM 44

Figure 33. Electrical resistivity of ferromagnetic Ni0.33Co0.33Fe0.33: theory vs

experiment. Calculated results are shown by red circles, while cyan triangles represent

experimental data [97].

distributed local distortions in the alloy. These displacements can also be treated within

the AAM, but have only a weak dependence on the temperature. The combined effects

of these displacements on the transport properties have been discussed together with the

impact of chemical disorder in Ref. [98], considering the medium-entropy fcc NiCoMn

equiatomic solid solution alloys. Fig. 34 illustrates the resistivity enhancements (∆ρ)

due to two types of atomic displacements, static and thermally-induced, plotted as a

function of temperature when the static displacement is included (red dots) or not (black

diamonds), respectively.

Figure 34. The resistivity enhancement ∆ρ(T ) (µΩ· cm) of NiCoMn due to the effect

of thermal displacements u(T ), with (red dots) and without (black diamonds) taking

into account the static displacements u0 [98].

In the absence of the static displacements, the thermal displacement induced

resistivity enhancement ∆ρ(u(T )) increases almost linearly with temperature in the
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Figure 35. The Gilbert damping parameter for bcc-Fe as a function of temperature.

Full (open) symbols give results with (without) the vertex corrections [59].

regime above 100 K. However, accounting for static displacements in addition, one

can see that the temperature dependent resistivity enhancement ∆ρ(⟨(u⃗0 + u⃗(T ))2⟩1/2)
changes remarkably. This is due to the fact that the coupling between the u⃗0 and u⃗(T )

contributes a ⟨u⃗0 · u⃗(T )⟩1/2 term in the expansion of
√
⟨(u⃗0 + u⃗(T ))2⟩.

8. Applications: Gilbert damping at finite temperature

Similar to transport properties one can calculate the temperature dependent Gilbert

damping parameter for magnetic materials. The expression given by Eq. (21) for

disordered alloys, can be used also to take thermally induced lattice vibrations and

spin fluctuations into account. In this case the configurational average can again be

calculated using the AAM formalism. As an example, we present the results for the

Gilbert damping parameter at finite temperature for pure 3d transition metals [57, 59]

calculated accounting for the temperature induced atomic displacements via the alloy

analogy scheme. This leads, even for pure systems, to a finite electronic lifetime and

in this way to a finite value for α. First, we demonstrate the role of vertex corrections

for the temperature dependence of α, using bcc Fe as a prototype system. Fig. 35

represents the Gilbert damping parameter (with and without vertex corrections) for

pure Fe in the presence of temperature induced disorder and plotted as a function of

temperature. A significant impact of the vertex corrections is noticeable, similar to the

one found for the binary alloy Fe1−xVx, depending on the concentration of V. However,

one can see some difference concerning the impact of thermal and chemical disorder on

the Gilbert damping. Dealing with temperature effects via the alloy analogy model,

the system is considered as a pseudo-alloy consisting of a fixed number of components

representing different types of displacements. Thus, in this case the temperature effect

is associated with the increase of the disorder in the system caused only by an increase

of the displacement amplitude, or, in other words – with the strength of the scattering
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potential experienced by the electrons represented by tn(T )−tn0 . In the case of a random

alloy A1−xBx the variation of the scattering potential, as well as the difference tnB − tnA,

upon changing the concentration is less pronounced for small amounts of impurities B

and the concentration dependence is determined by the amount of scatterers of different

types. However, when the concentration of the impurities increases, the potentials of the

components are also modified (this is reflected, e.g. in a shift of electronic states with

respect to the Fermi level) and this can lead to a change of the concentration dependence

of the vertex corrections. Furthermore, one can see in Fig. 35, that a neglect of the vertex

corrections for α(T ) leads to wrong results at high temperatures, similar to the case of

high V concentrations in Fe1−xVx.

Next, we compare the Gilbert damping parameters for Fe, Co and Ni calculated

as a function of temperature, with corresponding experimental results available in the

literature. The Gilbert damping obtained for bcc Fe (circles, a = 5.44 a.u.) is compared

in Fig. 36(a) with experiment showing a rather good agreement at temperatures above

100 K despite the scattering of the experimental results. A more detailed comparison

is done in Ref. [57].
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Figure 36. Temperature variation of the Gilbert damping parameter of pure systems.

