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22CIC Nanogune BRTA, 20018 San Sebastián, Spain

23Catalan Institute of Nanoscience and Nanotechnology - ICN2, CSIC and BIST, 08193 Bellaterra, Spain
24School of Mathematical Sciences, Fudan University, China
25Departamento de F́ısica, Campus de Rabanales Edif. C2,
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First-principles electronic structure calculations are now accessible to a very large commu-
nity of users across many disciplines thanks to many successful software packages, some of
which are described in this special issue. The traditional coding paradigm for such packages
is monolithic, i.e., regardless of how modular its internal structure may be, the code is built
independently from others, essentially from the compiler up, possibly with the exception of
linear-algebra and message-passing libraries. This model has endured and been quite suc-
cessful for decades. The successful evolution of the electronic structure methodology itself,
however, has resulted in an increasing complexity and an ever longer list of features expected
within all software packages, which implies a growing amount of replication between different
packages, not only in the initial coding but, more importantly, every time a code needs to be
re-engineered to adapt to the evolution of computer hardware architecture. The Electronic
Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and
Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and
promote modularization, with the ambition to extract common tasks from electronic struc-
ture codes and redesign them as open-source libraries available to everybody. Such libraries
include, e.g., “heavy-duty” ones that have the potential for a high degree of parallelisa-
tion and adaptation to novel hardware within them, thereby separating the sophisticated
computer science aspects of performance optimization and re-engineering from the compu-
tational science done by, e.g., physicists and chemists when implementing new ideas. We
envisage that this modular paradigm will improve overall coding efficiency and enable spe-
cialists (whether they be computer scientists or computational scientists) to use their skills
more effectively, and will lead to a more dynamic evolution of software in the community as
well as lower barriers to entry for new developers. The model comes with new challenges,
though. The building and compilation of a code based on many interdependent libraries
(and their versions) is a much more complex task than that of a code delivered in a single
self-contained package. Here we describe the state of the ESL, the different libraries it now
contains, the short- and mid-term plans for further libraries, and the way the new challenges
are faced. The ESL is a community initiative into which several pre-existing codes and their
developers have contributed with their software and efforts, from which several codes are
already benefiting, and which remains open to the community.
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I. INTRODUCTION

Electronic structure theory is among the most productive branches of computational science to-
day. [1] The necessary underlying level of theory – Dirac’s Equation – is analytically known exactly. [2]
It is applicable to condensed matter physics, chemistry, materials science and, in fact, touches all
branches of engineering – whenever either modified or completely new technologically more capable
materials are needed. Practical, i.e., numerically tractable, approximations to Dirac’s Equation can
be used to predict the properties of molecules, solids, liquids, interfaces, including their responses
to environmental stimuli (fields, currents, mechanical stimuli, etc.). They typically provide sufficient
accuracy and reliability [3] to formulate experimentally testable hypotheses and, ultimately, accelerate
the discovery and development of “new” molecules and materials. The growth of the field is reflected
in a plethora of existing and new software developments that implement aspects of electronic structure
theory either for specialized or rather broad general use cases. The community-wide psi-k.net web-
site lists over thirty “codes” at the time of writing (December 2019) and 74 individual code projects
are listed at the “Community Code Database” of the U.S. based Molecular Software Sciences Institute
(MolSSI), [4] another community-bridging organization working to support a broad set of “codes” and
their users. [5, 6]

While the electronic structure community (ESC) is thus extremely active in developing software
that enables a host of scientific insights, developments have historically occurred in the form of different
individual software packages that are largely distinct from each another at the code level. A notable
exception are numerical and/or performance related libraries which are often generic to the broader
computational community, e.g., basic linear algebra subroutines (BLAS),[7] exploiting parallelism at
the message passing interface (MPI) level,[8] higher-level linear algebra utilities (most importantly
LAPACK[9] and its parallel counterpart, ScaLAPACK[10]) or fast Fourier transforms (FFTW).[11]

