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Abstract

Accounting for a finite temperature within first-principles electronic structure calculations
for a solid allows to investigate the temperature dependence of its properties. These concern
the equilibrium properties, as for instance the magnetization and magnetic anisotropy in
magnetic materials, as well as the nonequilibrium, e.g. transport or spectroscopic, proper-
ties. Usually, the temperature regime of interest may reach up to several thousands Kelvin.
At least for metals only a relatively weak re-population of the electronic states occurs in
the vicinity of the Fermi energy for this temperature regime leading usually to a negligible
impact on their physical properties. Much more pronounced temperature induced changes
of the properties may be associated with different types of thermally induced excitations,
as for example lattice vibrations and spin fluctuations. In magnetic materials in particular
transverse spin fluctuations can be easily excited already at room temperature with a strong
impact on their magnetic properties. In the present review we describe an approach, which
allows to account for the impact of thermally induced spin and lattice excitations on the
electronic structure and related properties making use of the so-called alloy analogy. The
KKR (Korringa-Kohn-Rostoker) Green function method is a very convenient tool for corre-
sponding electronic structure calculations, as it is a well established scheme to investigate
disordered alloys by making use of the single-site Coherent Potential Approximation (CPA)
alloy theory. As the dynamics of phonons and magnons is much slower compared to the
electronic propagation the corresponding thermal displacements and spin fluctuations give
rise to a quasi static disorder in the system. The corresponding thermal average can there-
fore be treated as the chemical disorder in an alloy. Neglecting the correlation between the
thermal displacements and spin fluctuations of neighboring atoms, as it is well justified for
not too low temperatures, allows to treat them within the mean-field approximation and in
particular to use the CPA for the necessary thermal averaging. This approach, developed by
the authors and called alloy analogy model (AAM), has been applied during the last years to
deal with the temperature dependence of a large variety of properties. The great success and
applicability of this rather simple and efficient approach is demonstrated by results obtained

for various magnetic, response as well as spectroscopic properties.
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Abstract. Accounting for a finite temperature within first-principles electronic
structure calculations for a solid allows to investigate the temperature dependence
of its properties. These concerns the equilibrium properties, as for instance the
magnetization and magnetic anisotropy in magnetic materials, as well as the non-
equilibrium, e.g. transport or spectroscopic, properties. Usually, the temperature
regime of interest may reach up to several thousands Kelvin. At least for metals
only a relatively weak re-population of the electronic states occurs in the vicinity of
the Fermi energy for this temperature regime leading usually to a negligible impact on
their physical properties. Much more pronounced temperature induced changes of the
properties may be associated with different types of thermally induced excitations, as
for example lattice vibrations and spin fluctuations. In magnetic materials in particular
transverse spin fluctuations can be easily excited already at room temperature with
a strong impact on their magnetic properties. In the present review we describe an
approach, which allows to account for the impact of thermally induced spin and lattice
excitations on the electronic structure and related properties making use of the so-
called alloy analogy. The KKR (Korringa-Kohn-Rostoker) Green function method
is a very convenient tool for corresponding electronic structure calculations, as it
is a well established scheme to investigate disordered alloys by making use of the
single-site Coherent Potential Approximation (CPA) alloy theory. As the dynamics
of phonons and magnons is much slower compared to the electronic propagation the
corresponding thermal displacements and spin fluctuations give rise to a quasi static
disorder in the system. The corresponding thermal average can therefore be treated
as the chemical disorder in an alloy. Neglecting the correlation between the thermal
displacements and spin fluctuations of neighboring atoms, as it is well justified for
not too low temperatures, allows to treat them within the mean-field approximation
and in particular to use the CPA for the necessary thermal averaging. This approach,
developed by the authors and called alloy analogy model (AAM), has been applied
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during the last years to deal with the temperature dependence of a large variety of
properties. The great success and applicability of this rather simple and efficient
approach is demonstrated by results obtained for various magnetic, response as well
as spectroscopic properties.

1. Introduction

A finite temperature may have a crucial influence on the electronic structure of a solid
and as a consequence on its various properties. Accordingly, it is of great interest
to describe the modification of the electronic structure by a finite temperature while
staying within the framework of density-functional theory. The most common thermal
effect for a solid is represented by the temperature-dependent Fermi-Dirac distribution
function characterizing the population of the electronic states. Accounting for this
in a self-consistent way when calculating the electron spin and charge densities, one
should in principle obtain the temperature induced change of the electronic states and
corresponding changes of the physical and chemical properties of a material. This effect
can be crucial for the thermodynamics of solids, in particular for their phase stability;
but substantial changes of the electronic structure are normally observed only at very
high temperatures (see, e.g. Ref. [1]). As for moderate temperatures only small changes
of the Fermi-Dirac distribution occur in a narrow region around the Fermi energy its
impact can normally be ignored when considering transport and optical properties of
metallic systems for temperatures up to ~ 1 — 2000 K. For that reason we ignore here
the impact of changes of the Fermi-Dirac distribution with temperature i.e. of a finite
electronic temperature.

Another important source for changes of the electronic structure with temperature
are temperature induced lattice and spin excitations, i.e. phonons and magnons. A
way to take this mechanism into account is to perform as a first step first-principles
calculations for the phonon and magnon eigen states and energies w(q). In the
case of magnetic systems, corresponding results can already be used to obtain the
temperature dependent magnetization in the low-temperature limit by accounting for
the temperature dependent population of the magnon states [2, 3]. Dealing in addition
explicitly with the coupling of the electron with the phonons or magnons, respectively,
allows to determine the resulting renormalization of the electronic structure. This can
be represented by the spectral function A(l;, E)[4,5,6,7,8]

. 1 1SS (k, E)|

AR E)= — - . S S (1)
T [E — Eo(k) — RX(k, E)]? + [SX(k, E)]?

where Ey(k) stands for the non-distorted band dispersion and X(k, E) is a complex
self-energy. For phonons the self-energy contains full information about the electron-
phonon interaction [9] and is calculated making use of the electron-phonon spectral
function a?F(w) (see, e.g. Ref. [10, 11, 12]). In the case of magnetic systems, the
electron-magnon self-energy has to be determined in a corresponding way [13, 14].
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The temperature dependence of the self-energy is determined by the population of the
respective boson, i.e., phonon or magnon, states raising with temperature and leading
to a corresponding temperature dependent modification of the electronic structure
expressed by Eq. (1) [4, 6, 15]. The resulting renormalization of the electronic
band structure can be monitored by angular resolved photoemission that shows in
particular the so-called phonon kink [16]. In pure and ordered metallic systems at
room temperature, the electron-phonon scattering is the dominant mechanism giving
rise to the electrical resistivity [17, 4]. As the self energy determines the relaxation
time 771 (k, T) = %’TSZ(E, T) that represents the electron-phonon scattering within the
Boltzmann theory of electronic transport, it can be used to calculate the transport
properties as electrical or thermal resistivity [4, 18, 19, 20].

Calculating X-ray absorption spectra another simpler concept taken over from
X-ray diffraction is widely used to account for finite temperatures. In this case
lattice vibrations are represented by the Debye-Waller (DW) factor, which simulates
the observed temperature induced damping of the absorption signal by the weighting
factor e W) with W(T) ~ 2k?u*(T) where k and u?(T) are the wave number
and mean square displacement, respectively [21]. A more sophisticated approach
was used for example in a many-body description of X-ray photoelectron diffraction
(XPD) accounting for the Debye-Waller and Franck-Condon factors in XPD spectra
at finite temperature [22|, as well as for the impact of displaced core wave functions
[23]. The treatment of temperature induced lattice vibrations in terms of uncorrelated
displacements of the atoms was used also to describe the temperature dependence of
transport properties [3]. The positions for the displaced atoms at finite temperature were
obtained in a first step via ab-initio molecular dynamics calculations. The resistivity was
subsequently calculated using the Landauer-Biittiker formalism. The results obtained
this way for non-magnetic systems showed good agreement with that obtained in an
alternative way Ref. [18]. A similar approach was used by the authors to account for
temperature induced spin fluctuations in magnetic materials, which also led to good
agreement with experiment. In fact, this approach is rather close to the alloy analogy
model (AAM) discussed below.

Obviously, we do not give a comprehensive overview of all approaches to account
for finite temperature effects when dealing with the electronic structure of solids and
their related properties. As this is an important issue, one can find in the literature
a large variety of works on a model and ab-initio level. Here we highlighted two ways
to account for thermal excitations treating them as quasi particles or as local thermal
perturbations. From a formal point of view, the first one is surly more satisfying than
the second one. Omne the other hand, the second one is computationally much less
demanding. More important, however, accounting for the finite electronic lifetime due
to thermally induced disorder via the AAM or similar approaches allows to describe the
temperature dependence of many electronic properties in a quantitative way. This will
be demonstrated by corresponding work published by the authors during the last 15
years.
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Finally, it should be mentioned that the alloy analogy concept was suggested many
years ago by Hubbard when studying the instability of the ferromagnetic state on the
basis of the model Hubbard Hamiltonian [24, 25]. In this approach the time average,
which arises because of the continuous rearrangement of the electron spin, is represented
by a configurational average that can be handled as for the alloy problem. For the
electrons having spin character o, the corresponding two types of sites are seen as
two different atoms A and B with the electron states in atoms €4 = 0 and ez = U,
respectively (with U the intra-atomic Coulomb repulsion parameter), depending on
whether the states are occupied or not by the electrons with the opposite spin —o.
Such a system could be seen as an effective alloy A;_,__B,_,, with n_, standing for
the average number of electrons per site with spin —o. While the coherent potential
approximation (CPA) alloy thepry was not used by Hubbard, it was applied later by
other authors, dealing with generalized Hubbard Hamiltonians and in particular with
real binary alloy systems [26, 27, 28|.

The idea to take over the techniques - in particular the CPA - to deal with the
configurational average in case of a disordered alloy to deal with fluctuating states on
the atomic sites can of course be applied as well to handle other types of disorder in a
system. This is demonstrated in this contribution for the temperature induced lattice
vibrations and spin fluctuations that can be seen as quasi-static when compared to the
dynamics of the electrons and give rise to temperature dependent disorder with respect
to the spin-dependent electronic potential.

2. Theory: electronic structure and properties of disordered alloys

2.1. FElectronic structure in terms of Bloch states and Green functions

The vast majority of ab-initio methods for calculating the electronic structure of solids
is based on the variational method for solving the Kohn-Sham equation, and rely on
translational symmetry. The latter property implies that the solutions of the Kohn-
Sham equations, 1/1].,;(7_"), obey the Bloch theorem and that the corresponding Bloch
states are eigen functions of the translation operator

Tt () = ¥R (7). @)

As a consequence, states characterized by different wave vectors k are orthogonal. This
simplifies the solution of the band structure problem essentially when using a variational
basis set of Bloch-like functions characterized by the same k vector to represent the wave
function ¢ z(7). This leads in particular to a secular equation with finite dimension for

each k-vector
|~ B 8 o =0 (3)

with the Hamiltonian and overlap matrices, H F and S E, referring to the basis functions
and E and « i the associated eigenvalues and -vectors, respectively. There is a large
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number of methods and corresponding computer codes available that are based on this
[29].

On the other hand, it is often very advantageous to represent the solution of
the Kohn-Sham equation in terms of the electronic Green’s function (GF), having
in particular a direct access to the density of states n(E) and electron density n(r),

respectively:
1
n(E)= — =3 Tr /d%(ﬁ(?? E) (4)
7T
1 Er
() = ——\STr/ dE G*(F.7. E) . (5)
m

where GT (7, 7', E) is the retarded single-particle Green function.

The use of the Green function offers many advantages when dealing with embedded
subsystems, response functions, spectroscopy, disorder or the many-body problem. To a
large extent this is due to the Dyson equation that allows to express the Green function
Gt (7, 7', E) of a complex system on the basis of that of a simpler reference system
(G (7,7, E)) and the arbitrary perturbing Hamiltonian H e (7) that connects the two
systems:

GH (7,7, E) = G (7.7, E) + /Q & G (7, 7", E)
Hoer ") GH(F", 7 E) . (6)

with € the region for which H,et(7) has to be accounted for. For a substitutional
impurity this would include the atomic cell of the impurity and the region of the
neighboring host atoms that are distorted by the impurity.

For practical use, the retarded single-particle Green function G*(7, 7', E) can be
determined via the so-called Lehmann spectral representation [30]

V(P YL

50 E— E g +ie’
jk

G, E) = (7)

that, however, needs the whole spectrum of the eigenvalue solutions for the underlying
electronic Hamiltonian making the scheme inefficient for applications.

2.2. Green function within multiple scattering theory

An alternative to this is offered by the multiple scattering theory-based KKR, (Korringa-
Kohn-Rostoker) formalism. The approach leads to the following expression for
Gt (r,7', F) [31, 32, 33, 34]

G (7, ZZA E)Tin (E)Zy (7, E) (8)
AN

— Omn Z Zy(r E) (7 B)O(ry, — 1)

+ JX (7, E)Z (7, E)YO(ry, — 1)

n
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given here in the most general fully relativistic formulation. Here 7,7’ refer to points
within atomic cells around sites R, Rn, respectively, with (IDX(F, E) = ®)(7,, E) =
&, (7 — R,, E) being a a spin-angular function centered at site K,. In BEq. (8), the
functions Z} and JY stand for the regular and irregular, respectively, solutions to
the single-site Dirac equation for site n with the associated single-site scattering t-
matrix t% ,,. The corresponding scattering path operator TKX; accounts for all scattering
events connecting the sites n and n’. For the spin-angular representation used here, the
combined quantum number A = (&, i) stands for the relativistic spin-orbit and magnetic
quantum numbers £ and p, respectively [35, 32, 33].

The matrix representation of scattering path operator with T/’;‘Xi = [;"”/] AA’ 1S given
in real space representation by a solution of the following equation of motion:

Inn/(E):ﬁn(E . _|_tn ZGOnk ( )’ (9)

k#n
For a finite system this equation is solved straightforwardly by a matrix inversion [36]:
(E)= [L(E) - GEB)] " . (10)

The inverse matrix 7~'(E) determines the so-called real-space KKR matrix M(E) =
[L(E)™" - QO(E)] The double underline indicates matrices with respect to the site
indices n and relativistic quantum numbers A. Thus, their dimension is determined by
the number of sites (N) in the system and the angular momentum cut-off /4.