Comparison of theoretical results with experiment: (a) bcc-Fe: circles and squares show

the results for ideal bcc Fe for two lattice parameters, a = 5.42 a.u. and a = 5.45 a.u.;

stars show theoretical results for bcc Fe (a = 5.42 a.u.) with 0.1% of vacancies (Expt. 1

- Ref. [121], Expt. 2 - Ref. [120], Expt. 3 - Ref. [122]); (b) hcp-Co: circles show

theoretical results for ideal hcp Co, stars - for Co with 0.03% of vacancies, and ’pluses’

- for Co with 0.1% of vacancies (Expt. Ref. [120]); and (c) fcc-Ni (Expt. Ref. [120]).

Results for the temperature dependent Gilbert damping parameter α for hcp Co

are presented in Fig. 36(b) which shows, despite certain underestimation, reasonable

agreement with the experimental results [120]. The general trends at low and high

temperatures are similar to those seen in Fe.

The results for pure Ni are given in Figs. 36(c) and 37(top) that show in full

accordance with experiment a rapid decrease of α with increasing temperature until a

regime with a weak variation of α with T is reached. Adding small amount of Cu to

Ni, even less than 1 at.% Cu, strongly reduces the conductivity-like behavior (see, e.g.

Ref. [60]) at low temperatures while leaving the high-temperature behavior essentially
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Figure 37. Temperature variation of Gilbert damping of pure Ni and Ni with Cu

impurities: present theoretical results vs experiment [120].

unchanged. This is shown in the middle panel of Fig. 37. A further increase of the

Cu content leads to impurity-scattering processes responsible for the band broadening

dominating α. This effect completely suppresses the conductivity-like behavior in the

low-temperature regime because of the increase of scattering events due to chemical

disorder (see Fig. 37, bottom). This is fully in line with the experimental data,

providing a straightforward explanation for their peculiar variation with temperature

and composition.

9. Applications in spectroscopy

9.1. One-step theory of photo emission

The AAM also allows to investigate the temperature-dependence of photoemission. This

was demonstrated making use of the one-step theory of photoemission. The main idea

of the one-step model is to describe the actual excitation process, the transport of

the photoelectron to the surface as well as the escape into the vacuum as a single

quantum mechanical process [123]. It is based on Fermi’s golden rule and was originally

implemented for ordered surfaces using the multiple scattering KKR Green function

formalism (for more details see the review [124]). This approach has been generalized

to describe the photoemission of disordered alloys by means of the CPA [125, 126] and

recently it was extended to deal with thermal lattice vibration and spin fluctuation (in

magnetic materials) effects exploiting the AAM approach described above. Based on

the CPA approach the temperature-dependent spin-density matrix ρ at a given kinetic

energy ϵf and wave vector k⃗∥ can be written in the following form:

⟨ρss′(ϵf , k⃗∥, T )⟩ ∝ ⟨ρatss′(ϵf , k⃗∥, T )⟩+ ⟨ρcss′(ϵf , k⃗∥, T )⟩
+ ⟨ρincss′ (ϵf , k⃗∥, T )⟩+ ⟨ρsurfss′ (ϵf , k⃗∥, T )⟩, (44)
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with contributions from a purely atomic part (at), a coherent part (c) with multiple

scattering involved and an incoherent (inc) part as described in detail in Refs. [127, 128]

in the context of chemical disorder in alloys. The third contribution which appears due

to the CPA-averaging procedure represents an on-site quantity that behaves DOS-like

[127]. The last contribution defines the surface (surf) part of the spin-density matrix.