ESC software development has historically taken place within a model of largely monolithic pro-
grams, in which, on top of a main quantum engine, all further developments are incorporated incremen-
tally. The (now) more traditional electronic structure codes are steadily growing, each incorporating
all or many of the developments that have become standard in the community. This model is illus-
trated in Fig. 1(a). Furthermore, each code needs re-engineering to adapt to the constant hardware
evolution, most notably in high-performance computing, and most of the re-engineering is carried out
on tasks that are common to all or most of the codes. In addition to this obvious inefficiency, two
other important problems are inherent in the monolithic model. Firstly, it stifles innovation: novel
methodological (physics) ideas within the wider community can only be implemented by joining any of
the pre-existing efforts. It is increasingly hard to start a project from scratch. This problem is partly
addressed by the open-source model of programming, well established in some modern electronic struc-
ture projects, to which novel ideas can be incorporated by external coders, at least in principle (note,
however, that poor quality, undocumented open source code does not fulfill this requirement). Sec-
ondly, the monolithic model allows very little differentiation in the profiles of human resources needed
for the project: there is a need for people with expertise in the state-of-the-art for both computational
science (e.g., physics, chemistry, etc.) and computer science (e.g., software engineering, performance
optimisation, hardware architecture, numerical analysis etc.).

II. SHARED LIBRARIES AND THE ESL

A. The library sharing movement

Partly in response to the problems mentioned above, and partly following the spirit of the open
access movement and inspired by well established practices in software engineering, the computational
physics and chemistry communities have witnessed the appearance of libraries—understanding this
term broadly—which perform particular, well-defined tasks that are common to many codes. We will
not review this movement here, but will illustrate it with some examples from the ESC. Take, for
instance, the exploitation of symmetry in computational simulation of both molecular and crystalline
systems. This involves a well-defined set of tasks, from recognising the symmetry group for a specified
structure, to the labelling of eigenstates according to irreducible representations, including the reduc-
tion of the eigenproblem complexity, or the optimisation of Brillouin-zone sampling. Several libraries
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FIG. 1. Comparison of the traditional monolithic and the emerging modular paradigms in electronic structure
coding. One of today’s electronic-structure codes – large blue box in panel (a) – thins down into the higher-level
electronic structure driver that defines the particular code – blue box in panel (b), allowing for a more specialized
and sustainable development of the different parts of the software. The acronyms in the figure indicate operating
system (OS), fast Fourier transforms (FFT), input/output (I/O), molecular dynamics (MD), and linear scaling
with the number of atoms, O(N), respectively, in addition to the central and graphical processing units, CPU
and GPU, respectively. Steering upper-level drivers are distinguished between versatile toolkits such as ASE,
and handlers of massive amounts of quantum-engine replicas, such as i-PI. In addition to the well-known MPI,
OpenMP, CUDA, and HDF libraries, other acronyms and names relate to libraries described in Sections I, II,
and IV.

have appeared within this free sharing movement to perform these tasks (e.g., the spglib library [12]).

The handling of symmetry is an example of a very general pre- and post-processing tool whose
function can be defined completely independently and is one of many other similar possibilities that
constitute opportunities for creating libraries. Another notable case is that of wannier90, [13] which
not only calculates maximally localised Wannier functions [14] from the outputs of electronic structure
codes, but can also determine many properties using these Wannier functions. Remarkably, the
authors’ ambition from the very beginning of the project was to maximise its applicability to all
classes of electronic structure methods, and they have managed to limit code dependencies to an
absolute minimum. This has enabled a very widespread adoption within the wider electronic structure
community (see Sec. IV K).

In addition to these kinds of tool, other sharing/library efforts have been appearing which we
can characterise as top-level steering codes, and low-level routines, as shown in Fig. 1(b), which
illustrates the new emerging paradigm. Among the former is the integration of electronic structure
codes as “solvers” or “quantum engines” into broader frameworks, typically handling the nuclear
degrees of freedom, such as the python-based Atomic Simulation Environment (ASE) [15] or the i-PI
framework [16] for classical and path-integral molecular dynamics. Both of these support a large
number of underlying electronic structure codes. Also in the top-level category, much effort is now
being dedicated to general-purpose workflow tools that steer and automate the running of electronic
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structure codes in complex procedures and encompass the ambition of versatility (see, e.g., the AiiDA
project [17]), providing a much more detailed picture of how electronic structure methods are applied
as compared to a decade ago. As a pioneering example of a low-level shared library, we mention
Libxc [18, 19], which implements hundreds of local and semilocal exchange-correlation functionals and
is now very widely used (see Sec. IV B).