Dealing with a three-dimensional periodic system, Eq. (10) can be solved exactly
by Fourier transformation, given by the expression [37, 38]

/ 1

E) = [ ((E) " = GO, B)| e Rufin), (11)

Qpz
with the (reciprocal space) structure constants matrix Qo(l;, E) being the Fourier
transformed of the real-space structure constants matrix G°(E).

As it was pointed out above, the GF G* (7, 7', E) gives access to most electronic
properties as indicated above for the electron density and the density of states (DOS).
For a more detailed representation of the electronic structure, the Bloch spectral function
AB(k, E) may be used that is defined via the Fourier transformed Green function
G (7,7, E) as follows [31]:

—

— 1 28 = —
AP(k,E) = ——%TrZeMRn-Rm)/d3rG+(f’+ R,, 7+ Ry, E) . (12)
m

2.3. Configurational averaging for random alloys via the CPA

As was pointed out by Faulkner [39], the KKR method is one of the few first-principles
methods which can be generalized to describe the electronic structure for ordered solids
as well as for disordered alloys without making use of the super cell technique. The Green
function formalism is particularly useful when dealing with the electronic structure of
disordered systems. By using the concept of the molecular field, Soven [40] introduced
the Coherent Potential Approximation (CPA) approach when dealing with disordered
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substitutional alloys. The central idea of the CPA is represented by Fig. 1. It introduces
a hypothetical effective CPA medium playing the role of a molecular field, which is
constructed such that it represents the configurational average for the alloy. In its

Figure 1. Basic idea of the CPA: the embedding of one of the components of an alloy
A,B;_, (with o = 2 and 25 = 1 — ) into the CPA medium should not change its
properties if the concentration-weighted average is taken.

standard formulation, the CPA makes use of the single-site approximation (see Fig. 1),
that implies that the occupation of neighboring sites is uncorrelated. Within the KKR
approach the CPA medium is determined by requiring that for a random substitutional
A,.B;_, alloy the embedding of an A- or B-atom into the CPA medium should on the
average lead to no additional scattering [34, 41]. This is expressed by the following
equation

ey + (1 —2) 78" = 7¢pa (13)

where the component-projected scattering path operators

" = [ty — (tepa) ' + (ICPA)A}_1

characterize the embedding of the alloy component « into the CPA medium according

(14)

to Eq. (6). These quantities together with the corresponding component-related wave
functions Z{(7, F') and Jg(7, E) give access to the component-specific Green function
Gr (7, 7', E) via Eq. (8) and with this to all component-specific properties of an alloy.
Corresponding results for the disordered ferromagnetic alloy fcc-NiggPdgo are shown
in Fig. 2. The left panel gives the spin-resolved band structure in terms of the Bloch
spectral function AUB(E, FE) that can be seen as the Fourier transform of the real space
Green function G} (7,7, E), while the middle and right panels give the spin-resolved
element-projected density of states n&(E) for o = Ni and Pd, respectively. Comparison
of AB(k, E) on the left panel with the dispersion relation Ejg(E) of fce-Ni clearly shows
the smearing-out of the energy bands for the alloy in particular in the regime of the d-
states, that implies a finite life time of the electronic states and reflects the fact that for
the disordered alloy the wave vector k is not a good quantum number. As a consequence
of the band smearing, the fine structure present in the DOS for pure Ni is washed out
for the case of Ni-projected DOS n)(E) for NiggPdgo. Furthermore, the width of the
AB(k, E) functions for each k point can be interpreted as a measure for the electronic
life time to be used in the calculation of the residual resistivity on the basis of the
Boltzmann formalism [43].



Investigating finite temperature effects by means of the AAM 8

T { T T T 2
——= 0
S 2]
i L < T 2
< °
i L ::_ J _4@
1 W ~ 1-6
] Pd g
A 05115225 05 1 15 2
wave vector k n'(E) (sts./eV) n'(E) (sts./eV)
2 T T T T T
0 L 0
—_ b 1-2 ~
> 2
v ] 142
()
. 4-6
. -8

A x 005115225005 1 15 2
wave vector k n'(E) (sts./eV) n'(E) (sts./eV)

Figure 2. Left: spin-resolved Bloch spectral function AB(k, E) of the disordered
ferromagnetic alloy fce-NiggPdg.o calculated on the basis of the CPA. Middle and
right column: corresponding spin-resolved partial density of states n&(E) for a = Ni
and Pd, respectively. The top and bottom row give results for spin up and down,
respectively. As a reference the dispersion relation Ej i:o Of pure Ni is superimposed as

a black line to AB(k, E) (left). In addition nN'(E) for pure ferromagnetic Ni (middle)

g

and of nP4(F) for pure paramagnetic Pd (right) are included in the figures as dashed
lines [42].

It is important to note that the concept of the CPA is not restricted to alloys but can
be applied to any type of disorder making use of the alloy analogy model [26, 27, 28, 44]
which will be discussed below.

2.4. Treatment of response quantities, vertex corrections

In the following special attention will be paid to the response quantities of materials, for
which any type of disorder plays a key role and should be properly taken into account.

A rather general basis for corresponding investigations is provided by Kubo’s linear
response formalism [45]. This gives access to the response shown by an observable
induced by the perturbation that are represented by the operators B and A, respectively.
In the case of A = j and B = J standing both for current density operators, one is led
to the Kubo equation [45] for the conductivity

(kpT)~! 00 o . )
Oy = V/O dA/o dt < Jujru(t+ihA) > e, (15)

consisting primarily of a current-current correlation function.
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For a practical application of the Kubo equation the electronic system is represented
by a single-particle density matrix. Imposing more and more restrictions one is led to the
sequence Kubo-Bastin [46], Kubo-Stfeda [47] and the Kubo-Greenwood [48] equation,
respectively. The most general Kubo-Bastin equation giving in particular access to the
full conductivity tensor ¢ is given by the following expression [46]

b [

~ dGT R N N .~ dGT
r= dEf(E)Tr<judd—]§E)jua(E—H>—jué(E—H>judd—ﬁ> (16)

—0o0

with v = (z,y, z) denoting Cartesian coordinates, f(E) the Fermi-Dirac distribution
function and G*(E) = (E — H +i6)~"! the retarded and advanced Green function
operators, and {2 denoting the volume of the unit cell. The simpler Kubo-Stieda
equation gives access to full conductivity tensor only in the athermal limit 7,, = 0
K, i.e. it accounts for the contribution of the electrons at the Fermi energy. The well
known Kubo-Greenwood equation

O = %rm@ﬁ@ﬁﬁ@ﬁ . (17)

gives only the the symmetric part of the electrical conductivity tensor. It should be
noted that for other response functions the Kubo-Bastin-like equation has to be used.
Dealing with a disordered alloy, the subscript ¢ in Eqs. 16 and 17 indicates an average
over all configurations for the distribution of the alloy components under the constrain
of their concentrations. Adopting a fully relativistic formulation for Eq. (8) [32, 33] one
gets in a natural way access to all spin-orbit induced properties as magnetoresistance
and anomalous Hall effect (AHE) [49, 50] given in the latter case by the anti-symmetric
part of o.

A scheme to account for the configurational average when calculating the
conductivity tensor for an alloy has been worked out by Butler [51] within the framework
of the KKR-CPA formalism. This leads in a natural way to two contributions to the

conductivity:
O = ol 4 o, (18)
with the site-diagonal and site-off-diagonal contributions, &7, and 7}, respectively [52]
o _ _ Am? Ty jor  7CPA00 yav _CPA,00 1
o-l”’ - 7Th3Q Z :L‘a r AlAQTAQA?, A3A4TA4A1 ( 9)
a  ApAg
Az Ay
L A e Jg, [(1 . e 20
O = — T30 Z Lalp LI Jp A, [( _XW> X] 2;,2421 AsAy 0 ( )
a,fB ﬁlvﬁi
3

where the quantities Jy%, are matrix elements of the p-component of the current density
operator ffor the alloy component «, and Jf\yf A, Stands for renormalized matrix elements
involving, in addition, the component projected scattering path operators 7¢. The
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quantity ya,a, represents a lattice sum over products of scattering path operators
AgA

3
Tdnr U0 with n # 0 and for that reason has four indices. This summation

can be performed by Fourier transformation leading to a Brillouin zone integral over
the product of two Fourier transformed scattering path operators TEIP,{*Z(k,E). The

additional factor [(1— x w) '|a;a, in Eq. (20) represents the so-called vertex corrections
AgAy

accounting for the difference between the exact configurational average <§'MSG+5},$G+)C
and the approximated value (j,SG*). (j,3G*)., that corresponds to the scattering-in
terms of the Boltzmann formalism. A corresponding scheme to calculate the resistivity
of disordered systems within the TB-LMTO-GF-CPA formalism that also accounts for
the vertex corrections has been developed by Turek et al. [53], while the spin-polarized
relativistic KKR (SPRKKR) based formulation is given in Refs. [54].

As an example of an application of this formalism to realistic materials, we represent
the residual resistivity p calculated for disordered alloy Cu;_,Zn,, obtained with (solid
line) and without (dashed line) vertex corrections. Fig. 3 represents p as a function of
concentration x, demonstrating a significant impact of vertex corrections for this alloy
system, leading to a strong modification of the resistivity.

: : : : ‘ :
15F o @ © CPA (no VC)!|
o T T, |G-©CPA(VO)
r /// \\o\ 4
’g\ 10 /,/d \\\
£ g Q
= / \
O / \\
@ / \
E g \
= 5+ / v
(oN ’ \\
// \
/ \
/ \
/ \
7 \
/ ‘\
/ ! ! ! !
% 0.2 0.4 0.6 0.8 1

Figure 3. Residual resistivity of random Cu;_,Zn, alloys, i.e. for T = 0 K. The
dashes line gives the CPA results neglecting vertex corrections, whereas the solid line
corresponds to the results accounting for them.

Concerning the AHE, one has to stress that the anomalous Hall conductivity (AHC)
is non-vanishing only for the systems with broken time-reversal symmetry. It general,
it can be splitted into the so-called intrinsic (related to the Berry curvature and fully
determined by the features of all occupied electronic states, i.e. Fermi sea) and extrinsic
contributions. The latter one arises due to any type of disorder in materials as a
consequence of SOC-driven asymmetric scattering of electrons (skew- and side-jump
scattering mechanism). It is accounted for via the vertex corrections and can be obtained
from the difference 0% = ¢\'° — ¢NVC, It should be noted that it is determined by the
electrons at the Fermi energy, whereas vertex corrections for the Fermi sea contribution
to the AHC vanish exactly, as it was demonstrated by Turek et al. [55].
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The impact of vertex corrections on the AHC for Fe,Pd;_, can be seen in Fig.
4 showing calculated results in comparison with experiment [56]. The circles show
theoretical results for the AHC accounting for vertex corrections while the triangles
show the results calculated without them. The difference between these quantities can
be attributed to the extrinsic contribution to the AHC.

2 T

| Fe Pd
X o 1-x
=)
3)
=)
=
o
9 |
z G-© present work (VC)
© A—A present work (no VC)
-2 =8 Exp. B

0 02 04 06 08

Figure 4. The AHC of Fe, Pd;_, for T' = 0 K. The circles show results including vertex
corrections and the triangles show results without vertex corrections. The squares show
experimental data from Ref. [56] for T = 4.2 K [54].

The KKR-CPA based implementation of the Kubo linear response formalism can
be transferred with minor modifications to deal with other response quantities. An
example for this is the Gilbert damping parameter o that can be expressed by a Kubo-
Greenwood-like equation [57]

TNy (v 70 e 710 (21)

T Lot -

Xpp =

with the g-factor 2(1 + fiors/ ftspin) I terms of the spin and orbital moments, figy, and
Lory, Tespectively, the total magnetic moment fiyor = fispin + Horbs Tagr = 25 (Tanr — Tar)
and with the energy argument Er omitted. The matrix elements in Eq. (21) are identical

to those occurring in the context of the exchange coupling [58]:
Ty = /d3r Z (T E) [BouBae(T)| ZX(F, E) , (22)

where [ is one of the standard Dirac matrices, 0, is a 4 x 4-Pauli matrix [35] and
Bye(r) = Byo(r)% is the spin-dependent part of the exchange-correlation potential set
up within local spin-density theory [58].

Similar to the electrical conductivity, the calculation of the Gilbert damping
parameter for disordered systems requires to perform a configurational average. As
an example, Fig. 5 represents the Gilbert damping parameter for the disordered alloy
Fe;_,V,, as a function of the concentration, calculated neglecting vertex corrections,
V€ (open symbols), and with vertex corrections taken into account, aVC (full symbols)

[59]. One can clearly see very pronounced changes of aV“ at low concentrations of V.
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In particular, one finds a transition from conductivity-like to resistivity-like behavior
of aV¢ when varying = from 0 to 1, reflecting the dominance of intra- and inter-band
transitions, respectively [60]. However, concentration-dependent changes of the Gilbert

VC "are much more pronounced. In particular,

damping neglecting vertex corrections, oY
it is found negative at small V concentrations, indicating non-physical results in this
regime. In terms of the Boltzmann transport formalism, this is a consequence of the
neglected scattering-in term [43] leading obviously to an incomplete description of the
energy transfer processes. At high V concentration, neglecting the scattering-in term
leads to an overestimation of the Gilbert damping, that may be discussed in analogy
to the spin-pumping-out mechanism in the interpretation of the Gilbert damping by

Tserkovnyak et al. [61].

