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The success of density functional theory hinges on the availability of good approximations
for the total-energy functional. In this article we review a particular approach to the
construction of approximations involving explicitly orbital-dependent functionals. The
advantages of this approach over the conventional Kohn-Sham scheme are highlighted

and numerical results are presented for atoms, molecules and solids.

3 Introduction: What is the optimized effective po-

tential?

The optimized effective potential (OEP) is not a new development. In fact, its discovery [1]
preceeds the development of modern density functional theory. In present-day language,
the exzact OEP should be called the exact Kohn-Sham (KS) potential. When it comes
to approximations, however, the OEP representation of the KS potential allows for the
construction of more accurate functionals than the conventional local density (LDA) or
generalized gradient (GGA) approximations. In order to understand the nature of the
OEP we first briefly review the basics of density functional theory (DFT).
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Modern DFT is based on the celebrated theorem of Hohenberg and Kohn (HK) [2] which

may be summarized by the following three statements:

1. The ground-state density p uniquely determines the external potential V = V[p] as
well as the ground-state wave function W[p]. As a consequence, any observable of a

static many-particle system is a functional of its ground state density.

2. If T denotes the kinetic energy operator of the particles and Wen, their mutual

Coulomb interaction, the total-energy functional
By lp) =< W[ + Wa, + 1o/ ¥[p] > (1)

of a particular physical system characterized by the external potential V4 is equal
to the exact ground-state energy Fjy if and only if the exact ground-state density pg
is inserted. For all other densities p # po the inequality

Eo < By p] (2)

holds. Consequently, the exact ground-state density py and the exact ground-state

energy Fjy can be determined by solving the Euler-Lagrange equation

)
mEvo [p] = 0. (3)
3. The functional
Flp] :=< V[p]|T + Wow|¥[p] > (4)

is universal in the sense that it is independent of the external potential V4 of the
particular system considered, i.e. it is of the same functional form for all systems

with a fixed particle-particle interaction (WC”D in our case).

The proof of the HK theorem does not depend on the particular form of the particle-
particle interaction. It is valid for any given particle-particle interaction W, in particular
also for W = 0, i.e. for non-interacting systems described by Hamiltonians of the form
Hs = T + Vs. Hence the potential Vs(r) is uniquely determined by the ground-state
density:

Vs(r) = Vs[p(r). ()
As a consequence, all single-particle orbitals satisfying the Schrodinger equation (atomic
units are used throughout)

(-5 + V500 ) = st ©)

are functionals of the density as well:

w;(r) = @;[p](r). (7)
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The HK total-energy functional of non-interacting particles is given by

Bslp) = Tslpl + [d'r p(r)Vs(r) (8)
where Ts[p] is the kinetic-energy functional of non-interacting particles:

Ts[p] = i:: /d?’?“so?[p](r) (—%2) wilp](r). (9)

lowest ¢;

We emphasize that the quantity (9) really represents a functional of the density: Func-
tional means that we can assign a unique number Ts[p] to any function p(r). This is done
by first calculating that very potential Vs(r) which uniquely corresponds to p(r). Several
numerical schemes have been devised to achieve this task [3, 4, 5, 6, 7, 8]. Then we take
this potential, solve the Schrodinger equation (6) with it to obtain a set of orbitals {¢;(r)}
and use those to calculate the number Ts by evaluating the right-hand side of Eq. (9).
As a matter of fact, by the same chain of arguments, any orbital functional is an (im-
plicit) functional of the densily, provided the orbitals come from a local, i.e. multiplicative

potential.

Returning to the inleracting system of interest we now define the so-called exchange-

correlation (xc) energy functional by

/

/

Belpl i= Flp) — 5 [ [@r % ~ Tyl (10)
r

The HK total-energy functional (1) can then be written as

Bulol = Tl + [ pteyonte) 4 5 [ oo ZEPE g

In historical retrospective we may identify three generations of density functional schemes
which may be classified according to the level of approximations used for the universal

functionals T's[p] and Fy.[p].