There are many other tasks and needs in electronic structure that may be generically abstracted in
the form of shared libraries, with common frameworks and shared workloads in order to more readily
achieve maturity of established functionality, numerical correctness, and continued development of new
functionality at the same time. Developing electronic-structure software based on common standards,
libraries, application programming interfaces (APIs), and flexible software components is a trend that
is therefore gaining prominence in the field.

Additionally, at a social level, such shared developments bring different communities together and
reinforce existing collaborations within the communities themselves. Significant challenges on this
path are often simple, related to human time and workload and include: identifying and locating an
existing solution to a code problem at the time when it is needed; finding and reading documentation
to understand and co-develop software originally written by others; being able to download, install
and successfully link to an array of disparate software pieces on a given, often individualized, compute
platform; having an effective pathway to communicate with the developers of the library for advice
and to offer feedback and suggestions for improvement. These issues are not specific to the ESC but
rather reflect generic challenges that confront all shared software development efforts.

B. ESL

1. Concept

This is where the “Electronic Structure Library” (ESL)[20] enters, the subject of the present paper.
A key goal of the ESL is to alleviate and overcome the issues mentioned above, creating an effective
collaboration platform for shared software developments, where these make sense. Our vision is to
sustain a community that develops, distributes and oversees electronic structure libraries for the benefit
of all electronic structure codes.

The ESL started in 2014 as a CECAM initiative, with the aim of stimulating the segregation of
well-defined tasks into shared libraries, pushing the model of Fig. 1(b), and confronting the challenges
it entails. From the beginning, the work of the ESL has been done by programmers actively involved
in successful electronic structure codes and the ESL initiative has been supported by the development
teams of these codes, which include ABINIT,[21] Siesta,[22] Octopus,[23] Quantum ESPRESSO,[24]
BigDFT,[25] FHI-aims,[26] and GPAW,[27] amongst others.

The initial efforts focused on three aspects: (i) identifying existing libraries suitable for inclusion
in the ESL; (ii) extracting and re-coding as libraries a number of sub-packages from the community
codes; and (iii) incorporating these libraries into other participant codes.

Ongoing efforts within the ESL include improving the coordination between and interoperability
of the various software modules, expanding their integration into large software development projects
(e.g., some of the main electronic structure codes in the community), and making it easier to seamlessly
distribute a consistent bundle of library and software modules (see Sec. V).

A key enabler in all this process has been the will to overcome the monolithic mentality, both at
a scientific level (one research group, one code) as well as at a business model level (free software vs.
open-source vs. proprietary), allowing collaborations between communities and making new public-
private partnerships possible.

In addition to the obvious goal of avoiding re-inventing the wheel for every code, by re-coding
well-known algorithms for well-established tasks, two other important advantages are foreseen. The
first relates to human resources. Electronic structure codes encompass sophisticated physics and
sophisticated software engineering. The monolithic development model demands highly educated
personnel with expertise in both areas. An efficient segregation of tasks into libraries would allow
an abstraction of the low-level detail for physicists or chemists coding at a high-level, while software
engineers could maintain and evolve the low-level software without needing a high-level of expertise
in the science used.
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A related second advantage is that a widely-used ESL library or set of libraries, with well-defined
APIs, would offer a good target for re-coding for software engineers working close to the cutting-edge
of hardware developments and high performance computing (HPC) centres. This is, of course, a
continuous process as it has to be done at each step of hardware evolution. Indeed, it has already
happened with, e.g., Intel offering their own implementation of linear-algebra libraries adapted to their
own compilers and processors. The ESL should be able to offer many more targets for optimisation.
It should also be remembered that there is currently a substantial level of resource dedicated to
re-engineering codes for new hardware, both at individual HPC centres and funded by national (or
trans-national, e.g., European Union) research agencies. These efforts are usually directed towards
particular codes. Dedicating these efforts to libraries would be more efficient, serve the community
more widely, and would also be easier to maintain as libraries are naturally composed of independent
modules. Ideally, scientists should aspire to adapt their codes to new computers and to new computer
paradigms as this is usually the only way to access the largest computational systems. Through the
ESL, this could be achieved just by linking to the latest library implementation for a given computer
architecture.