3. Alloy-analogy model: theory

More or less all magnetic and response properties of materials depend on temperature.
Accordingly, it is of great importance to account for the impact of a finite temperature
within first-principles calculations in order to compare the results with experiment
and to find out the mechanisms responsible for the temperature dependence of the
considered properties. The finite temperature leads to a change in the occupation of
electronic states as well as for the electronic structure due to different types of thermal
excitations, as e.g. phonons and magnons. In general, experiments are performed in the
temperature regime kgT' << FF, leading to a weak re-population in the vicinity to the
Fermi energy and usually does not have a pronounced impact on physical properties - at
least for metallic systems. On the other hand, much more pronounced thermally induced
changes are associated with thermally induced phonons and magnons. This holds in
particular for the transport properties of metals. The calculation of the corresponding
conductivity tensor o, for finite temperature requires to account for different types of
thermal excitations, as mentioned before. As will be demonstrated below, they can be

40

I 1 1 1
0 0.1 0.2 0.3 0.4 0.5

concentration X

Figure 5. The Gilbert damping parameter for bee Feq—, V, (T' = 0 K) as a function
of the V concentration z. Full (open) symbols give results obtained with (without)
vertex corrections [59].
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accounted for in a relatively simple way due to the fact that the dynamics of phonons
and magnons is much slower compared to the electronic propagation. This allows to use
the adiabatic approximation in the calculations of the electronic structure and related
properties.

3.1. Treatment of thermal lattice displacement

A simple way to account for the impact of the thermal displacement of atoms from their
equilibrium positions, i.e. for thermal lattice vibrations, on the electronic structure is
to set up a representative displacement configuration for the atoms within an enlarged
unit cell (super cell technique). In this case one has to use either a very large super
cell or to take the average over a set of super cells. Alternatively, one may make use
of the alloy analogy for the averaging problem. This allows in particular to restrict to
the standard unit cell. Neglecting the correlation between the thermal displacements
of neighboring atoms they can be treated using the mean-field approximation, giving
access to the thermal average calculated by making use of the single-site CPA. This
basic idea is illustrated by Fig. 6. To make use of this scheme a discrete set of N,

+ o+

+ + + +
+ 4 ¥ A4 .L\T/l. PP FEF
+ 4% )P ) Deeee
+ oo TXX

Figure 6. Configurational averaging for thermal lattice displacements: the continuous
distribution P(Aﬁn(T)) for the atomic displacement vectors is replaced by a discrete
set of vectors AEU(T) occurring with the probability x,. The configurational average
for this discrete set of displacements is made using the CPA leading to a periodic
effective medium.

displacement vectors ARY(T) with probability 27 (v = 1,.., N,) is constructed for each
basis atom ¢ within the standard unit cell that is conform with the local symmetry and
the temperature dependent root mean square displacement ((u?)7)/? according to:

SO ARIT)E = (1) (23)

In general, the mean square displacement along the direction p (1 = x,y, 2) of the atom
1 can be either taken from experimental data or represented by an expression based on
phonon calculations [62]

3h [
2 —
<ui,u>T - 2MZ 0

(24)
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where A is the reduced Planck constant, kg is the Boltzmann constant and g; ,(w) is a

projected phonon density of states [62]. On the other hand, a rather good estimate for

the root mean square displacement can be obtained using Debye’s theory. In this case,

for systems with one atom per unit cell, Eq. (24) can be reduced to the expression:

2p 1307 [cp(@D/T) 1}
4 2M kB@ D

on/T 1 (25)

(u
with ®(©p/T') the Debye function and Op the Debye temperature [63]. Ignoring the zero
temperature term 1/4 (see, e.g. Ref. [64]) and assuming a frozen potential for the atoms,
the situation can be dealt with in full analogy to the treatment of disordered alloys on the
basis of the CPA. Using a homogeneous distortion of displacement directions Aég in Eq.
(23), the probability z, for a specific displacement v may normally be chosen as 1/N,,.
The Debye temperature ©p used in Eq. (25) can be either taken from experimental data
or calculated representing it in terms of the elastic constants [65]. In general the latter
approach should give more reliable results in the case of multi-component systems.

To simplify notation we restrict in the following to systems with one atom per unit
cell. The index ¢ numbering sites in the unit cell can therefore be dropped, while the
index n numbers the lattice sites.

Assuming a rigid displacement of the atomic potential in the spirit of the rigid
muffin-tin approximation [66, 67] the corresponding single-site t-matrix #°¢ = £" with
respect to the local frame of reference connected with the displaced atomic position
is unchanged. With respect to the global frame of reference connected with the
equilibrium atomic positions ﬁn, however, the corresponding t-matrix ¢ is given by
the transformation:

t=U(AR) £ U(AR)™" . (26)

The so-called U-transformation matrix U(S) is given in its non-relativistic form by

(66, 67] :
Upw(5) = 47 Y i Cpppn jir(|81k) Vi (3) (27)

I

Here L = (I, m) represents the non-relativistic angular momentum quantum numbers,
Ji(x) is a spherical Bessel function, Y7(7) a real spherical harmonics, Crp» a
corresponding Gaunt number and k = v/E is the electronic wave vector. The relativistic
version of the U-matrix is obtained by a standard Clebsch-Gordan transformation [35].
With Eq. (26), the various displacement vectors AR, (T) can be used to determine
the scattering properties of a corresponding pseudo-component of a pseudo alloy. Each of
the N, pseudo-components with |AR, (T)| = (u2)%p/ ? is characterized by a corresponding
U-matrix U, and accordingly with an individual t-matrix ¢,. As for a substitutional
alloy the site diagonal configurational average can be determined by solving the multi-
component CPA equations with all quantities expressed w.r.t. the global frame of
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reference:

Ny

Tcpa = Z%Iv (28)
v=1

_ _ -1

T, =[,)"" = (tepa) "+ (Tepa) ] (29)
1 B . —1

o= | @k |(tepa) ' = GEE)| (30)
Qpz Qpz

where the underline indicates matrices with respect to the combined index A. As it was
pointed out in the literature [59], the cutoff for the angular momentum expansion in
these expressions should be taken [ > [, +1 with [,,., the value used in the calculations
for the non-distorted lattice. In all calculations we have used N, = 14 with AR, pointing
along [£+1,0,0], [0,41,0], [0,0,+1] and [£1, £1, £1]. Increasing the set of directions for
the atomic displacements led only to minor changes of the final results.

The first CPA equation (28) represents the requirement that embedding of a
component v into the mean-field CPA medium should lead in the average to no additional
scattering. Eq. (29) gives the scattering path operator for the embedding of the
component v, while Eq. (30) gives the CPA scattering path operator in terms of a
Brillouin zone integral with G (E, E) the so-called KKR structure constants, and t-py
the single-site t-matrix of the CPA medium to be determined iteratively.

Having solved the CPA equations any linear response quantity of interest may
be calculated using Eq. (16) as for an ordinary substitutional alloy [68, 51]. This
implies that one also has to deal with the so-called vertex corrections [68, 51] that
take into account that one has to deal with a thermal configuration average of
the type (A,SGT A, SGH), that in general will differ from the simpler product
(A, SGH)e(A, SG)..

3.2. Treatment of thermal spin fluctuations

As for the disorder connected with thermal displacements the impact of disorder due
to thermal spin fluctuations may be accounted for by use of the super cell technique
[69]. Alternatively one may again use the alloy analogy and determine the necessary
configurational average by means of the CPA as indicated in Fig. 7. As for the
thermal displacements in a first step a set of representative orientation vectors é¢ (with
f=1,...,Ny) for the local magnetic moment is introduced (see below). Using the rigid
spin approximation the spin-dependent part By. of the exchange-correlation potential
does not change for the local frame of reference fixed to the magnetic moment when
the moment is oriented along an individual orientation vector é;. This implies that the
single-site t-matrix fj?c in the local frame is the same for all orientation vectors. With
respect to the common global frame that is used to deal with the multiple scattering
(see Eq. (30)) the t-matrix for a given orientation vector is determined by:

t=R(e) I R(e)™". (31)
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Figure 7. Configurational averaging for thermal spin fluctuations: the continuous
distribution P(é,) for the orientation of the magnetic moments is replaced by a discrete
set of orientation vectors é occurring with a probability zf. The configurational
average for this discrete set of orientations is made using the CPA leading to a periodic
effective medium.

Here the transformation from the local to the global frame of reference is expressed by
the rotation matrices R(¢é) that are determined by the vectors é or corresponding Euler
angles [35].

Again the configurational average for the pseudo-alloy can be obtained by setting
up and solving the CPA equations in analogy to Egs. (28) to (30).

3.8. Models of spin disorder

The central problem with the scheme described above is obviously to construct a realistic
and representative set of orientation vectors é; and probabilities z; for each temperature
T to be used in the subsequent calculation of the response quantity using the alloy
analogy model. A rather appealing approach is to calculate the exchange-coupling
parameters J;; of a system in an ab-initio way [70, 71, 58] and to use them in subsequent
Monte Carlo (MC) simulations. Fig. 8 (left) shows results for the temperature dependent
average reduced magnetic moment of corresponding simulations for bec-Fe obtained
for a periodic cell with 4096 atom sites. These results have been obtained using
the exchange coupling parameters calculated for the disordered-local-moment (DLM)
state, modeling the disordered magnetic state above T that gave the best agreement
with the experimental Curie temperature [72]. The MC calculations for Fe using a
classical Heisenberg Hamiltonian have been discussed in [73] in more detail. The full
line in Fig. 8 (left) gives the value for the reduced magnetic moment of the MC cell
Myc+(T) = (m,)r/mg projected on the z-axis, calculated for the last Monte Carlo
step (2 is the orientation of the total moment, i.e. (m)r|2; the saturated magnetic
moment at 7' = 0 K is my = |(m)r—o|). This scheme is called MC* in the following. In
spite of the rather large number of sites (4096) the curve is rather noisy in particular
when approaching the Curie temperature. Nevertheless, the spin configuration of the
last MC step was used as an input for subsequent SPRKKR-CPA calculations using
the orientation vectors é; with the probability x; = 1/N; with Ny = 4096. As Fig.
8 (left) shows, the temperature dependent reduced magnetic moment Myxraic+)(7)
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Figure 8. Averaged reduced magnetic moment M(T) = (m,)r/|{m)r—=o| of Fe

along the z-axis as a function of the temperature T. Left: results of Monte Carlo
simulations using scheme MC* (full squares) compared with results of subsequent KKR
calculations (open squares). Middle: results of Monte Carlo simulations using scheme
MC (full squares) compared with results using a mean-field fit with a constant Weiss
field parameter wyc(Te) (open diamonds) and a temperature dependent Weiss field
parameter wyic (1) (open squares). In addition experimental data (full circles) together
with a corresponding mean-field fit obtained for a temperature dependent Weiss field
parameter wexp(7'). Right: results of Monte Carlo simulations using scheme MC (full
squares) compared with results subsequent KKR calculations using the MC (triangles
up) and a corresponding DLM (triangle down) spin configuration, respectively [44].

deduced from the electronic structure calculations follows one-to-one the Monte Carlo
data Myc+(T'). This is a very important result that demonstrates that the CPA although
being a mean-field method and used here in its single-site formulation is nevertheless
capable to reproduce the results of MC simulations that go well beyond the mean-field
level.

Using the set of vectors é¢ of the MC* scheme also for calculations of the Gilbert
damping parameters « as a function of temperature, however, led to extremely noisy
and unreliable curves for «(T"). For that reason an average has been taken over many
MC steps (scheme MC) leading to a much smoother curve for Myc(7') as can be seen
for the reduced magnetic moment in Fig. 8 (middle). As this enlarged set of vectors é;
got too large to be used directly in subsequent SPRKKR-~CPA calculations, a scheme
was worked out to get a set of vectors é; and probabilities z; that is not too large but
nevertheless leads to smooth curves for M (T).

The first attempt was to use the Curie temperature TH to deduce a corresponding
temperature independent Weiss field parameter w(7¢) on the basis of the standard
mean-field relation:

3kgTc
m3

w(Tc) =

(32)

This leads to a reduced magnetic moment curve Myp(7') that shows by construction the
same Curie temperature as the MC simulations. For temperatures between 7" = 0 K and
Tc, however, the mean-field reduced magnetic moment My (7T) is well below the MC
curve (see Fig. 8 (middle) ). As an alternative to this simple approach we introduced
a temperature dependent Weiss field parameter w(7). This allows to describe the
temperature dependent magnetic properties using input data obtained beyond the mean-
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Figure 9. Overview of the different models to treat spin disorder together with
the notation used in the main text. Starting point is a temperature dependent
magnetization M (T') either (i) taken from experiment (M,,,(T)) or (ii) obtained from
a Monte Carlo simulation (Mo (T)) that uses exchange-coupling constants from an
first-principles electronic structure calculation. Three different models abbreviated as
MC, DLM and cone are then used to obtain a representative distribution of moments
(weights and directions {zf,€é¢(6,¢)}) that in turn reproduce M (7). On the right in
parenthesis the source is given (“MC” or “exp” data) upon which the calculation of
response quantities is based [44].

field approximation. At the same time the statistical average can be determined treating
the underlying model Hamiltonian in terms of the mean field theory. For this reason
the reduced magnetic moment M (7T'), being a solution of equation (see, e.g. Ref. [74])

M) 7 (33)

M(T) =L ( o

was fitted to that obtained from MC simulations My (T") with the Weiss field parameter
w(T) as a fitting parameter, such that
lim M(T) = Mye(T) , (34)
w—w(T)
with L(z) the Langevin function.
The corresponding temperature dependent probability x(é) for an atomic magnetic
moment to be oriented along é is proportional to exp(w(T)z-é/kgT) (see, e.g. Ref. [74]).