In what we call the first generation of DFT, explicitly density-dependent functionals are
used to approximate both Ts[p] and Fy.[p]. For example, the simplest and historically
first approximation of this kind is the Thomas-Fermi model, where Fy.[p] is neglected
completely and Ts[p] is approximated by an LDA yielding
3 1 | o()o(r)
TF 2 3 5/3 3 3 3

ol = 15 (37°) /d rp(r) +/d rvo(r)p(r)+§/d ’"/d (i e )
as approximate expression for the total-energy functional. For functionals of this type
the HK variational principle (3) can be used directly, leading to variational equations of
the Thomas-Fermi type. As these equations only contain one basic variable, namely the
density p(r) of the system, they are readily solved numerically. The results obtained in

this way, however, are generally of moderate quality.
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The second generation of DF'T employs the exact functional (9) for the non-interacting

kinetic energy and an approximate density functional for the xc energy:
1 !
B = 150+ [@ratmpie) + 5 [ faor EXEL L p g
r—r

This total-energy expression leads to the conventional Kohn-Sham version of DFT [9].

The HK variational principle (3) applied to (13) leads to a unique single-particle potential

(which is commonly referred to as KS potential)
r’ O Fye
p(r') [¢]

Valae) = Vo) + [ g

such that the orbitals resulting from (6) with the potential (14) reproduce the density of

(14)

the interacting system of interest.

Finally, in the third generation, which is the OEP version of DF'T, one employs in addition

to the exact expression for T's also the exact expression for the exchange energy given by
1 No * (v)er, (P ors ()0 (1
E;xact [,0] N Z Z /dST /dST/ SD]CI'( )S‘Qka( )gﬁk ( )S‘QJ ( ) (15)
2 o=t jk=1 v — /|

Only the correlation part of Fy.[p] needs to be approximated in this approach. In contrast

to the conventional second-generation KS-scheme, the third generation allows for the
treatment of explicitly orbital-dependent functionals for the correlation energy FE. as well,

giving more flexibility in the construction of such approximations.

The central equation in the OEP version of DFT is still the KS equation (6) and the xc
potential is still given by the functional derivative
0Py
~ p(r)’

The difference between the second and third generations lies in the level of approximation

VO (r) (16)

to the xc-energy. As a consequence of the orbital dependence of Fi. in the third genera-
tion of DFT the calculation of Vi.[p](r) from Eq. (16) is somewhat more complicated. A
detailed derivation will be given in the following section for the spin-dependent version
of DFT. The result is an integral equation determining the xc potential. This integral
equation, known as the optimized effective potential equation, is very hard to solve nu-
merically. To avoid a full-scale numerical solution, Krieger, Li and lafrate [10, 11] have
devised a semi-analytical scheme for solving the OEP integral equation approximately.
This scheme is described in the following section as well. Finally a selection of numerical

results for atoms, molecules and solids will be presented in the last section.

We mention that a time-dependent generalization of the OEP has recently been developed
[12] to deal with explicitly time-dependent situations such as atoms in strong laser pulses
[13]. In the linear-response regime this method has led to a rather successful procedure
[14] to calculate excitation energies from the poles of the frequency-dependent density
response. Time-dependent applications of this kind will not be discussed in the present

article. The interested reader is referred to a recent review of time-dependent DFT [15].
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4 Basic formalism of the OEP and KLI methods

We are going to derive the OEP equations for the spin-dependent version of DFT [16,
17], where the basic variables are the spin-up and spin-down densities p+(r) and py(r),
respectively. The latter are obtained by self-consistently solving the KS equations

<_V7 + Vso [m,m](r)) pio(r) = cjoie(r)  j=1,...,N, o=t] (17)

where

=Y lea (o)l (18)