As dispersing and non-dispersing contributions are clearly distinguishable we can define

the spin-density matrix which describes the angle-integrated (AI) photoemission spectra

(PES) (i.e. AI-PES)

⟨ρAI−PES
ss′ (ϵf , k⃗∥, T )⟩ ∼ ⟨ρatss′(ϵf , k⃗∥, T )⟩

+ ⟨ρincss′ (ϵf , k⃗∥, T )⟩+ ⟨ρsurfss′ (ϵf , k⃗∥, T )⟩ , (45)

where the k⃗-dependence in the atomic and incoherent contributions is only due to the

final state. A k⃗-averaging is not necessary because the k⃗-dependence of the (SP)LEED-

type final state is very weak and can be neglected in explicit calculations. Furthermore,

by use of the single-scatter approximation for the final state the k⃗-dependence vanishes

completely. This way a direct comparison to corresponding measurements is possible in

both cases. From this the intensity of the photocurrent results in:

I(ϵf , k⃗∥, T ) = Tr
(
ρss′(ϵf , k⃗∥, T )

)
, (46)

with the corresponding spin polarization vector given by:

P⃗ =
1

I
Tr ( σ ρ ) . (47)

Finally, the spin-projected photocurrent is obtained from the following expression:

I±n̂ =
1

2

(
1 ± n̂ · P⃗

)
, (48)

with the spin polarization (±) referring to an arbitrary vector n̂.

9.1.1. Soft and hard x-ray angle-resolved (AR) temperature-dependent photoemission

The impact of lattice vibrations and spin fluctuations have been investigated for the soft

and hard x-ray angle-resolved photoemission regimes using the temperature-dependent

one-step theory sketched above. The validity of this approach has been demonstrated

in Ref. [10] with illustrative soft and hard x-ray calculations for Au (see Fig. 38) and

Pt, as well as by direct comparison to experimental soft x-ray data from W(110) (see

Fig. 39). As one can see in Fig. 38, the photoemission spectra for Au(111) for two

different photon energies of 1.0 and 6.4 keV, calculated using the AAM-based approach

correctly converge at high energy and/or photon energies to the so called XPS limit

in photoemission, in particular the development of matrix-element-weighted density-of-

states (MEW-DOS)-like features in the intensity distribution. Note that Au was chosen

as a typical transition metal with a low Debye temperature of ΘD = 165 K. The left

panel shows angle-resolved intensity distributions for an excitation energy of 1.0 keV
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Figure 38. Calculated photoemission spectra for Au(111) at two different excitation

energies as a function of temperature. Shown is the comparison between normal

emission angle-resolved data (AR-PES, red curves) and corresponding angle- integrated

calculations (AI-PES, blue curves). Left panel: Intensity distributions for an excitation

energy of 1.0 keV for three temperatures of 10, 100, and 300 K. Right panel: As the

left panel, but for an excitation energy of 6.4 keV and a selection of lower temperatures

of 10, 50, and 100 K [10].

for normal emission that are labeled AR-PES (red curves) in comparison to 2π angle-

integrated PES (AI-PES) intensities (blue curves) at 10, 100, and 300 K. The AI-PES

curves are expected to represent very closely the XPS-limit or MEW-DOS results, even

at zero temperature, and thus to be only weakly dependent on temperature. While

the normal emission AR-PES spectral distribution strongly deviate from AI-PES as

a function of binding energy at low temperature, for higher temperatures, the overall

shape of the angle-resolved spectra significantly changes approaching the shape of the

angle integrated spectra, and showing only small deviations in their intensity profiles.

As discussed in Ref. [10], in the case of AI-PES, only phonon-assisted transitions take

place producing small temperature-dependent changes in the matrix elements. On the

other hand, in the angle-resolved case the temperature-dependent matrix elements are

responsible for a decrease of the angle-resolved intensity profiles due to a redistribution

of spectral weight. This mechanism, associated with a Debye-Waller-like suppression of

the direct part of the photocurrent is primarily responsible for the so called XPS limit

in ARPES, which clearly shows up in the left panel of Fig. 38 for 1 keV photon energy

at 300 K. The right panel of Fig. 38 shows intensity distributions with an excitation

energy of 6.4 keV, demonstrating more dramatic effects at lower temperature, with the

XPS limit being reached already at 100 K. Note that a similar behavior was observed,

for example, in HAXPES measurements on W(110) and GaAs(100) [129].
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Similar trends were demonstrated also for Pt PES. However, the Debye temperature

or Pt is much higher than for Au leading to higher Debye-Waller factors than for Au

and thus to a preservation of the dispersing features in the spectra.