To calculate this value we used Ny and N, points for a regular grid for the spherical
angles 6 and ¢, respectively, corresponding to the vector éy:

sin(0y) exp(w(T)z - é5/ kT

- > psin(0p) exp[w(T)Z - ép /kpT] (35)

xf

Fig. 10 shows for three different temperatures the #-dependent behavior of x(é).
As one notes, the MF-fit to the MC-results perfectly reproduces these data for all
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Figure 10. Angular distribution P(f) of the atomic magnetic moment m obtained
from Monte Carlo simulations (MC) for the temperature 7' = 200, 400, and 800 K
compared with field mean-field (MF) data, z, (full line) obtained by fitting using a
temperature dependent Weiss field parameter w(T") (Eq. 33) [44].

temperatures. This applies of course not only for the angular resolved distribution of
the magnetic moments shown in Fig. 10 but also for the average reduced magnetic
moment recalculated using Eq. (33), shown in Fig. 8. Obviously, the MF-curve
Myraacy(T) obtained using the temperature dependent Weiss field parameter w(7)
perfectly reproduces the original Myc(7") curve. The great advantage of this fitting
procedure is that it allows to replace the MC data set with a large number N}WC of
orientation vectors é; (pointing in principle into any direction) with equal probability
xy = 1/N}C (for illustration: N'¢ = 10° MC steps have been used to calculate Myc(T)
for each T) by a much smaller data set with Ny = Ny N, (where Ny = 180 and N, = 18
has been used in all calculations presented here) with x; given by Eq. (35).

Accordingly, the reduced data set can straight forwardly be used for subsequent
electronic structure calculations. Fig. 8 (right) shows that the calculated temperature
dependent reduced magnetic moment Myxr-nmcnic)(1) agrees perfectly with the
reduced magnetic moment My (7)) given by the underlying MC simulations.

The DLM method has the appealing feature that it combines ab-initio calculations
and thermodynamics in a coherent way. Using a non-relativistic formulation, it
was shown that the corresponding averaging over all orientations of the individual
atomic reduced magnetic moments can be mapped onto a binary pseudo-alloy with
one pseudo-component having up- and downward orientation of the spin moment with
concentrations x4 and x|, respectively [75, 76]. For a fully relativistic formulation,
with spin-orbit coupling included, this simplification cannot be justified anymore and a
proper average has to be taken over all orientations [77]. As we do not perform DLM
calculations but use here only the DLM picture to represent MC data, this complication
is ignored in the following. Having the set of orientation vectors é; determined by MC
simulations the corresponding concentrations x4+ and x| can straight forwardly be fixed
for each temperature by the requirement:

Ny
1
N, ;éf =r2 +x(-2), (36)

with x4 + 2, = 1. Using this simple scheme electronic structure calculations have been
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performed for a binary alloy having collinear magnetization. The resulting reduced
magnetic moment Mgkr-prvoic)(T) is shown in Fig. 8 (right). As one notes, again
the original MC results are perfectly reproduced. This implies that when calculating
the projected reduced magnetic moment M, that is determined by the averaged Green
function (G) the transversal magnetization has hardly any impact.

Fig. 8 (middle) gives also experimental data for M (7") [78]. While the experimental
Curie-temperature 75" = 1044 K [78] is rather well reproduced by the MC simulations
THC = 1082 K one notes that the MC-curve Myc(T) is well below the experimental
curve. In particular, Myc(T) drops too fast with increasing 7' in the low temperature
regime and does not show the 7%2-behavior. The reason for this is that the MC
simulations do not properly account for the low-energy long-ranged spin wave excitations
responsible for the low-temperature magnetization variation. Performing ab-initio
calculations for the spin wave energies and using these data for the calculation of M (T")
much better agreement with experiment can indeed be obtained in the low-temperature
regime than with MC simulations [2].

As the fitting scheme sketched above needs only the temperature reduced magnetic
moment M (T') as input it can be applied not only to MC data but also to experimental
data. Fig. 8 shows that the mean field fit Mywp(exp) (1) again perfectly fits the
experimental reduced magnetic moment curve M, (7). Based on this good agreement
this corresponding data set {éy,x} has also been used for the calculation of response
tensors (see below).

An additional much simpler scheme to simulate the experimental My, (1) curve is
to assume the individual atomic moments to be distributed on a cone, i.e. with Ny =1
and N, >> 1 [79]. In this case the opening angle §(T") of the cone is chosen such to
reproduce M(T). In contrast to the standard DLM picture, this simple scheme allows
already to account for transversal components of the magnetization. Corresponding
results for response tensor calculations will be shown below.

Finally, it should be stressed here that the various spin configuration models
discussed above assume a rigid spin moment, i.e. its magnitude does not change with
temperature nor with orientation. In contrast to this Ruban et al. [80] use a longitudinal
spin fluctuation Hamiltonian with the corresponding parameters derived from ab-initio
calculations. As a consequence, subsequent Monte Carlo simulations based on this
Hamiltonian account in particular for longitudinal fluctuations of the spin moments.
A similar approach has been used by Drchal et al. [81, 82] leading to good agreement
with the results of Ruban et al. However, the scheme used in these calculations does
not supply in a straightforward manner the necessary input for temperature dependent
transport calculations. This is different from the work of Staunton et al. [83] who
performed self-consistent relativistic DLM calculations without the restriction to a
collinear spin configuration. This approach in particular accounts in a self-consistent
way for longitudinal spin fluctuations.



Investigating finite temperature effects by means of the AAM 21

3.4. Combined chemical and thermally induced disorder

The various types of disorder discussed above may be combined with each other as
well as with chemical i.e. substitutional disorder. In the most general case a pseudo-
component (vft) is characterized by its chemical atomic type ¢, the spin fluctuation f
and lattice displacement v. Using the rigid muffin-tin and rigid spin approximations,
the single-site t-matrix ¢° in the local frame is independent from the orientation vector
¢ and displacement vector A]:fv, and coincides with ¢, for the atomic type t. With
respect to the common global frame one has accordingly the t-matrix:

tore = U(AR,) R(ép) t, R(ép)'U(AR,) ™. (37)

With this the corresponding CPA equations are identical to Eqgs. (28) to (30) with the
index v replaced by the combined index (vft). The corresponding pseudo-concentration
Ty combines the concentration xy of the atomic type t with the probability for the
orientation vector é; and displacement vector AR,. In summary, the AAM approach
can be applied to calculate various temperature dependent properties both for ordered
and for disordered alloy systems. Below we present several examples, discussing the
role of different types of thermally induced excitations in non-magnetic and magnetic
materials.

4. Applications: Equilibrium electronic structure at finite temperature

First, we will discuss the impact of thermal lattice vibrations and spin fluctuations on
the ground state electronic structure of a solid, focusing on the temperature induced
modification of the density of states (DOS). Thermally induced lattice vibrations and
spin fluctuations lead to disorder that should have an impact on the electronic structure
in a similar way as chemical disorder in alloy systems. Using the alloy analogy model
described above, the corresponding Green function in multiple scattering representation
is given in terms of a configurational average of the scattering path operator T¢p, (see
Eqgs. (28)-(30)). This gives direct access to the temperature-dependent DOS n(E) by
modifying the expression in Eq. (4), accordingly:
n(E) = — %%Tr / (G* (7,7 E)) dr . (38)
Obviously, the same holds for the Bloch spectral function AB(E, E) given in Eq.
(12) that can be seen as a k-resolved DOS function. As an example for a rather
strong temperature-induced modification of the electronic structure caused by thermal
lattice vibrations, Fig. 11 shows the Bloch spectral function AE(E, E) of Ag calculated
for T = 100 (left) and 7" = 600K (right). The strong smearing of the electronic
energy bands for 7' = 600 K indicates a decrease of the life time of the electron states,
which is reflected by the width of the AE(]Z, E,T) functions changing as a function of
temperature.
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Figure 11. The BSF for Ag at T' = 100 (left) and 7" = 600 (right) K, respectively
[84].

In the second example, we consider the impact of thermal lattice vibrations and
spin fluctuations on the electronic structure of the ferromagnet bee Fe (see Ref. [85]).
For this, we show in Fig. 12 the spin projected DOS calculated for several temperatures,
represented w.r.t. two different frames of reference: the local one with the Z axis seen
as a quantization axis, and the global one fixed to the crystal lattice. One can see
in Fig. 12(b) that spin fluctuations dominate the temperature induced modification
of the electronic structure, especially for temperatures approaching T (see Fig. 13).
Therefore, we will focus mainly on the impact of thermal spin fluctuations on the
electronic structure in the following. The scattering path operator averaged over spin
fluctuations at a given temperature can be written as follows Topy = > 27, where 7; is
associated with the spin fluctuation with direction é¢, giving access to a corresponding
contribution ng,(E) to the DOS. The spin-projected DOS n{%(E) evaluated in the
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Figure 12. Total spin projected DOS for bee Fe in the local (a) and global (b) frames
of reference [85].
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Figure 13. The spin projected BSF AE(E, E) (global frame of reference) for bec Fe
at T =0 K (left), T = 800 K (middle) and T' = T¢ (right). The top and bottom panel
show the majority- and the minority-spin states, respectively.

local frame of reference with Z¢||é; is different for different spin channels in the case of
a non-zero local magnetic moment even in the paramagnetic (PM) (i.e. magnetically
disordered) state with (/) = 0. In this frame of reference the electronic states are
well characterized by the spin quantum number, in case of a weak spin-orbit interaction
(SOI) in the material. However, the average spin-projected DOS curves calculated in
the fixed global frame of reference for the PM state are equal for the two spin channels,
ie. (ny)(E) = (n_)(E). The indices '+ and '—’ imply here a spin orientation along
the global 2z direction and opposite to it, respectively. Due to the random orientation
of the atomic spin magnetic moments in the system, the (n4)(E) and (n_)(E) DOS
curves have contributions from the electronic states characterized by different quantum
numbers, implying a mixed-spin character of the electronic states (see also the spin
projected BSF AE’(I;, FE) in Fig. 13). Fig. 12 (a) represents the DOS for bee Fe calculated
for the PM state ((7h) = 0) in the local frame of reference (solid line), averaged over all
possible orientations of the magnetic moment. This result is compared with the DOS for
T = 0 K. One can see, first of all, a finite exchange splitting of the majority and minority
spin states at T" > Tz. The main temperature effect is a significant broadening of the
energy bands when compared to T" = 0 K. However, in the global frame of reference
the difference between the majority and minority-spin states decreases approaching the
critical temperature T = 1024 K and above. Above T, in the PM state, the difference
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between the spin-projected DOS curves disappeared. The same can also be seen for
the spin projected BSF shown in Fig. 13. However, the situation is different when
only thermal lattice vibrations are taken into account (dashed line in Fig. 12 (b) for
T = 1025 K). In this case only a weak broadening of the energy bands occurs, which is
much weaker when compared to that due to spin fluctuations.

5. Applications:Temperature dependent exchange coupling parameters

5.1. Theoretical background

The phenomenological Heisenberg Hamiltonian
Heyp = = Jy(éi-¢5) = Y Dijlés x & . (39)
ij ij

is a well established basis for the investigation of finite-temperature and dynamical
magnetic properties of materials. Compared to its standard form, the Hamiltonian
in Eq. (39) is extended to account relativistic effects, and includes apart from the
isotropic exchange coupling parameters J;; the Dzyaloshinskii-Moriya (DM) interaction
parameters ﬁij, connected with the spin moments on sites ¢ and 7, pointing along
the directions é; and é;, respectively. Very often these parameters are derived from
experimental data. Alternatively, they can be calculated on an ab-initio level. Adopting
for example the multiple scattering formalism and restricting to T = 0 K, the full
exchange coupling tensor can be obtained from the expression [71, 58]:

I = = 3-8 [ 4B T AV E)E) AV (E)(E). (40)
The DMI parameters are given by the antisymmetric part of the exchange coupling
tensor J;;'
its diagonal elements [71]. In Eq. (40) 7% is the scattering path operator connecting

, while the isotropic exchange parameters J;; are given by the average over

sites ¢ and 7 with the underline indicating matrices in the A = (k, u)-representation [35].
The corresponding on-site coupling for site ¢ is represented by the matrix AV, = T,
(58], with T}7, given by Eq. (22). For simplicity, below we consider only systems with
one atom per unit cell.

Considering finite temperature magnetic properties one has to account first of all for
the impact of thermally induced lattice vibrations and spin fluctuations on the electronic
structure. Its temperature dependent modification will have a corresponding impact on
the properties depending on it. As an example, we consider the temperature dependence
of the exchange parameters, that can be calculated making use of the AAM approach.
Focusing on the impact of thermal lattice vibrations and assuming a frozen potential
for the displaced atoms and neglecting correlations between the atomic displacements,
Egs. (28) to (30) allow to perform the necessary thermal configurational averaging when
dealing with Eq. (40) for finite temperatures. This way one gets for the temperature
dependent exchange coupling tensor:

. 1 i A rag i
J — Q—S/dE Tr(AV* TV AV T (41)

iJ T
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where (...). represents the configurational average with respect to the set of
displacements. Note that here the temperature dependent change of the electron
occupation function is not taken into account, as this is normally relevant for very
high temperatures (see Ref. [1]). Furthermore, as the expression in Eq. (41) refers
explicitly to a specific pair of sites, the vertex corrections have been ignored here; i.e.
the configuration average has been simplified to (AV® 79) (AVF? 77%),.

5.1.1. bec Fe As an example, we represent here corresponding results for the
temperature dependent exchange coupling parameters of bee Fe, determined by thermal
lattice vibrations. The isotropic exchange coupling parameters J;; calculated for the FM
reference state of Fe are plotted in Fig. 14 (a) for different amplitudes of thermal lattice
vibrations related to a corresponding lattice temperature Ty, according to the Debye
model. As one can see, there are indeed pronounced modifications of the exchange

212
Fe (bce) T (0> ] 25 Fe (bce) T (<u>" 7
) 0K lat
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Rij (units of lattice parameter) ( a) Rij (units of lattice parameter) (b)

Figure 14. The isotropic exchange coupling parameters J;; for bee Fe calculated for
the FM (a) and DLM (b) reference states. The results are represented for different
amplitudes of the thermal lattice vibrations given in terms of the rms displacement
(<u2>T)1/2 that can be related to a specific lattice temperature Ti.¢, for example via the
Debye model.

coupling parameters due to the lattice vibrations that depend strongly on the considered
pair of sites. By far the most significant changes are found for the nearest-neighbor
interaction parameters that decrease strongly with an increase of the amplitude of the
thermal displacements or the lattice temperature, respectively. This in turn should
have a corresponding impact on the Curie temperature T;. Within the mean-field
approximation (MFA), T¢ is essentially given by the sum _;J;; over the coupling
parameters allowing therefore in a simple way to monitor the dependence of T on
the effective lattice temperature Ti,, or, equivalently, on the temperature dependent

1/2

rms displacement ((u?)7)"/2. Fig. 15 (circles) shows corresponding results for T as a

function of ((u?)7)'/?

with a being the lattice parameter.

obtained by summing J;; within a sphere with radius Ry.x = 9a,



Investigating finite temperature effects by means of the AAM 26
T (K)
0 200 400 600 800 1000 1200
' ' ' 'm-m MF(DLM)
175 Fe (bce) 55 MF(DLM+vol.)T
@@ MF(FM) '

MC(DLM)

S _-"
= .~

N NS¢ .- _
2oL ME(FM) |
-7 I . I . I . I . I . I
O() 0.137 0219 0.281 0331 0376 0.424
<u2>l/2 (a.u.)