The Kohn-Sham potentials Vs, (r) may be written in the usual way as

Volt) = o) + [ L0 4 v o), (19)
=Y i) (20)
o=1,|
where _ 9Bk lpr.p]
‘/XCU(I') = 5100( ) (21)

The starting point of the OEP method is the total-energy functional

EJ prp] = Y Z / d*r @i (r (—%W) Pio(T)

o=1,| =1

+ [dr vo(r)p(r)
1 3 5, p(r)p(r')
—|——/d r/d r 7|r—r’|
+ET {0 ] (22)

where, in contrast to ordinary spin DFT, the xc energy is an explicit (approximate)
functional of spin orbitals and therefore only an implicit functional of the spin densities
p+ and py. In order to calculate the xc potentials from Eq. (21) we use the chain rule for

functional derivatives to obtain

OEP _ EOEP [{pir}]
‘/xca () - T()
3,0 5EOEP [{@JT}] &Pm( )
B az;i;/d 6pia(r’) 6po(r) e (23)

and, by applying the functional chain rule once more,

OEP 3,.7 3,1 EOEP [{99]7-}] 699204( ) 5V5 (I‘”)
cha Z Z Z/d /d ( (&om( /) 5‘/55( //) —I-C.C.) 5,05(1,) . (24)

a=t| p=",l=1
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The last term on the right-hand side is readily identified with the inverse x5" (r,r’) of the

density response function of a system of non-interacting particles

XSa,B (I‘, I‘/) = 55‘22((:.)/) : (25)

This quantity is diagonal with respect to the spin variables so that Eq. (24) reduces to

VIR = X0 3 [ [at (5E’9CEPHWH§$;“E:,))+ )x&,(r 0. (2)

a=1,] =1 5S‘Qia(r/)

Acting with the response operator (25) on both sides of Eq. (26) one obtains

SER™ Hpir}] 0pia(r')
31 1/ OEP( 3.1 ir io
/d r' Ve ( aéTMEl /d Som()  8Vso(r) + c.c.. (27)

Finally, the second functional derivative on the right-hand side of Eq. (27) is calculated
using first-order perturbation theory. This yields

dpia(r’) o (r')P%, (T)
oy = e 2 P ) (28)

k;éz

Using this equation, the response function

XS5 (r,1) = 5ng (Z% r)@ia(r ) (29)

is readily expressed in terms of the orbitals as

No oo / !
o o o\ I
o () =353 Pio (1) ko (V) (M) 0i0 (1) (30)
= lllz;él €io — Cko

Inserting (28) and (30) in Eq. (27), we obtain the standard form of the OEP integral

equation:

E/dg (VPP () = tseio () Gsio (v,1) 910 (1) 03, (1) + c.c. = 0 (31)
where 5 0P T
1 Pjr
Uxeio () 1= xe 32
0= el (32)
and
Gsiy (r,1') i= Z Pho (T S‘Qka( ) (33)

— Eko
k;éz

The derivation of the OEP integral equation (31) described here was first given by Gorling
and Levy [18]. It is important to note that the same expression results [1, 19, 10, 20] if
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one demands that the local one-particle potential appearing in Eq. (17) be the optimized

one yielding orbitals minimizing the total-energy functional (22), i.e. that

5EOEP

=0. 34
5V50(I') Vo=V OEP ( )

This equation is the historical origin [1] of the name optimized effective polential.

In order to use the OEP, one has to solve the OEP integral equation (31) for the xc
1/ OFP

oo In each iterative step of the KS self-consistency cycle. This is a rather

potential
demanding task and has been achieved so far only for systems of high symmetry such
as spherical atoms [19, 10, 21] and for solids within the linear muffin tin orbitals atomic

sphere approximation [22, 23, 24].