These elements of the ESL vision rely, however, on the conversion into libraries of massively parallel
heavy-duty code, which is an extremely ambitious goal. There has been an emphasis on heavy-duty
tasks in the ESL efforts so far, although work has not focused exclusively on this. These efforts are
described in Section IV. The segregation of heavy-duty libraries involves many new challenges, which
we now describe.

2. Challenges

In addition to the challenges mentioned above referring to shared software in general, the model
proposed here faces a number of additional important challenges. Firstly, building a binary code
(compilation and linking), which depends on many libraries, and often their specific version, is sub-
stantially more difficult than for a self-contained (monolithic) program. Furthermore, the complexity
of the heterogeneous environments typically encountered at HPC installations makes the build even
harder and more diverse. Ours is not the first community to face these problems, and a significant
part of the ESL effort is expended in the bundling and building strategies for the ESL, as described
in Section V.

A second important challenge is the loss of the global coherence in data structures and paralleli-
sation that monolithic programs can adopt (although it is not always possible or convenient). This
implies the need for conversion routines to adapt data structures from one section of the code to
another. Again, this challenge is not new, and it represents an intrinsic element of this modular
paradigm. Associated with these conversions, and in general, with the whole strategy, is an expected
loss of efficiency, compared to that achievable within perfectly coded (and constantly maintained)
monolithic programs. However, the savings in (limited) human resources that modularity brings are
likely to outweigh a loss in (continuously expanding) hardware cycles. An analogy can be made with
the controversies in the early seventies regarding the use of high-level languages (instead of machine
language) for the implementation of system software.[28] It is now clear that the apparently wasteful
road led to significant progress.

Another challenge faced by the ESL to date stems from the fact that the majority of the libraries
currently in the ESL have been extracted from pre-existing electronic structure codes. This means
that the API and internals of the library were chosen with its parent environment in mind. Finally, the
issue of licensing should be mentioned. Different libraries are released under different licenses, which
may impose conditions on the licenses under which the using codes are distributed. This represents a
challenge as well, although of a different kind.

III. COMMON ELEMENTS OF ELECTRONIC STRUCTURE CODES

Before describing the existing library implementations in the ESL, we give here a brief overview of
the task that they are supposed to handle or, to put it more simply, what are the common elements of
the electronic structure codes. From the many available methods to approximate Dirac’s equation in
a computationally tractable form, the majority fall into one of two broad classes: density functional
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theory (DFT) and wave-function based methods. In this paper we concentrate on the former, although
many of the tools described here are also useful for other methods also based on effective single-particle
models, such as Hartree-Fock.

In the non-relativistic limit, the equations to be solved for ground-state DFT are the Kohn-Sham
equations:[29]

ĥKS[n]φi(r) = εiφi(r) , (1)

where φi and εi are the Kohn-Sham (KS) orbitals and eigenenergies, respectively, and ĥKS is the
Kohn-Sham hamiltonian. The hamiltonian is usually decomposed in the following way:

ĥKS[n] = t̂s + vext + vH[n] + vxc[n] , (2)

where vext is the external potential (typically the potential generated by the nuclei), vH is the Hartree
potential, and vxc is the exchange and correlation potential. t̂s is the single-particle kinetic energy
operator. In non-relativistic form,

t̂s = −1

2
∇2. (3)

However, practically every electronic structure code employs at least a scalar-relativistic variant of t̂s
(the applicability of the non-relativistic expression is limited to the lightest chemical elements only).
In codes employing pseudopotential-type techniques (see below), relativity is usually incorporated
implicitly through the form of the projectors. In all-electron codes, explicit scalar-relativistic forms
of t̂s are used. The Kohn-Sham equations are a set of one-particle equations that need to be solved
self-consistently as several terms in Eq. (2) are functionals of the electronic density:

n(r) =
∑
i

fi|φi(r)|2 . (4)

fi are occupation numbers, ensuring that the orbitals are only occupied as far as there are electrons
(i.e.,

∑
i fi = Nel, where Nel is the number of electrons in the system). Any code that aims to solve the

Kohn-Sham equations must therefore perform the following tasks: 1. given a set of atomic coordinates,
evaluate vext; 2. evaluate vH[n]; 3. evaluate vxc[n]; 4. solve the eigenvalue problem of Eq. (1); 5. find
the density that solves the self-consistency problem. Each of these steps thus represents an opportunity
for electronic structure packages to share and reuse code:

1. To reduce the computational cost, many DFT codes use the pseudopotential approximation. [30]
The pseudopotentials are normally generated by specialized codes that output them using a par-
ticular one of the existing file formats. Therefore, codes that want to use a specific pseudopoten-
tial are required to know the corresponding file format to parse the corresponding information.