Figure 15. Theoretical Curie temperature T¢ for bee Fe plotted as a function of the
amplitudes of thermal lattice vibrations ((u?)7)/? calculated for the FM (circles) and
DLM reference states either using the MFA (squares) or MC simulations (diamonds)
together with the relation between the lattice temperature Tio, and ((u?)7)'/2. Open
squares represent the results on DLM-based mean-field T¢ calculated for lattice
parameter corresponding to experimental Curie temperature.

Keeping in mind that the mean field approximation (MFA) normally overestimates
the critical temperature when compared to results obtained from Monte Carlo (MC)
simulations or RPA (random phase approximation) based calculations, one notes that
the MFA result for T¢ of bee Fe, evaluated without accounting for the lattice vibrations,
is rather close to the experimental value, T¢; = 1043 K. However, a finite amplitude of
the lattice vibrations leads to a significant monotonous decrease of T3 with ((u?)7)'/?2
implying a corresponding deviation from experiment.

As mentioned above, more reliable results for the Curie temperature can be obtained
on the basis of the exchange coupling parameters calculated for the PM reference
state described here within the disordered local moment (DLM) approximation. The
significant difference of the electronic structure for the magnetically disordered state
compared to that for the FM state (see Fig. 12) leads to a corresponding difference for
the exchange coupling parameters. Figure 14 (b) gives the resulting exchange coupling
parameters for the DLM reference state of Fe. The MFA Curie temperature (= 1700 K)
exceeds the value obtained for the FM reference state in an appreciable way when
thermal lattice vibrations are ignored. This observation was already reported in the
literature before (see, e.g. [86]). However, a finite amplitude of the thermal atomic
displacements leads again to a lower MFA-based Curie temperature, as it is shown
in Fig. 15 (squares), reaching the value To™ =~ 1200 K when requiring that the Curie
temperature and lattice temperature coincide. In order to compare the impact of thermal
lattice vibrations on the exchange interactions with the impact of a thermal lattice
expansion, the DLM-based calculations have been performed also for bce Fe with the
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lattice parameter a = 5.48 a.u. as determined for the Curie temperature [87]. The
mean-field results for T obtained in this case show only a rather small increase when
compared to the case without account of the lattice expansion (open squares in Fig. 15).
This implies a dominating influence on J;; for thermal lattice vibrations when compared
to the impact of the thermal lattice expansion.

Fig. 15 gives also results for the Curie temperature obtained by MC simulations
considering 15 atomic shells around each atom using DLM-based exchange parameters
(diamonds). In this case, the Curie temperature T3¢, calculated for an unperturbed
lattice slightly overestimates the experimental value. When the amplitude of thermal
lattice vibrations increases, Tg© also goes down and coincides with the lattice
temperature Ti,, at around 1000 K underestimating slightly the experimental Curie
temperature this way. This small deviation might among others be ascribed to the
approximate treatment of lattice vibrations when calculating J;; that in particular
neglects correlations in the thermal motion of the atoms.

To get more insight concerning the impact of lattice vibrations on the temperature
dependence of the exchange coupling parameters, one can represent them in terms
of the spin-lattice coupling (SLC) parameters jldlag #oand T ?IZ;‘; Y characterizing
the corrections of ijiag caused by atomic displacements w). The temperature
dependent parameters (.J;;)r may be estimated by averaging over all lattice excitations
corresponding to a given temperature 7. This can be expressed as follows

(Ji; Dt Z TS ) + Y TSR (uhuf ) r + .. . (42)

kl,uv

As the average (uf)r of the linear term vanishes, the second-order SLC parameters give
rise to the lowest-order contribution to the temperature dependence of the exchange
parameters, leading to [88]

(Jiyr =T+ WP [Z?‘?f M Taaett 4 Jaabth| (43)

o

Note that (u?)R stands for the mean square displacement corresponding to a certain
temperature T is estimated via the Debye model used also when applying the AAM to
calculate the thermal average of the exchange parameters. The values for (J;;)r obtained
this way for bce Fe are compared in Fig. 16 with corresponding results calculated on
the basis of the alloy analogy model [89]. One can see that in this particular case the
contribution due to displacements of the interacting atoms are dominating, while in
general one might have to account also for contributions due to the displacements of all
surrounding atoms [ and k different from 7 and j.

6. Applications: Transport properties of metals at finite temperature

As we will show in this section, the AAM approach is a very useful tool to investigate
finite temperature behavior of various types of linear response functions. First we will
discuss transport properties, calculated using using Kubo’s linear response formalism by



Investigating finite temperature effects by means of the AAM 28

15F ' I ' I ' -
Fe (bcc) (FM)

> |
Q
E
N 1
v sk 400 K 1
O-Ousing SLC parameters
600
- m-a alloy analogy model 1
1 I 1 I 1
OO 0.1 0.2

<u> (a.u.)

Figure 16. The dependence of the nearest-neighbor exchange coupling parameters

(Jij)r of bee Fe on the root-mean-square thermal displacement /(u2)2 of the atoms.
Corresponding temperatures are attached to some data points. Open symbols represent
the results based on the SLC parameters using Eq. (43) while full squares correspond
to results obtained via the alloy-analogy model [89].

means of Eq. (17). We will consider separately non-magnetic and magnetic systems. In
the first case only thermal lattice vibrations give rise to temperature dependent changes
of the transport properties, e.g. the electrical resistivity, while in the latter case both
thermal lattice vibrations as well as spin fluctuations contribute to the temperature
dependence of their transport properties.

6.1. Temperature dependent conductivity of non-magnetic systems

6.1.1.  FElectrical conductivity of fcc Cu To give an impression on the impact of
thermally induced atomic displacements alone on the electrical resistivity, Fig. 17 shows
the temperature dependent resistivity p(7) for pure Cu (Openye = 315 K), that is found
in very good agreement with corresponding experimental data [90]. This implies that the
alloy analogy model that ignores any inelastic scattering events should in general lead to
rather reliable results for the resistivity induced by thermal displacements. Accordingly,
comparison with experiment should allow for magnetically ordered systems to find out
the most appropriate model for spin fluctuations.

The finite temperature [84] SHE and OHE have been investigated for elemental non-
magnetic 3d, 4d and 5d transition metals [84]. Again, this implies the impact of only
thermal lattice vibrations characterized by the lattice temperature T}, therefore we will
use everywhere in this section the term ’'temperature’ instead of ’lattice temperature’.
Fig. 18 shows the total (full circles) and extrinsic (open circles) OHC for some selected
transition metals, plotted as a function of temperature. Similar plots are shown also for
the total (full squares) and extrinsic (open squares) SHC.
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Figure 17. Temperature dependent longitudinal resistivity of fecc-Cu p(T") obtained
by accounting for thermal vibrations as described in section 3.1 compared with
corresponding experimental data [90]. In addition results are shown based on the
LOVA (lowest order variational approximation) to the Boltzmann formalism [18].

For all systems the intrinsic OHC and SHC are dominating in the low-temperature
limit, as the extrinsic contributions have to vanish for 7' approaching 0 K. For the
temperature window shown in Fig. 18, on the other hand, the extrinsic contributions
are almost unchanged. As it is concluded in Ref. [84] concerning the properties of the
OHC and SHC originating from thermal lattice vibrations: the contribution due to
skew scattering to the extrinsic OHC and SHC in pure metals is rather small, and the
extrinsic OHC and SHC are dominated by the side-jump scattering mechanism, which is
in line with theoretical predictions for the anomalous Hall effect, reported by Crépieux
and Bruno [91].

The results presented in Fig. 18 show substantial temperature-dependent changes
of the intrinsic OHC in pure transition metals, associated with corresponding changes
of the Fermi sea contribution. This can be attributed to the changes of the electronic
structure caused by thermal lattice vibrations leading first of all to a smearing of the
energy bands implying a decreasing lifetime for the electronic states. In contrast to the
OHC, a weak temperature-induced change can be seen for both the intrinsic and extrinsic
contributions to the SHC. To gain insight into to origin for this different behavior we
have performed calculations for the OHC and SHC as a function of the occupation of the
electron states, using Ag as a representative system as its OHC varies quite strongly with
temperature. In the calculations, the occupation is controlled by the upper energy limit
FEo.. which is equal to Er under normal condition. The calculations have been done for
two lattice temperatures, T'= 100 and 600 K. Fig. 19 shows the results for the total OHC
and SHC, which, however, are mainly determined by the intrinsic contributions, as it is
shown in Fig. 18. One can see in Fig. 19 (bottom) a minor difference between the results
for the SHC obtained for two different temperatures, that, however, is not the case for
the OHC (Fig. 19 top). The difference between the results for the OHC at 7' = 100 and
600 K increases with increasing occupation, i.e. F,.., of the d-states, and almost does
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Figure 18. OH and SH conductivities (full red circles and full blue squares,
respectively) for selected elemental 3d, 4d and 5d non-magnetic metals, calculated
accounting for thermal lattice vibrations and plotted as a function of temperature.
Empty symbols represent the extrinsic contributions to the OHC and SHC [84].

not change when F,.. goes beyond the top of the d-band. This occupation dependence,
in particular, may be responsible for a weaker temperature dependence of the OHC for
the early transition metals. The strong temperature-induced modification of the OHC
can be attributed to the impact of thermal lattice vibrations on the electronic structure
leading to a strong smearing of the energy bands, increasing with temperature. This can
be seen in Fig. 11 that gives the Bloch spectral function AB(E, E,T) for Ag, calculated
for T'= 100 (left) and 600K (right). Furthermore, it is crucial that the temperature-
induced lattice distortion breaks the local symmetry at each lattice site. When the origin
of the OHE is associated with the l;—dependent orbital texture controlled by symmetry
(92,93, 94, 95, 96], the OHC variation at finite temperature may stem from broken local
symmetry at every atomic position, leading to a modification of the orbital texture,
increasing with temperature (see also discussions in Ref. [95]). Interestingly, only minor
changes occur for the SHC, in conflict with the idea that the SOC-driven spin Hall
current density originates from the orbital Hall current density [92]. This indicates in
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particular a rather weak impact of the temperature-induced lattice distortions on the
SOC-driven spin texture within the Brillouin zone, in contrast to the SOC-independent
orbital texture.

6.1.2. Temperature effect in doped systems In the case of doped materials, the impact
of temperature induced lattice vibrations on the OHE and SHE is quite different
when compared to pure metals. Fig. 20 demonstrates this for the OHC (circles)
and SHC (squares) for Irgg9Rhgo1 (a) and IrgggAuge; (b), plotted as a function of
temperature, and compared with the results for pure Ir. The most pronounced difference
between the results for the doped and undoped systems occurs at low temperature.
This difference gradually vanishes in the high-temperature regime, when the OHC
and SHC for doped and undoped systems approach the values mainly given by their
intrinsic contributions. The strong temperature dependence of the OHC and SHC
for Irgg9Rhg o1 at low temperature (see Fig. 20 (a)) stems from the extrinsic skew-
scattering contributions arising due to chemical disorder, that quickly decrease with
raising temperatures. As Jg‘ﬁv/VSH o (V,)2/(V2)? at finite temperature the scattering
potential can be split into 'atomic’ and ’electron-phonon’ parts. While the nominator
(Vi) = (Va), as (Ve_pn) = 0 [91], the denominator accounts for both types of scattering
contributions, i.e. ((V, + V._,,)?), increasing with temperature due to an increasing
amplitude of the lattice vibrations.

As is discussed in Ref. [84], in the case of Irgg9Rhg o1, the large value of the skew
scattering conductivity at 7' = 0 K estimated by U?)I{I?IV/VSH o %Aid [91] with Ay ~ 0.2
eV, decreases at finite temperature due to electron-phonon scattering (with values up
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Figure 20. OH (circles) and SH (squares) conductivities for Irgg9Rhg o1 (a) and
Irg.99Aug.01 (b) plotted as a function of temperature. Full symbols represent total
values calculated accounting for vertex corrections, while open symbols show only the
extrinsic contribution to the OHC and SHC. Triangles represent the results on the
OHC and SHC for pure Ir.

to (V2,,)"/? ~ 0.1 eV) according to o8y o< (Va)®/((Va + Verpn(T))?)?. In the case of
Irg.g9Aug o1, however (see Fig. 20(b)), Ay >> V._,;, as Ay = 1.6 €V, leading to a weak
dependence on the temperature according to asokfl"/VSH x %fd(l — O((VZ_)/ (VD). At
high temperatures osg and ooy approach the intrinsic SHC and OHC, as it was seen

also for Iro_gtho.Ol.

6.1.3. Electrical conductivity of random alloys Fig. 21 represents the calculated results
for the electrical resistivity of the non-magnetic random alloy Nig33C0033Crg33 in
comparison with experiment, for which a detailed discussion is given in Ref. [97]. As
the Nig 33C00.33Crg.33 alloy is nonmagnetic, the temperature dependence of the resistivity
is determined by lattice vibrations only. As seen in Fig. 21 a rather good agreement
with experiment is achieved also in the case when chemical and thermal disorder are
present at the same time. It should be noted that the calculations assume an undistorted
lattice. Corrections to this simplification may indeed increase the resistivity remarkably
(for further discussions see Ref. [98]).