To avoid the full-scale numerical solution of the OEP integral equation Krieger, i and
lafrate (KLI) [11] suggested a semi-analytical approximation. It can be derived by re-
placing the energy denominators in the Green’s function type quantity (33) by an average

energy difference independent of ¢ and k:
1 *
G (£.6) = 5 (5 (r =) — i ()07, 1)), (35)

Substituting this into the integral equation (31) and performing some algebra one arrives

at the equation

1 Y _ _
‘/)(IECEJI(r) = P (I') E |S‘9i0 (I')|2 [chia (I') + (‘/Xcicr - chia)} (36)
a =1
where Useir(r) = %(uxcw(r) + uZ,,(r)) and U, denotes the average value of Uy, (r)

taken over the density of the jo orbital, i.e.
Uscir = [ 30 (0)]*Uscso (1) (37)

and similarly for Vie,. In contrast to the exact integral equation (31) the KLI equation
(36) can be solved explicitly for Vie, by multiplication with | (r)|> and subsequent
integration. This leads to an (N, — 1) x (N, — 1) system of linear equations for the

unknown constants (V;m-a — chia):

Ng—1

Z (5J - Mjia) (‘Z(cicr - chia) = ‘Z{ng — chja ] =1,..., N, —1 (38)
=1
with , )
M, 1= /d3r |Pio ()| pio (r)] (39)
po(r)
and .
Y |pjo (r)[?
Vole) = [ LS o (1)U ), (40)
g i=1
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It is an important property of the KLI approximation that it is exact for two-particle
systems, where one has only one electron per spin projection. In this case, the OEP

integral equation (31) may be solved exactly to yield (36).

At first sight, the KLI approximation (35) might appear rather crude. The final result
(36) for the KLI potential, however, can also be understood [11] as a well-defined mean-
field approximation. Explicit calculations on atoms performed in the x-only limit [25]
show that the KLI approximation yields excellent results with, e.g., ground-state energies
differing only by a few ppm from the much more time-consuming exact solutions of the

full integral equation (31). We will give numerical examples in the next section.

To conclude this section we describe (without proof) some exact properties of the OEP

method and the KLI approximation.

1. Asymptotics
For finite systems, both the full OEP and the KLI potential fall of as —1/r for r — oo
[10] if the exact expression (15) for the exchange-energy functional is employed. The
asymptotic behaviour of the correlation potential is equal to that of the function

Uemaxo (') corresponding to the highest occupied orbital.

2. Freedom of self-interaction
If the employed xc-energy functional cancels the self-interaction of the Hartree term,
this property is preserved by the KLI approximation. Thus x-only OEP and x-
only KLI schemes are self-interaction free. It has to be noted, however, that the
inclusion of an LDA-correlation-energy functional might introduce a self-interaction

error again.

3. Derivative discontinuities

An important property of the exact xc potential is that it exhibits discontinuities
as a function of particle number N at integer values of N. This has important
consequences for the values of band gaps in insulators and semi-conductors (for a
detailed description see e.g. [26]): The correct value E9 of the gap is obtained by
adding the discontinuity Ay, of the xc potential to the KS gap, i.e. , B9 = Ffo+ As..
Neither the LDA nor the GGAs reproduce this discontinuity. To date, the OEP and
the KLI potential are the only known approximations of Vi.(r) that reproduce this
discontinuity [10].
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Table 1: Various self-consistently calculated x-only results for the Ar atom. All values in

atomic units.

OEP KLI B88 xPW9I1 xLDA
Eror -526.8122 -526.8105 -526.7998 -526.7710 -524.5174
€15 -114.4524 -114.42789 -114.1890 -114.1887 -113.7159
€2s -11.1534 -11.1820 -10.7911 -10.7932 -10.7299
Eop -8.7339 -8.7911 -8.4107 -8.4141 -8.3782
€3s -1.0993 -1.0942 -0.8459 -0.8481 -0.8328
E3p -0.5908 -0.5893 -0.3418 -0.3441 -0.3338
E4s -0.1607 -0.1616 -0.0106 -0.0122 -0.0014
<r?> 1.4465 1.4467 1.4791 1.4876 1.4889
<r '> 3.8736 3.8738 3.8731 3.8729 3.8648
p(0) 3839.8 3832.6 3847.3 3847.0 3818.7