Fig. 39 shows a direct comparison of the calculated results with experimental

data obtained for W(110) with soft x-ray excitation at 870 eV [130] for four different

sample temperatures: (a) 300, (b) 470, (c) 607, and (d) 780 K. Experimental results

shown in Fig. 39(i) demonstrate dispersive features for all four temperatures, which

have a significant smearing as the temperature is raised. Fig. 39(ii) presents fully

relativistic one-step calculations accounting for thermal lattice vibrations, whereas Fig.

39(iii) shows conventional one-step calculations in which phonon excitations are more

simply considered through a temperature-dependent single-site scattering matrix [131].

Although at the lowest temperature of 300 K, the two different theoretical approaches

yield very similar results, as expected for a Debye-Waller factor of 0.70, the temperature

dependence of the experimental data is much better described within the temperature-

dependent one-step calculations accounting for thermally induced atomic displacements

explicitly. The simpler calculation based on the single-site scattering matrix predicts

neither the smearing of the dispersing features nor the growth of MEW-DOS features for

higher binding energies, but shows instead only the expected decrease of direct transition

intensities.

9.1.2. Effect of spin fluctuations in the photoemission spectra of Fe(001) at finite

temperature Most theoretical investigations of the photoemission for magnetic systems

are based only on the ground-state electronic structure considering either the systems

at T = 0 K or at temperatures above the critical temperature TC treating them as

non-magnetic (i.e. as Pauli paramagnetic) systems. A generalized spin-density matrix

formalism for the photo current was worked out to include thermal spin fluctuations

and lattice vibrations on the same level of accuracy making use of the AAM theory. As

a consequence, the one-step theory of photoemission accounting for thermal effects can

go beyond the FM and PM states, demonstrating that ARPES can distinguish between

the different models describing finite-temperature spin correlations, such as the Stoner

and Heisenberg models [85].

Fig. 40 represents theoretical LSDA-based spin-resolved photoemission data (left)

in comparison with experiment (right), for two different temperatures, T = 300 and

900 K. Furthermore, theoretical results for 0 K are shown on the top panel as a reference

obtained by using the standard one-step model of photoemission scheme. All spectra

have been calculated for normal emission geometry assuming s-polarized light with 60

eV photon energy.

The spin-resolved spectra reveal three main transitions with bulk states as initial

states: a minority peak close to the Fermi level and a majority peak at −2.4 eV binding

energy, with the initial states having both t2g symmetry. The initial state associated

with majority peak at −0.9 eV binding energy has eg symmetry. More details of the

photo emission at T = 0 K are discussed in Ref. [85]. Obviously, one can see a reasonably
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Figure 39. (i) Plots of measured intensity versus angle of emission for 870 eV

excitation from the valence bands of W(110) approximately along the Γ−N direction

for four temperatures of (a) 300, (b) 470, (c) 607, and (d) 870 K (from Ref. [132]), where

90 deg corresponds to normal emission. (ii) Corresponding intensity distributions

calculated from temperature-dependent one-step theory based on the CPA formulation.

(iii) Conventional ARPES calculations of the direct contribution IDT (E, k⃗) by use of

complex scattering phase shifts and the Debye-Waller model (from Ref. [132]) [10].

good agreement with the experimental spectra. At T = 900 K the magnetization of Fe

is decreased to roughly about 60% of the value at T = 300 K. At high temperature

the eg states are shifted towards the Fermi level. The exchange splitting of the t2g
states is reduced, but it still remains very high. In particular, not only a reduction of

the exchange splitting is observed, but also an increase of the minority peak intensity

at −2.5 and −0.9 eV is found, in accordance with the experimental findings. This

results from an increasing contribution from the majority-spin states in line with the

discussion in Sec. 4. The overall reduction in the minority-spin intensities at finite
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Figure 40. Comparison between experimental (right panels) and theoretical LSDA-

based spectra (left panels, dashed lines) and LSDA+DMFT based spectra (left panels,

solid lines) for temperature-dependent spin-resolved photoemission at Ephot = 60 eV

and normal emission [85].

temperature is also a result of the varying contribution of the different spin channels to

the spin-mixed electronic states. In the calculations we can turn the lattice vibrations

or spin fluctuations separately on and off. The main broadening effect in the spectra

results from the spin fluctuations, while lattice vibrations have a minor effect on the

spin polarization. However, as shown in the case of soft- and hard-x-ray photoemission

[10], lattice vibrations will become more noticeable at higher photon energies.