7. Applications: Temperature dependent conductivity for magnetic systems

7.1. 3d transition metals

Fig. 22 (a) shows theoretical results for p(7) of bce-Fe due to thermal displacements
pu(T), spin fluctuations described by the scheme MC pycaic)(T) as well as the
combination of the two influences (pymcouc)(T)). First of all one notes that p,(T) is
not influenced within the adopted model by the Curie temperature T but is determined
only by the Debye temperature. The resistivity pyvicoac)(7'), on the other hand, reaches
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Figure 21. Electrical resistivity of the non-magnetic alloy Nig 33Co0q.33Crg.33: theory
vs experiment. Calculated results are shown by red circles, while cyan triangles
represent experimental data [97].
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Figure 22. Temperature dependent longitudinal resistivity of bee-Fe p(T') obtained
by accounted for thermal vibrations and spin fluctuations as described in section 3.1.
(a) Accounting for vibrations (vib, diamonds), spin fluctuations using scheme MC
(fluct, squares) and both (vib+fluct, circles). Dashed line represents the sum of the
resistivities contributed by lattice vibrations or spin fluctuations only. (b) Accounting
for spin fluctuations é; = é(0y, ¢¢) using the schemes (see Fig. 9): MC(MC) (squares),
DLM(MC) (triangles up), and cone(MC) (triangles down). The full and open symbols
represent the results obtained with the vertex corrections included (VC) and excluded
(NVCQ), respectively.

saturation for T as the spin disorder does not increase anymore with increasing
temperature in the paramagnetic regime. Fig. 22 also shows that p,(T") and panicaic) (1)
are comparable for low temperatures but pyvicac)(T) exceeds py (1) more and more
for higher temperatures. Most interestingly, however, the resistivity for the combined
influence of thermal displacements and spin fluctuations p, mcauc) (T') does not coincide
with the sum of p,(7") and pncoacy(77) but exceeds the sum for low temperatures and
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lies below the sum when approaching 7¢.

Fig. 22 (b) shows the results of three different calculations including the effect of spin
fluctuations as a function of the temperature. The curve pycc)(7) is identical with
that given in Fig. 22 (a) based on Monte Carlo simulations. The curves pprvaic) (1)
and peone(vc) (1) are based on a DLM- and cone-like representation of the MC-results,
respectively. For all three cases results are given including as well as ignoring the vertex
corrections. As one notes, the vertex corrections play a negligible role for all three spin
disorder models. This is fully in line with the experience for the longitudinal resistivity
of disordered transition metal alloys: as long as the the states at the Fermi level have
dominantly d-character the vertex corrections can be neglected in general. On the other
hand, if the sp-character dominates inclusion of vertex corrections may alter the result
in the order of 10 % [99, 53].

Comparing the DLM-result ppravovc)(77) with paere)(17) one notes in contrast to
the results for M(T") shown above (see Fig. 8 (right)) quite an appreciable deviation.
This implies that the restricted collinear representation of the spin configuration implied
by the DLM-model introduces errors for the configurational average that seem in general
to be unacceptable. For the Curie temperature and beyond in the paramagnetic regime
poLvic) (1) and pyvic(T') coincide, as it was shown formally before [100].

Comparing finally peonenvicy(1”) based on the conical representation of the MC
spin configuration with puvcmacy(7) one notes that also this simplification leads to
quite strong deviations from the more reliable result. Nevertheless, one notes that
porvoic) (1) agrees with pycoucy(T) for the Curie temperature and also accounts to
some extent for the impact of the transversal components of the magnetization.

The theoretical results for bee-Fe (Opepye = 420 K) based on the combined inclusion
of the effects of thermal displacements and spin fluctuations using the MC scheme
(pvmconic)(T')) are compared in Fig. 23 (top) with experimental data (pexp(7")). For the
Curie temperature obviously a very good agreement with experiment is found while for
lower temperatures p, vcoic) (1) exceeds pexp(T'). This behavior correlates well with
that of the temperature dependent reduced magnetic moment M (7') shown in Fig. 8
(middle). The too rapid decrease of Myc(T) compared with experiment implies an
essentially overestimated spin disorder at any temperature leading in turn to a too large
resistivity py mcoac)(T). On the other hand, using the temperature dependence of the
experimental reduced magnetic moment Mey,(7") to set up the temperature dependent
spin configuration as described above a very satisfying agreement of py nic(expt) (1) is
found with the experimental resistivity data pe,(7"). Note also that above T the
calculated resistivity reaches saturation in contrast to the experimental data where the
continuing increase of pey,(7') can be attributed to the longitudinal spin fluctuations
leading to a temperature dependent distribution of local magnetic moments on Fe atoms
[80]. However, this contribution was not accounted for because of the restriction in
present calculations using a fixed value for the local reduced magnetic moments.

Fig. 23 (right) shows corresponding results for the temperature dependent resistivity
of fce-Ni (Opepye = 375 K). For the ferromagnetic (FM) regime the theoretical results are
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Figure 23. Left: Temperature dependent longitudinal resistivity of bce-Fe p(T)
obtained by accounted for thermal vibrations and spin fluctuations using the
scheme MC (vib+fluct(MC(MC)), squares) and a mean-field fit to the experimental
temperature magnetic moment Mey, (vib+fluct(MC(exp)), diamonds) compared with
experimental data (circles) [90]. Right: corresponding results for fce-Ni. In addition
results are shown accounting for thermal displacements (vib) only for the ferromagnetic
(FM) as well paramagnetic (PM) regime. The dashed line represents the sum of the
resistivity contributed by lattice vibrations or spin fluctuations only. Experimental
data have been taken from Ref. [101].

comparable in magnitude when only thermal displacements (p,(7")) or spin fluctuations
(pMc(expt) (1)) are accounted for. In the later case the mean field w(7") has been
fitted to the experimental M (T)-curve. Taking both into account leads to a resistivity
(pvMc(expt) (17)) that is well above the sum of the individual terms p, (7") and paic(expt) (1)-
Comparing pymc(expt) (1) with experimental data Pexp(T) our finding shows that the
theoretical results overshoots the experimental one the closer one comes to the critical
temperature. This is a clear indication that the assumption of a rigid spin moment is
quite questionable as the resulting contribution to the resistivity due to spin fluctuations
is much too small. In fact the simulations of Ruban et al. [80] on the basis of a
longitudinal spin fluctuation Hamiltonian led in the case of fce-Ni to a strong diminishing
of the average local magnetic moment when the critical temperature is approached from
below (about 20 % compared to T' = 0 K). For bee-Fe, the change is much smaller
(about 3 %) justifying in this case the assumption of a rigid spin moment. Taking
the extreme point of view that the spin moment vanishes completely above the critical
temperature or the paramagnetic (PM) regime only thermal displacements have to be
considered as a source for a finite resistivity. Corresponding results are shown in Fig.
23 (bottom) together with experimental data. The very good agreement between both
obviously suggests that remaining spin fluctuations above the critical temperature are
of minor importance for the resistivity of fcc-Ni.
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Figure 24. (Color online) Temperature-dependent electrical resistivity of hcp Gd:
in-plane (a), and out of plane (b) components. The various symbols represent: black
solid circles — experimental results [103], empty blue triangles — only thermal lattice
vibrations, empty green diamonds — only spin fluctuations, empty red circles — total
resistivity including both effects simultaneously, brown dashed line corresponds to the
sum of individual contributions [102].

7.2. The ferromagnetic hcp Gd

Impact of finite temperatures on the transport properties of Gd has been studied
in Ref. [102]. One of the central transport properties of metallic systems is their
electrical resistivity. The experimentally measured temperature-dependent resistivity
of Gd exhibits an anisotropy with different magnitudes along the hexagonal axis (p,.)
and in the basal plane (p,,) [103] (see Fig. 24). Both p(T") curves are characterized by
an abrupt slope change close to the Curie temperature.

In addition, the temperature dependence caused separately by different
contributions to the total p(7"), i.e. only by lattice vibrations (vib) or only by
magnetic fluctuations (fluct), have been investigated in Ref. [102], which appear to
be of comparable magnitude. This led to the conclusion that these sources of the
temperature-dependent resistivity are additive only in the case of the weak disorder (low
temperatures), which does not hold when approaching the Curie temperature (strong
disorder) [104]. In this regime they must be taken into account simultaneously, since
only then the overall behavior of the resistivity curves agrees well with experiment.
This allows to conclude that the maximum of the experimental p,, (close to the Curie
temperature) is not a result of short range magnetic order as it was suggested in the
earlier literature [103], since the present calculations are based on the single-site CPA.
The results in Ref. [102] suggest its origin to be a combination of two competitive
mechanisms. On the one hand side, this is the thermally induced increase of disorder,
leading to an increase of the electrical resistivity. On the other hand side, the DOS
around FEp, characterizing quantitatively the electrical conductivity, increases with
increasing temperature at 1" < T, which effectively reduces the resistivity.

While the calculated resistivities agree with the experiment rather well, there is a
quantitative underestimation (see Fig. 24). This can have various sources. One could be
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the so-called ’frozen’-potential approximation used in the calculations. A second reason,
which is more crucial for p,,, might be the neglect of the anisotropy of the thermal
atomic displacements. A third source for discrepancy may be the use of the single-site
approximation by the CPA, which neglects the coherent scattering or interference effects
which might show up in multiple scattering.

The results for the anomalous Hall resistivity (AHR) of Gd are shown in Fig. 25 (a)
in comparison with experimental results (for polycrystalline samples as well as single
crystals) and theoretical results, obtained on the basis of model calculations by Fert
[105]. One can see that the anomalous Hall resistivity shows a pronounced temperature
dependence: the resistivity increases from zero at T' = 0 K to a maximum value just
below the Curie temperature and then drops to zero as the magnetization vanishes with
further increasing temperature. Overall there is qualitative and quantitative agreement
of our first principles results with experiment as well as with the model calculations.
In Fig. 25 (b) the individual contributions arising from the scattering by the lattice
vibrations and spin fluctuations are shown. One can see that both mechanisms provide
contributions nearly of the same order of magnitude. The qualitative behavior of the
total AHR is determined by the scattering due to spin disorder, while the contribution
due to lattice vibrations shows, as expected, a monotonous increase with temperature.
It is interesting to compare the sum of the individual contributions with the total AHR.
From Fig. 25 (b) one can see that the total AHR significantly exceeds the sum of these
contributions. Therefore for the correct description of the total AHR it is necessary
to account simultaneously for the combination of scattering due to the thermal lattice
vibrations and spin fluctuations.

Comparing the calculated anomalous Hall resistivity with experimental data, one
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Figure 25. Anomalous Hall resistivity for Gd as a function of temperature: (a) in
comparison with experimental results (Exp. 1 — Ref. [106], Exp. 2 — Ref. [106], Exp.3 —
Ref. [107, 108]) and results from model calculations [105]; (b) individual contributions.
The used symbols represent: empty blue triangles — only thermal lattice vibrations,
empty green diamonds — only spin fluctuations, empty red circles — total resistivity
including both effects simultaneously, brown dashed line corresponds to the sum of
individual contributions.
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notices that the discrepancy is more pronounced at low temperatures, and is rather
weak at the temperature approaching T¢ (see Fig. 25).

7.8. AFM-FM phase transition of FeRh

The finite temperature properties of the electrical resistivity of FeRh making use of the
AAM were studied in Ref. [109]. To account for the effect of spin fluctuations in these
calculations, the temperature dependent magnetization of the Fe sublattice has been
obtained via Monte Carlo simulations, using exchange coupling parameters calculated
in an ab-initio way [110].

Figure 26(a) shows the electrical resistivity, p..(T), calculated for ordered FeRh
with CsCl structure, accounting for the impact of thermal spin and lattice excitations,
in comparison with the experimental data. One can clearly see a rather good agreement
between the theoretical and experimental results. In particular, this concerns the
difference p2FM(T,,) — pEM(T,,), that is a result of a steeper increase of the AFM-
resistivity with temperature, when compared to that for the FM state. Note that the
experimental measurements have been performed for a sample with 1% intermixing
between Rh and Fe sublattices leading to a finite residual resistivity at T'— 0 K, and as
a consequence in a shift of the experimental p,.(T") curve with respect to the theoretical
results [83].

The separate contributions of spin fluctuations and lattice vibrations to the
electrical resistivities, p._(T) and pY (T), calculated for the AFM and FM states are
shown in Fig. 26(b). For both magnetic states spin moment fluctuations have a dominant
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Figure 26. (a) Calculated longitudinal resistivity (closed circles - AFM state, open
circles - FM state) in comparison with the experiment [111]. The dashed line represents
the results for Feg 49Rhg 51, while the dash-dotted line gives results for (Fe-Ni)g 49Rhg 51
with the Ni concentration x = 0.05 to stabilize the FM state at low temperature); (b)
electrical resistivity calculated for the AFM (closed symbols) and FM (open symbols)
states accounting for all thermal scattering effects (circles) as well as effects of lattice
vibrations (diamond) and spin fluctuations (squares) separately. The inset shows the
temperature dependent longitudinal conductivity for the AFM and FM states due to
lattice vibrations only [109].
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impact on the resistivity when compared to the thermal lattice displacements. One can
also see, that both components, pf_(T) and p¥,(T), in the AFM state have a steeper
increase with temperature when compared to the FM state.

In order to clarify the origin of such a behavior, the results were discussed using
Mott’s model [112] that distinguishes between delocalized sp-electrons that primarily
determine the transport properties due to their high mobility, and localized d-electrons.
This allows in particular to consider separately the following factors which determine
the conductivity (see, e.g. [113]): (i) the carrier (having essentially sp-character)
concentration n and (ii) relaxation time 7 ~ [V2 ..n(Ep)]~', where Vi is the
average scattering potential and n(Er) the total density of states at the Fermi level.
Corresponding discussions were done on the basis of the electronic structure.