5 Selected Results

5.1 Atomic and molecular systems

We begin with a comparison of x-only results. In an x-only world, the OEP represents
the exact KS potential of DFT and can therefore serve as a standard to compare approx-
imations with. In Table 1 we show as a typical example various results for the argon
atom obtained with different x-only methods. Besides the exact OEP and KLI meth-
ods described above, we also list results from conventional KS-DFT obtained with the
x-energy-functional approximations due to Becke (B88) [27], Perdew and Wang (PW91)
[28] and from the well-known x-only LDA approximation. The KLI results given in the
second column of Table 1 clearly demonstrate the high quality of the KLI approximation
as all results differ only slightly from the exact OEP ones. For all standard DFT methods,
the disagreement is much more pronounced, especially for the highest occupied orbital
energies and even more so for the unoccupied ones. The reason for this may be seen from
the plots of the x-potentials shown in Figures 1 and 2: The KLI potential is much closer
to the exact OEP, reproducing the so-called inter-shell peaks, which are missing in the
conventional KS approximations, and furthermore the correct —1/r decay of Vi(r) for
large r. This latter property is clearly visible from the plot in Figure 2, where we show

—V4(r) on a logarithmic scale. None of the standard KS potentials decays in a straight
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Figure 1: Exchange potentials V;(r) of the Ar atom from various self-consistent calcula-

tions.

OEP — -
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Vi(r) [au)]
0.01 2
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0.0001 : '

r [a.u.]

Figure 2: Exchange potentials —V,(r) of the Ar atom from various self-consistent calcu-

lations in the valence region.

line with the proper slope as the OEP and KLI potentials do.

It has been shown [20, 32, 33] that the most suitable correlation-energy functional to be
included into the KLI scheme is the one developed by Colle and Salvetti (CS) [34, 35]. It
is given by

ES{enll = - ab/dST y(r)(r) [E po(r) 2 Vi) lIVP(I")I2

E,Ocr )Aps(r) + i ]—a/dST’y % (41)
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Table 2: Total absolute ground-state energies for first-row atoms from various self-
consistent calculations [20]. Quantum chemistry (QC) values from [29]. /A denotes the

mean absolute deviation from the exact non-relativistic values [30]. All numbers in atomic

units.
KLICS LDA BLYP PWIl1 QC exact
He 2.9033 2.8348 2.9071 2.9000 2.9049 2.9037
Li 7.4829 7.3440 7.4827 7.4742 7.4743 7.4781
Be 14.6651 14.4472 14.6615 14.6479 14.6657 14.6674
B 24.6564 24.3536 24.6458 24.6299 24.6515 24.6539
C 37.8490 37.4700 37.8430 37.8265 37.8421 37.8450
N 54.5905 54.1368 54.5932 54.5787 54.5854 54.5893
O 75.0717 74.5274 75.0786 75.0543 75.0613 75.067
F 99.7302 99.1142 99.7581 99.7316 99.7268 99.734
Ne 128.9202 128.2335 128.9730 128.9466 128.9277 128.939
A 0.0047 0.3795 0.0108 0.0114 0.0045
where
p1(r)py(r)

y(r) = 4 ————=, 42

() e (12)

ar) = 1+do() L, (43)

plr)~ et
£(r 44
() - (44)

The constants a, b, ¢ and d are given by a = 0.04918, b = 0.132, ¢ = 0.2533, d = 0.349.