The formalism presented in this paper allows us to model quantitatively and

to predict in detail all possible differences in the finite-temperature ARPES spectra

accounting for thermal effects using Heisenberg and Stoner models. In the left panels of

Fig. 41 are summarized spin-resolved spectra for the Heisenberg model as calculated by

making use of the AAM for T = 300 and 900 K. In the right panel, calculated spectra

are shown for a modified exchange field B(r⃗) = αB(r⃗), where α is a scaling factor

which has been chosen in such a way that the local magnetic moment of Fe follows the

experimental magnetization curve. One can see significant differences between the two

models. Within the Heisenberg model the minority-spin channel develops a second peak

at higher binding energy, in this way reflecting the shadow bands and band-mirroring

picture. However, the Stoner model leads to a shift in the minority spin states towards

higher binding energies.

Finally, as shown in Fig. 42, the results above TC , based on the Heisenberg model,

still leads to a nonzero spin polarization in the spin-resolved ARPES spectra due to

the photoemission process. On the other hand, the Stoner model leads to zero spin

polarization above TC and the main intensity is found at a binding energy of about 1 eV.

As a consequence, one may state that these explicit spectroscopic calculations provide
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Figure 41. Calculated spin-resolved ARPES spectra for Ephot = 60 eV and normal

geometry. The results in the top panel are calculated spectra for T = 0 K. Bottom

left panels: calculated LSDA results based on the AAM (Heisenberg model). Bottom

right panels: calculated LSDA results applying a modified exchange splitting (Stoner

model) [85].
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Figure 42. Left panels: Comparison of spin-resolved ARPES intensities between

Stoner- and Heisenberg-like models calculated at T = 1100 K close to the ferro-to-

paramagnetic transition. Right panel: Corresponding spin difference Imaj − Imin [85].

an adequate tool to distinguish between the various physical mechanisms involved.
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Figure 43. Top: DFT calculations of the O K-edge XAS of bulk MgO at four different

temperatures modeled with a finite set of thermal displacements in the framework of

the AAM (solid lines). With increasing temperature, the calculation shows an overall

intensity suppression of the fine structures. There are well defined energy regions where

the XAS at elevated temperature has lower or higher energy than the spectrum at lower

temperature, indicated by the arrows. Additionally, spectra generated from the 300 K

spectrum using the model discussed in Ref. [133], are shown by dotted lines. Bottom:

Comparison of the experimental pump-induced signal (pump fluence 25 mJ/cm2) with

the relative difference of the calculated XAS at 300 and 750 K. For this comparison

relative changes after subtraction of a base line are considered [133].

9.2. Effect of lattice vibrations on XAS

The effect of thermal lattice vibrations on transient near-edge x-ray absorption spectra

is discussed in Ref. [133]. This work represents the results on time-dependent changes

in soft near-edge x-ray absorption spectra (XAS) of an [Fe/MgO]8 metal/insulator

heterostructure after laser excitation. The oxygen K-edge absorption of the insulator

features a uniform intensity decrease of the fine structure at elevated temperature. The

ab initio calculations demonstrate that the transient intensity changes in XAS can be

assigned to a transient lattice temperature.

Fig. 43 shows the results of KKR-based DFT calculations of the oxygen K-edge XAS

of bulk MgO for different lattice temperatures, which have been obtained making use

of the alloy analogy model. The DFT approach applies to larger timescales beyond 20
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ps, for which the phonon systems of the individual layers and the entire heterostructure

have equilibrated, making a quasi-static description by a common lattice temperature

feasible. On these timescales, the lower energy acoustic phonon modes play a dominant

role. The calculation shows that with increasing temperature, there is essentially no

shifting of the spectral feature at the O K-edge but that the overall fine structures are

suppressed in their intensity, in line with experimental results (see Fig. 43). Moreover,

the calculation demonstrates that there are indeed defined regions where the XAS at

elevated temperature has lower or higher intensity than the spectra at lower temperature,

thus supporting others results discussed in Ref. [133]. Consequently, one can relate the

magnitude of the intensity suppression to an induced lattice temperature change.
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