This model was applied in particular to explain the abrupt change of the p(T')
dependence in the vicinity of the Curie temperature using the element projected DOS
for Fe and Rh shown in Fig. 27 for two temperatures just below and above Tx. In
particular, Fig. 27 demonstrates the induced spin-splitting of the Rh electronic states
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Figure 27. Comparison of the element resolved Fe (left) and Rh (right) DOS
calculated for the FM (solid line) and PM (dashed line) states at finite temperatures
T =600 K (M/My = 0.66) and T = 700 K (M/Mo = 0) [109).

in FeRh for T' < T (T = 600 K (left panel)), which disappears above T¢ (T = 700
K (right panel)), so that the Rh DOS increases at the Fermi level. As a consequence,
the differences in the p(T") behavior in the vicinity to T for different systems may
be attributed to specific features of their electronic structures relevant to their PM
states. In particular, an increase of the Rh DOS at the Fermi level should lead to the
sharp increase of the resistivity as the critical temperature is approached, since p(T) is
inversely proportional to the relaxation time 7, i.e. p(T) ~ [V2, . n(Er)] [109].

Fig. 28(a) shows the calculated anomalous Hall resistivity for FeRh in the FM state
(puy), represented as a function of temperature, in comparison with experimental data
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[114]. As the FM state is unstable in pure FeRh at low temperatures, the measurements
were performed for (Feg gg5Nig o35)Rh, for which the FM state has been stabilized by Ni
doping. The calculations have been performed both, for the pure FeRh compound as well
as for FeRh with 5% Ni doping, (Feg95Nig05)Rh, that is found from the calculations to
be ferromagnetically ordered down to 7" =0 K. As can be seen, the magnitude of p,,(T)
increases in a more pronounced way for the undoped system. Nevertheless, both results
are in rather good agreement with experiment.
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Figure 28. The temperature dependence of the anomalous Hall resistivity for the FM
state of (Feg.95Nig.o5)Rh in comparison with experimental data [114].

7.4. Fe-intercalated 2H-TaS,

The finite temperature transport properties of the 2H-Feg o5 TaSy alloy were calculated
[115] accounting for both temperature induced lattice vibrations and spin fluctuations
[44]. The information on the temperature dependent magnetization has been taken from
experiment [116]. The electrical resistivity p,.(1") as well as p,,(T), characterizing the
AHE, are shown in Fig. 29 as a function of temperature. As the occupation of the Fe
sublattice is incomplete, the Fe concentration is non-stoichiometric implying xp. =~ 1/3,
"chemical’ disorder has an additional impact on the resistivity leading to a finite residual
resistivity in the system.

As one can see, the resistivity p..(7T") contribution due to spin fluctuations has a
very weak dependence on temperature. On the other hand, the temperature induced
lattice vibrations result in a strong temperature dependence of p,.(T), leading to a
change of the slope at a temperature close to the Curie temperature. This implies
that the temperature dependence of p,,(T') around T cannot be associated with the
direct impact of the temperature induced magnetic disorder on the electron scattering
by spin fluctuations and with this on the electron transport, but with the impact of the
magnetic disorder on the ’electron-phonon’ scattering. The p,.(T) component shows a
higher residual value at ' = 0 K when compared to p,.(T"), and also a change of the slope
close to T¢, approaching the p,,.(T) curve with increasing temperature. It is worth to
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mention again the temperature induced modifications of the electronic structure, namely,
the smearing of the energy bands due to electron scattering via lattice vibrations. This
can result in a rather fast increase of the resistivity due to an increasing cross-section for
the interband scattering. However, a further smearing with increasing the temperature
leads to a saturation of the number of channels for the interband scattering and as a
result - to the observed change of the slope of the p,,(T) curve. Another consequence
of the smearing of the electronic states is the decrease of the anisotropy of the transport
properties at high temperature. Note also that in general, the results of the present
calculations are in good agreement with experiment and demonstrate the leading role
of lattice vibrations for the temperature dependence of p,. (7).

The off-diagonal resistivity p,,(7") as a function of temperature is compared in Fig.
29(b) with experimental results showing reasonable agreement. It has a maximum at
T =~ 30 K and goes to 0 at the Curie temperature due to magnetic disorder in the system,
demonstrating the crucial role of spin fluctuations for the temperature-dependence of
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Figure 29. (a) Temperature-dependent longitudinal resistivities, pgz(T) = pyy(T)
and p,.(T) (filled and open squares),for ferromagnetic disordered FegogTaSs. The
dots [117] and the dashed line [118] represent corresponding experimental data. (b)
Temperature-dependent transverse resistivity, pg,(T'). Results for p,,(T') and pg,(T)
that were obtained accounting only for lattice vibrations and spin fluctuations are
represented in both cases by up and down triangles, respectively [115]

7.5. Doped Permalloy (Py)

The temperature dependence of the electrical resistivity of chemically disordered
Permalloy (Py) Feg19Nigs1, studied in Ref. [119] using the AAM is shown in Fig. 30 in
comparison with the experimental data and with the results of calculations by Starikov
et al. [69], who modeled the temperature induced disorder by means of the supercell
technique. The SPRKKR calculation of pgyer = %(me + p..) accounts quite well for the
trend with a reasonable agreement with experiment. Some discrepancy with the results
of Starikov et al. [69] may be attributed to the different models used to describe the
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thermal disorder by Starikov et al. [69] (supercells) in contrast to the CPA-based AAM
used in the SPRKKR calculations.
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Figure 30. Dependence of the resistivity pguer of undoped Py on the temperature
as obtained by our calculation (blue solid line), by calculations of Starikov et al. [69]
(green dashed line), and by experiment [101] (red squares) [119].

In addition to Py, the electrical conductivities as well as the AHE and SHE have
been investigated for Py doped by 3d elements. Fig. 31 represents the temperature
dependence of the transverse charge and spin conductivities, 0., (left) and o7, (right),
respectively, for undoped Py (diamonds) and for Py doped with 6% of V (asterisks),
Co (crossed circles), Pt (triangles), and Au (squares). A strong impact of the vertex
corrections on the AHE and SHE in the low-temperature region can be seen in Fig. 32
for Co and Au doped Py, which decreases however rather quickly when the temperature
increases. As is discussed in Sec. 6.1.2 as well as in Ref. [84], this effect can be attributed
to the competition of the electron scattering due to chemical disorder and on thermally
induced atomic displacements with their amplitude increasing with a temperature.

7.6. The high entropy alloy Nigs3Cog33Fe€g 33

The electrical resistivity calculated for FM-ordered Nig33CoqgssFeqss [97] is plotted
in Fig. 33. The rapid increase of the resistivity at T < T is determined by a
dominating scattering by thermal spin fluctuations. This contribution reaches saturation
above T, i.e. in the magnetically disordered state, for which the strength of the
electron scattering on thermal spin fluctuations also saturates. As a consequence,
the temperature dependence of the resistivity above T is determined by the electron
scattering on lattice vibrations, which grows linearly with temperature. The difference
between the experimental and theoretical results on p(T') below Ty is ascribed to a
discrepancy between the experimental temperature dependence of the magnetization
and the magnetization calculated within the Monte Carlo simulations based on the
classical Heisenberg model [97].
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Figure 31. Theoretical temperature-dependence of o, (left) and o7, (right) for
undoped Py (diamonds) and for Py doped with 6% of V (asterisks), Co (crossed

circles), Pt (triangles), and Au (squares) [119].
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Figure 32. The temperature-dependence of the contributions to 7., (lines) and o7,
(markers) due to the vertex corrections for Py doped by 6% of V, Co, Pt, and Au [119].

7.7. Solid solutions of the 3d-transition metals

In the case of random alloys, two types of atomic displacements with different origin
One is due to thermally induced lattice vibrations, which were already
discussed above as they are responsible for temperature dependence of the transport
Another type of displacements stems from the different atomic size of
neighboring atoms in a chemically disordered system, which leads in turn to randomly

may OcCCur.

properties.
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Figure 33. Electrical resistivity of ferromagnetic Nig33Cog.33Fep.33: theory vs
experiment. Calculated results are shown by red circles, while cyan triangles represent
experimental data [97].

distributed local distortions in the alloy. These displacements can also be treated within
the AAM, but have only a weak dependence on the temperature. The combined effects
of these displacements on the transport properties have been discussed together with the
impact of chemical disorder in Ref. [98], considering the medium-entropy fcc NiCoMn
equiatomic solid solution alloys. Fig. 34 illustrates the resistivity enhancements (Ap)
due to two types of atomic displacements, static and thermally-induced, plotted as a
function of temperature when the static displacement is included (red dots) or not (black
diamonds), respectively.
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Figure 34. The resistivity enhancement Ap(T) (u€2- cm) of NiCoMn due to the effect
of thermal displacements u(T"), with (red dots) and without (black diamonds) taking
into account the static displacements wug [98].

In the absence of the static displacements, the thermal displacement induced
resistivity enhancement Ap(u(7')) increases almost linearly with temperature in the
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Figure 35. The Gilbert damping parameter for bee-Fe as a function of temperature.
Full (open) symbols give results with (without) the vertex corrections [59].

regime above 100 K. However, accounting for static displacements in addition, one
can see that the temperature dependent resistivity enhancement Ap({(iip + u(T))%)'/?)
changes remarkably. This is due to the fact that the coupling between the u and @(7)
contributes a (i - @(T))'/? term in the expansion of /((idy + u(T))?).

8. Applications: Gilbert damping at finite temperature

Similar to transport properties one can calculate the temperature dependent Gilbert
damping parameter for magnetic materials. The expression given by Eq. (21) for
disordered alloys, can be used also to take thermally induced lattice vibrations and
spin fluctuations into account. In this case the configurational average can again be
calculated using the AAM formalism. As an example, we present the results for the
Gilbert damping parameter at finite temperature for pure 3d transition metals [57, 59|
calculated accounting for the temperature induced atomic displacements via the alloy
analogy scheme. This leads, even for pure systems, to a finite electronic lifetime and
in this way to a finite value for a. First, we demonstrate the role of vertex corrections
for the temperature dependence of a, using bce Fe as a prototype system. Fig. 35
represents the Gilbert damping parameter (with and without vertex corrections) for
pure Fe in the presence of temperature induced disorder and plotted as a function of
temperature. A significant impact of the vertex corrections is noticeable, similar to the
one found for the binary alloy Fe;_,V,, depending on the concentration of V. However,
one can see some difference concerning the impact of thermal and chemical disorder on
the Gilbert damping. Dealing with temperature effects via the alloy analogy model,
the system is considered as a pseudo-alloy consisting of a fixed number of components
representing different types of displacements. Thus, in this case the temperature effect
is associated with the increase of the disorder in the system caused only by an increase
of the displacement amplitude, or, in other words — with the strength of the scattering
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potential experienced by the electrons represented by t"(7") —tj. In the case of a random
alloy A;_,B, the variation of the scattering potential, as well as the difference % — t'},
upon changing the concentration is less pronounced for small amounts of impurities B
and the concentration dependence is determined by the amount of scatterers of different
types. However, when the concentration of the impurities increases, the potentials of the
components are also modified (this is reflected, e.g. in a shift of electronic states with
respect to the Fermi level) and this can lead to a change of the concentration dependence
of the vertex corrections. Furthermore, one can see in Fig. 35, that a neglect of the vertex
corrections for a(T) leads to wrong results at high temperatures, similar to the case of
high V concentrations in Fe;_,V,.

Next, we compare the Gilbert damping parameters for Fe, Co and Ni calculated
as a function of temperature, with corresponding experimental results available in the
literature. The Gilbert damping obtained for bee Fe (circles, a = 5.44 a.u.) is compared
in Fig. 36(a) with experiment showing a rather good agreement at temperatures above
100 K despite the scattering of the experimental results. A more detailed comparison
is done in Ref. [57].
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Figure 36. Temperature variation of the Gilbert damping parameter of pure systems.
Comparison of theoretical results with experiment: (a) bee-Fe: circles and squares show
the results for ideal bee Fe for two lattice parameters, a = 5.42 a.u. and a = 5.45 a.u.;
stars show theoretical results for bee Fe (a = 5.42 a.u.) with 0.1% of vacancies (Expt. 1
- Ref. [121], Expt. 2 - Ref. [120], Expt. 3 - Ref. [122]); (b) hcp-Co: circles show
theoretical results for ideal hep Co, stars - for Co with 0.03% of vacancies, and "pluses’
- for Co with 0.1% of vacancies (Expt. Ref. [120]); and (¢) fce-Ni (Expt. Ref. [120]).

Results for the temperature dependent Gilbert damping parameter « for hcp Co
are presented in Fig. 36(b) which shows, despite certain underestimation, reasonable
agreement with the experimental results [120]. The general trends at low and high
temperatures are similar to those seen in Fe.

The results for pure Ni are given in Figs. 36(c) and 37(top) that show in full
accordance with experiment a rapid decrease of o with increasing temperature until a
regime with a weak variation of a with 7' is reached. Adding small amount of Cu to
Ni, even less than 1 at.% Cu, strongly reduces the conductivity-like behavior (see, e.g.
Ref. [60]) at low temperatures while leaving the high-temperature behavior essentially
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Figure 37. Temperature variation of Gilbert damping of pure Ni and Ni with Cu

impurities: present theoretical results vs experiment [120].
unchanged. This is shown in the middle panel of Fig. 37. A further increase of the
Cu content leads to impurity-scattering processes responsible for the band broadening
dominating a. This effect completely suppresses the conductivity-like behavior in the
low-temperature regime because of the increase of scattering events due to chemical
disorder (see Fig. 37, bottom). This is fully in line with the experimental data,
providing a straightforward explanation for their peculiar variation with temperature
and composition.