In Table 2 we compare total ground-state energies of first-row atoms calculated self-
consistently with various approximations. The first column, headed KLICS, shows the
results from the KLI method employing the exact exchange energy functional (15) plus
the CS-correlation energy functional while the next columns show conventional KS results
obtained with the x-energy functional due to Becke [27] combined with the c-energy func-
tional from Lee, Yang and Parr [36], denoted as BLYP, and from the generalized gradient
approximation due to Perdew and Wang [28], referred to as PW91. The quantum chem-
istry values, headed QC, are based on configuration interaction calculations [29]. The
exact non-relativistic energies, i.e. the experimental values with relativistic effects sub-
tracted, have been taken from [30]. The mean absolute deviations of the calculated from
the exact values, denoted by A, are about the same for the KLICS and QC approaches,
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Table 3: Ionization potentials of neutral atoms, calculated from the highest occupied
orbital energies [20]. /\ denotes the mean absolute deviation from the experimental values,

taken from [31]. All values in atomic units.

KLICS LDA BLYP PWI1 experiment
He 0.945 0.570 0.585 0.583 0.903
Li 0.200 0.116 0.111 0.119 0.198
Be 0.329 0.206 0.201 0.207 0.343
B 0.328 0.151 0.143 0.149 0.305
C 0.448 0.228 0.218 0.226 0.414
N 0.579 0.309 0.297 0.308 0.534
O 0.559 0.272 0.266 0.267 0.500
F 0.714 0.384 0.376 0.379 0.640
Ne 0.884 0.498 0.491 0.494 0.792
Na 0.189 0.113 0.106 0.113 0.189
Mg 0.273 0.175 0.168 0.174 0.281
Al 0.222 0.111 0.102 0.112 0.220
Si 0.306 0.170 0.160 0.171 0.300
P 0.399 0.231 0.219 0.233 0.385
0.404 0.228 0.219 0.222 0.381
Cl 0.506 0.305 0.295 0.301 0.477
Ar 0.619 0.382 0.373 0.380 0.579
A 0.030 0.176 0.183 0.177

while they are about twice as high for the GGAs and about a factor of 80 higher in the
LDA. We emphasize that the numerical effort involved in the KLICS scheme for atoms is
only slightly higher than in the LDA and GGA schemes. Apart from total energies, the
highest occupied orbital energies, which should be equal to the exact ionization poten-
tial in an exact implementation of DFT, are much closer to the experimental ionization
potentials in the KLICS scheme than in the conventional KS approaches. This is shown
in Table 3: All the conventional KS calculations are inadequate, the numbers are off by

about 100%.

A similar picture is found for molecules. The KLICS highest occupied orbital energies
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Table 4: FEnergies of the highest occupied molecular orbitals of LiH, BH and FH from
various calculations. The KLICS, PW91 and xcLDA results have been obtained with our
basis-set-free numerical code at experimental bond lengths from [37]. The exact values of

the ionization potential are from [37]. All numbers in atomic units.

KLICS PW9I1 xcLDA exact
LiH -0.3224 -0.1623 -0.1613 -0.283
BH -0.3698 -0.2052 -0.2031 -0.359
FH -0.6772 -0.3577 -0.3608 -0.589

listed in Table 4 for some diatomic molecules are in much better agreement with the
experimental values than the conventional LDA and GGA schemes. We conclude that
orbital energies are universally improved for atoms and molecules in the KLICS approach.
This statement, however, is not true for molecular total energies as can be seen from the

dissociation energies listed in Table 5.

Similar to Hartree-Fock, the dissociation energies of some molecules as calculated within
the KLICS approximation are seriously in error. Since the corresponding atomic ground-
state energies given above are of excellent quality, the error must be due to correlation
effects present in molecules only. In particular, the left-right correlation error, well known
in HF theory, also occurs in DFT when the exact Fock expression for Fy is employed.
Apparently this error is not sufficiently corrected for by the Colle-Salvetti funtional. The
PWO91 and LDA results are clearly much better. The fact that exchange effects are
treated only approximately in these approaches seems to be an advantage. Therefore, the
construction of correlation functionals better adapted to correct the left-right deficiency
of the exact exchange energy functional is necessary. Work along these lines is in progress.