9. Applications in spectroscopy

9.1. One-step theory of photo emission

The AAM also allows to investigate the temperature-dependence of photoemission. This
was demonstrated making use of the one-step theory of photoemission. The main idea
of the one-step model is to describe the actual excitation process, the transport of
the photoelectron to the surface as well as the escape into the vacuum as a single
quantum mechanical process [123]. Tt is based on Fermi’s golden rule and was originally
implemented for ordered surfaces using the multiple scattering KKR Green function
formalism (for more details see the review [124]). This approach has been generalized
to describe the photoemission of disordered alloys by means of the CPA [125, 126] and
recently it was extended to deal with thermal lattice vibration and spin fluctuation (in
magnetic materials) effects exploiting the AAM approach described above. Based on
the CPA approach the temperature-dependent spin-density matrix p at a given kinetic
energy €y and wave vector EH can be written in the following form:

<ﬁss/<efa EH) T)> X <ﬁ?§’(€f7 EH 3 T)> + <p§s’(€f7 EHa T))
+ (s (e, by, T)) + (Pl (e4, Ky, T)), (44)



Investigating finite temperature effects by means of the AAM 48

with contributions from a purely atomic part (at), a coherent part (¢) with multiple
scattering involved and an incoherent (inc) part as described in detail in Refs. [127, 128]
in the context of chemical disorder in alloys. The third contribution which appears due
to the CPA-averaging procedure represents an on-site quantity that behaves DOS-like
[127]. The last contribution defines the surface (surf) part of the spin-density matrix.
As dispersing and non-dispersing contributions are clearly distinguishable we can define

the spin-density matrix which describes the angle-integrated (AI) photoemission spectra
(PES) (i.e. AI-PES)

(P TS (e4, ke, T)) ~ (P2 (€5, Ky, T))
+ <ﬁ$’c(ef7 k”? T)> + <ﬁzg’rf<€fa k”? T)) ) (45)

where the E—dependenee in the atomic and incoherent contributions is only due to the
final state. A k-averaging is not necessary because the k-dependence of the (SP)LEED-
type final state is very weak and can be neglected in explicit calculations. Furthermore,
by use of the single-scatter approximation for the final state the E—dependenee vanishes
completely. This way a direct comparison to corresponding measurements is possible in
both cases. From this the intensity of the photocurrent results in:

Ieg, By, T) = T ( puler, 5y T) ) (46)

with the corresponding spin polarization vector given by:

ﬁ—%Tr(ap). (47)

Finally, the spin-projected photocurrent is obtained from the following expression:

1§:§<1iﬁ.13), (48)

with the spin polarization (+) referring to an arbitrary vector 7.

9.1.1. Soft and hard x-ray angle-resolved (AR) temperature-dependent photoemission
The impact of lattice vibrations and spin fluctuations have been investigated for the soft
and hard x-ray angle-resolved photoemission regimes using the temperature-dependent
one-step theory sketched above. The validity of this approach has been demonstrated
in Ref. [10] with illustrative soft and hard x-ray calculations for Au (see Fig. 38) and
Pt, as well as by direct comparison to experimental soft x-ray data from W(110) (see
Fig. 39). As one can see in Fig. 38, the photoemission spectra for Au(111) for two
different photon energies of 1.0 and 6.4 keV, calculated using the AAM-based approach
correctly converge at high energy and/or photon energies to the so called XPS limit
in photoemission, in particular the development of matrix-element-weighted density-of-
states (MEW-DOS)-like features in the intensity distribution. Note that Au was chosen
as a typical transition metal with a low Debye temperature of ©p = 165 K. The left
panel shows angle-resolved intensity distributions for an excitation energy of 1.0 keV
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Figure 38. Calculated photoemission spectra for Au(111) at two different excitation
energies as a function of temperature. Shown is the comparison between normal
emission angle-resolved data (AR-PES, red curves) and corresponding angle- integrated
calculations (AI-PES, blue curves). Left panel: Intensity distributions for an excitation
energy of 1.0 keV for three temperatures of 10, 100, and 300 K. Right panel: As the
left panel, but for an excitation energy of 6.4 keV and a selection of lower temperatures
of 10, 50, and 100 K [10].

for normal emission that are labeled AR-PES (red curves) in comparison to 27 angle-
integrated PES (AI-PES) intensities (blue curves) at 10, 100, and 300 K. The AI-PES
curves are expected to represent very closely the XPS-limit or MEW-DOS results, even
at zero temperature, and thus to be only weakly dependent on temperature. While
the normal emission AR-PES spectral distribution strongly deviate from AI-PES as
a function of binding energy at low temperature, for higher temperatures, the overall
shape of the angle-resolved spectra significantly changes approaching the shape of the
angle integrated spectra, and showing only small deviations in their intensity profiles.
As discussed in Ref. [10], in the case of AI-PES, only phonon-assisted transitions take
place producing small temperature-dependent changes in the matrix elements. On the
other hand, in the angle-resolved case the temperature-dependent matrix elements are
responsible for a decrease of the angle-resolved intensity profiles due to a redistribution
of spectral weight. This mechanism, associated with a Debye-Waller-like suppression of
the direct part of the photocurrent is primarily responsible for the so called XPS limit
in ARPES, which clearly shows up in the left panel of Fig. 38 for 1 keV photon energy
at 300 K. The right panel of Fig. 38 shows intensity distributions with an excitation
energy of 6.4 keV, demonstrating more dramatic effects at lower temperature, with the
XPS limit being reached already at 100 K. Note that a similar behavior was observed,
for example, in HAXPES measurements on W(110) and GaAs(100) [129].
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Similar trends were demonstrated also for Pt PES. However, the Debye temperature
or Pt is much higher than for Au leading to higher Debye-Waller factors than for Au
and thus to a preservation of the dispersing features in the spectra.

Fig. 39 shows a direct comparison of the calculated results with experimental
data obtained for W(110) with soft x-ray excitation at 870 eV [130] for four different
sample temperatures: (a) 300, (b) 470, (c) 607, and (d) 780 K. Experimental results
shown in Fig. 39(i) demonstrate dispersive features for all four temperatures, which
have a significant smearing as the temperature is raised. Fig. 39(ii) presents fully
relativistic one-step calculations accounting for thermal lattice vibrations, whereas Fig.
39(iii) shows conventional one-step calculations in which phonon excitations are more
simply considered through a temperature-dependent single-site scattering matrix [131].
Although at the lowest temperature of 300 K, the two different theoretical approaches
yield very similar results, as expected for a Debye-Waller factor of 0.70, the temperature
dependence of the experimental data is much better described within the temperature-
dependent one-step calculations accounting for thermally induced atomic displacements
explicitly. The simpler calculation based on the single-site scattering matrix predicts
neither the smearing of the dispersing features nor the growth of MEW-DOS features for
higher binding energies, but shows instead only the expected decrease of direct transition
intensities.

9.1.2.  Effect of spin fluctuations in the photoemission spectra of Fe(001) at finite
temperature  Most theoretical investigations of the photoemission for magnetic systems
are based only on the ground-state electronic structure considering either the systems
at T' = 0 K or at temperatures above the critical temperature 7y treating them as
non-magnetic (i.e. as Pauli paramagnetic) systems. A generalized spin-density matrix
formalism for the photo current was worked out to include thermal spin fluctuations
and lattice vibrations on the same level of accuracy making use of the AAM theory. As
a consequence, the one-step theory of photoemission accounting for thermal effects can
go beyond the FM and PM states, demonstrating that ARPES can distinguish between
the different models describing finite-temperature spin correlations, such as the Stoner
and Heisenberg models [85].

Fig. 40 represents theoretical LSDA-based spin-resolved photoemission data (left)
in comparison with experiment (right), for two different temperatures, 7' = 300 and
900 K. Furthermore, theoretical results for 0 K are shown on the top panel as a reference
obtained by using the standard one-step model of photoemission scheme. All spectra
have been calculated for normal emission geometry assuming s-polarized light with 60
eV photon energy.

The spin-resolved spectra reveal three main transitions with bulk states as initial
states: a minority peak close to the Fermi level and a majority peak at —2.4 eV binding
energy, with the initial states having both t5, symmetry. The initial state associated
with majority peak at —0.9 eV binding energy has e, symmetry. More details of the
photo emission at 7' = 0 K are discussed in Ref. [85]. Obviously, one can see a reasonably



Investigating finite temperature effects by means of the AAM 51

(a) 300K (b) 470K (c) 607K (d) 780K

(i)

Binding energy [eV]

Binding energy [eV]

Binding energy [eV]™~

105 110 115 105 110 115 105 110 115 105 110 115
Angle [deg] Angle [deg] Angle [deg] Angle [deg]

Figure 39. (i) Plots of measured intensity versus angle of emission for 870 eV
excitation from the valence bands of W(110) approximately along the I' — N direction
for four temperatures of (a) 300, (b) 470, (c) 607, and (d) 870 K (from Ref. [132]), where
90 deg corresponds to normal emission. (ii) Corresponding intensity distributions
calculated from temperature-dependent one-step theory based on the CPA formulation.
(iii) Conventional ARPES calculations of the direct contribution I°7 (E, k) by use of
complex scattering phase shifts and the Debye-Waller model (from Ref. [132]) [10].

good agreement with the experimental spectra. At T"= 900 K the magnetization of Fe
is decreased to roughly about 60% of the value at 7" = 300 K. At high temperature
the e, states are shifted towards the Fermi level. The exchange splitting of the
states is reduced, but it still remains very high. In particular, not only a reduction of
the exchange splitting is observed, but also an increase of the minority peak intensity
at —2.5 and —0.9 eV is found, in accordance with the experimental findings. This
results from an increasing contribution from the majority-spin states in line with the
discussion in Sec. 4. The overall reduction in the minority-spin intensities at finite



Investigating finite temperature effects by means of the AAM 52

a)lr=0K | Theoy 1 b)

0.6f p minority
041 43 majority e
PN AN (

L 4 , .
Baah ,?:Q‘A | Experiment

A;é_\"—{w-ww L E e v—vaal
T T

[17=300 K v eomeowrr | ] 7=300 K minority 7
L " i i

majority

o o
(el \S]

IA \

oo oo
S N A

Intensity (arbitrary units)

o ©
INGRoN
T
S,
P/
1L

e <
NSRRI
i\

0.2

T30 20 a0 00”30 20 10 00
Energy (eV) Energy (eV)

Figure 40. Comparison between experimental (right panels) and theoretical LSDA-
based spectra (left panels, dashed lines) and LSDA+DMFT based spectra (left panels,
solid lines) for temperature-dependent spin-resolved photoemission at Eppor = 60 eV
and normal emission [85].

temperature is also a result of the varying contribution of the different spin channels to
the spin-mixed electronic states. In the calculations we can turn the lattice vibrations
or spin fluctuations separately on and off. The main broadening effect in the spectra
results from the spin fluctuations, while lattice vibrations have a minor effect on the
spin polarization. However, as shown in the case of soft- and hard-x-ray photoemission
[10], lattice vibrations will become more noticeable at higher photon energies.

The formalism presented in this paper allows us to model quantitatively and
to predict in detail all possible differences in the finite-temperature ARPES spectra
accounting for thermal effects using Heisenberg and Stoner models. In the left panels of
Fig. 41 are summarized spin-resolved spectra for the Heisenberg model as calculated by
making use of the AAM for 7" = 300 and 900 K. In the right panel, calculated spectra
are shown for a modified exchange field B(7") = aB(7), where « is a scaling factor
which has been chosen in such a way that the local magnetic moment of Fe follows the
experimental magnetization curve. One can see significant differences between the two
models. Within the Heisenberg model the minority-spin channel develops a second peak
at higher binding energy, in this way reflecting the shadow bands and band-mirroring
picture. However, the Stoner model leads to a shift in the minority spin states towards
higher binding energies.

Finally, as shown in Fig. 42, the results above T, based on the Heisenberg model,
still leads to a nonzero spin polarization in the spin-resolved ARPES spectra due to
the photoemission process. On the other hand, the Stoner model leads to zero spin
polarization above T and the main intensity is found at a binding energy of about 1 eV.
As a consequence, one may state that these explicit spectroscopic calculations provide
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Figure 41. Calculated spin-resolved ARPES spectra for Eppor = 60 €V and normal
geometry. The results in the top panel are calculated spectra for 7' = 0 K. Bottom
left panels: calculated LSDA results based on the AAM (Heisenberg model). Bottom
right panels: calculated LSDA results applying a modified exchange splitting (Stoner
model) [85]
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an adequate tool to distinguish between the various physical mechanisms involved.
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Figure 43. Top: DFT calculations of the O K-edge XAS of bulk MgO at four different
temperatures modeled with a finite set of thermal displacements in the framework of
the AAM (solid lines). With increasing temperature, the calculation shows an overall
intensity suppression of the fine structures. There are well defined energy regions where
the XAS at elevated temperature has lower or higher energy than the spectrum at lower
temperature, indicated by the arrows. Additionally, spectra generated from the 300 K
spectrum using the model discussed in Ref. [133], are shown by dotted lines. Bottom:
Comparison of the experimental pump-induced signal (pump fluence 25 mJ/cm?) with
the relative difference of the calculated XAS at 300 and 750 K. For this comparison
relative changes after subtraction of a base line are considered [133].

9.2. Effect of lattice vibrations on XAS

The effect of thermal lattice vibrations on transient near-edge x-ray absorption spectra
is discussed in Ref. [133]. This work represents the results on time-dependent changes
in soft near-edge x-ray absorption spectra (XAS) of an [Fe/MgOls metal/insulator
heterostructure after laser excitation. The oxygen K-edge absorption of the insulator
features a uniform intensity decrease of the fine structure at elevated temperature. The
ab initio calculations demonstrate that the transient intensity changes in XAS can be
assigned to a transient lattice temperature.

Fig. 43 shows the results of KKR-based DFT calculations of the oxygen K-edge XAS
of bulk MgO for different lattice temperatures, which have been obtained making use
of the alloy analogy model. The DFT approach applies to larger timescales beyond 20
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ps, for which the phonon systems of the individual layers and the entire heterostructure
have equilibrated, making a quasi-static description by a common lattice temperature
feasible. On these timescales, the lower energy acoustic phonon modes play a dominant
role. The calculation shows that with increasing temperature, there is essentially no
shifting of the spectral feature at the O K-edge but that the overall fine structures are
suppressed in their intensity, in line with experimental results (see Fig. 43). Moreover,
the calculation demonstrates that there are indeed defined regions where the XAS at
elevated temperature has lower or higher intensity than the spectra at lower temperature,
thus supporting others results discussed in Ref. [133]. Consequently, one can relate the
magnitude of the intensity suppression to an induced lattice temperature change.
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