A detailed study of x-only KLI results for molecules may be found in [32].

5.2 Solids

As pointed out in the previous sections, the OEP integral equation can be solved for
spherically symmetric systems. This fact was exploited by Kotani [22, 23, 24], who imple-
mented the exact exchange OEP into the tight-binding linear muffin-tin orbital method
in the atomic sphere approximation (TB-LMTO-ASA) [42, 43, 44]. Starting point is the

chain-rule relation

S By {99} s, B [{p}] dp(r')
SVs(r / o delr)  6Vs(r) )
_ch( D]
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Table 5: Dissociation energies of the closed-shell-first-row dimers calculated at experimen-
tal bond lengths from [37], except for HF, where the used bond lengths were 1.4 a.u. for
Hj, 5.051 a.u. for Liy, 4.6 a.u. for Bey, 2.348 a.u. for C,, 2.068 a.u for Ny and 2.668 a.u. for
F,. Experimental values calculated from [37] by the method used in [38], except for H,,
where the exact value is from [39]. HF results calculated from values given in [40, 41].

All values calculated with basis-set free, fully numerical codes and given in 107 atomic

units.

HF KLICS LDA PW91 experiment
H, 133.630 171.349 179.897 170.657 174.475
Li, 17.0 32.4 37.9 33.4 39.3
Be, -12.3 -10.5 20.5 16.0 3.8
C, 29.4 74.8 267.5 239.1 233.5
N, 191.1 282.7 427.1 387.4 363.9
Fy -45 -33 125 107 62.1

Due to the spherical symmetry inside the atomic spheres within the ASA this integral
equation can be solved numerically for the xc potential Vi.(r’). The functional derivatives
with respect to the potential are calculated by differentiating Fy. and p(r) with respect
to the LMTO-parameters and the latter with respect to the potential.

Eq. (45) is equivalent to the OEP integral equation, which can easily be seen by applying
the chain-rule of functional derivatives on the left-hand side of Eq. (45) leading to

8 B {so} 5. 0 Exc[{p}] 60i(r')
Vs Z/d Sorr) 5Vs () + c.c. (46)
where

with the KS Green’s function (g, defined in Eq. (33). The functional derivative of p(r’)
with respect to Vs(r) can be identified with the KS response function

dp(r')
5‘/5(1')

= xs(r',r) Z Gsi(r',r)el (r")pi(r) + c.c.. (48)

=1

Inserting (46) and (47) on the left-hand side and (48) on the right-hand side of Eq. (45)
and using the definition of the uy(r), Eq. (32), one recovers the OEP integral equation
(31).
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Kotani added an LDA correlation energy functional, using the von Barth-Hedin para-
metrization, and applied this method (EXX, for exact exchange) to insulators [22], semi-
conductors [23] and most recently to metals [24]. Some results for insulators and semicon-

ductors are given in Tables 6 and 7. The energies found for metals are in good agreement

with LDA results.

Another approach was devised by Bylander and Kleinman [45]. They implemented the
KLI approximation within a pseudo-potential framework. As in the previous method,
correlation effects were taken into account through an ordinary LDA, which was added

to the KLI exchange-potential. The results for Ge are given in Table 7.

Table 6: Energy gaps (in eV) at high-symmetry points for MgO and CaO from Ref. [22]

LDA EXX APW-LDA Hartree-Fock experiment

MgO Direct Gap

I 4.64 6.21 4.7 25.3 7.833
X 13.56 15.23 10.2 17.0
L 12.91 14.33 8.3 21.4

Ca0O Direct Gap
r 4.30 6.47 4.4 15.8 7.09
X 4.30 7.40 3.9 19.9
L 7.78 10.12 7.9 21.9

Indirect Gap
- X 3.96 6.97 3.5 18.7

Table 6 shows the results of the EXX method for MgO and CaQ. The values of the gap
obtained with this method lie inbetween the LDA and the HF results and are in much
better agreement with the experimental values. It has to be noted that the derivative
discontinuities, which can in principle be calculated with the EXX method, are not taken
into account here. The width of the oxygen (2p) states is reduced with respect to an
LDA calculation, which is caused by the self-interaction cancellation of the EXX method
making these states more localized. Furthermore the potential within the atomic spheres
displays more structure than the corresponding LDA potential [22]. This is analogous to

the inter-shell peaks discussed above for atoms.

In Table 7 the results for Si, Ge and diamond are compared for various schemes, respec-

tively. All energies are relative to the top of the valence band which, in these systems, is
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the I'ys5/ state. Compared with the LDA results, the energies of the conduction band are
consistently shifted upwards, i.e. towards the HF values, by the OEP method. As before,
the overall agreement with experiment is much better in the OEP schemes than in LDA
or HF. Once again, the discontinuity of the xc potential, although it can be calculated

within the OEP method, was not taken into account in these calculations.

The importance of this discontinuity was estimated by Li, Krieger, Norman and Tafrate
[47], who applied the OEP and the KLI approximately to a Perdew-Zunger SIC-LDA.
Results for the energy gaps of noble-gas solids and NaCl are given in Table 8. It is clearly
visible that the values of (F{g+ A,.) are in much better agreement with experiment than

the mere KS gaps.
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Table 7: Comparison of the KS-eigenvalues (in eV) relative to the top of the valence band
(T35,1) for Si, Ge and diamond. The LDA, EXX and also the experimental values are
taken from Ref. [23]. HF values are from Ref. [46]. KLI values are from Ref. [45].

LDA EXX HF KLI experiment

Si gap 0.45 1.93 1.17

I'y5. 2.65 3.79 8.7 3.4

[y 3.07 4.43 9.3 4.2

Ly, 1.41 2.65 2.1,24 £ 0.15

L. 3.22 4.31 4.15 + 0.1

Iy, -12.07 -11.35 -12.5 + 0.6

Xy -2.92 -2.46 -2.9,-33 £ 0.2

L3y -1.20 -0.91 -1.2+0.2, 1.5
Ge I'ys. 2.70 3.55 7.9 3.24

[y 0.40, -0.20° 1.90 4.3 1.239 0.98

Li.(gap) 0.32 1.57 0.796 0.87, 0.84°

L. 3.67 4.43 4.3

Xie 0.630 0.933 1.3 +£0.2°

Iy, -12.68 -12.01 -12.6 + 0.3

Ly, -7.62 -6.99 -7.7 4+ 0.2,-7.4 £0.2

L3y -1.40 -1.15 -1.4 £ 0.2
diamond  gap 4.00 5.12 5.48

[y5. 5.61, 5.7° 6.61 14.6 7.3

[y 13.50,13.4¢ 14.04 23.7 15.3 £ 0.5

Iy, -21.6 -21.4 242 +£1,-21 £ 1

Ly, -13.65 -13.09 -12.8 + 0.3

“ conventional LDA in TB-LMTO-ASA from [46]

b values are taken from [45]

¢ conventional LDA-pseudopotential calculation from [45]
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Table 8: Gap energies (in eV) of noble-gas solids and NaCl. The values in parentheses
are calculated without the derivative discontinuity (from Ref. [47]).

LDA OEP KLI SIC experiment

B9 (Exs) E9(Exs)
Ne 11.5 20.9 (15.2) 20.8 (15.2) 22.2 21.4
Ar 8.2 13.1 (9.7) 13.1 (9.7) 15.2 14.2
Kr 6.8 11.1 (8.0) 10.8 (7.9) 13.6 11.6
Xe 5.8 9.5 (6.9) 9.0 (6.7) 9.8
NaCl 5.5 9.5 (6.3) 9.5 (6.4) 10.0 9.0
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