2. The Hartree potential vH[n](r) is defined as

vH[n](r) =

∫
dr′

n(r′)

|r − r′|
. (5)

Direct evaluation of this integral is not usually numerically efficient and it is common practice
to instead solve the corresponding Poisson equation.

3. Many hundreds of different approximations to the exchange-correlation functional have been
proposed, some of which require the evaluation of long, complex mathematical expressions.
Implementing such approximations is thus a tedious, error prone task.

4. Many different methods exist in the literature for solving eigenvalue problems such as Eq. (1).
Upon discretization of the orbitals φ, one can write the problem in the language of matrices and
vectors. Then solving Eq. (1) reduces to the standard linear algebra problem of diagonalizing
a matrix, in this case the hamiltonian matrix. For cases where the size of this matrix is too
large for direct diagonalisation, either due to the memory or computational time required,
iterative eigensolvers can be used which only require the result of the hamiltonian operating on
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an orbital, or alternative formulations of the problem can be solved, such as the ones based on
Green’s functions or Fermi-operator expansions.

5. Finding the density that solves the self-consistency problem is usually done iteratively: starting
from a guess for the density, one solves Eq. (1), thus obtaining a new set of orbitals φ which,
in turn, are used to obtain a new density. The process is then repeated using the new density
until the changes in the density are smaller than some defined threshold. Since the total com-
putational cost strongly depends on how fast the iterative procedure converges, many methods
are available to accelerate this process.

In the case of wave-function based methods, many of these require a solution to the Hartree-Fock
equations as a starting point. These equations share many similarities with the Kohn-Sham equations:
both are sets of one-particle equations that need to be solved self-consistently. This further increases
the opportunities for code sharing and reuse among electronic structure packages.

To numerically solve either the Kohn-Sham or the Hartree-Fock equations, the relevant quantities
are typically discretized in some way, either using basis-sets or grids. Each type of discretization
requires specialized functions that can, in principle, be shared among codes that use the same basis-
set or type of grid. For example, atom-centred basis sets require the efficient evaluation of one- and
two-particle integrals.

Along with the common elements of electronic structure packages which are directly related to the
equations solved, other types of operations are also performed by most ES codes. A prime example
are I/O operations, which range from parsing an input file to writing physical quantities of interest to
disk for visualization or further processing.

IV. EXISTING LIBRARY IMPLEMENTATIONS IN THE ESL

In the following, we briefly present the libraries and packages that are currently part of the ESL,
giving a brief description of their scope, history, and use cases. They are tabulated in Table I.

A. PSolver

Electrostatic potentials play a fundamental role in nearly any field of physics and chemistry. It
is, therefore, essential to have efficient algorithms to find the electrostatic potential V arising from a
charge distribution ρ (associated to the particle density n in Eqs. (4) and (5)) in a dielectric medium
described by the dielectric constant ε(r), or, in other words, to solve the generalized Poisson’s equation

∇ · ε(r)∇φ(r) = −4πρ(r). (6)

The large variety of situations in which this equation is encountered led us to address this problem
for different choices of the boundary conditions (BC). The long-range behavior of the inverse Laplacian
operator makes this problem strongly dependent on the BC of the system. Therefore, any method
aiming at providing a solution to Eq. (6) has to deal with the BC, which, for instance, could be either
periodic or free (otherwise referred to as “isolated” or “open”) along each of the three directions
x, y, z. In the case of fully periodic BC, the most natural (and efficient) approach to the problem
is the reciprocal space treatment. It amounts to expanding both the density and the potential as
superpositions of plane waves (Fourier series), thereby Eq. (6) becoming – for a homogeneous dielectric
– algebraic in the Fourier components of ρ and V . This equation is readily solved and the result is
finally transformed back into real space. Forward and backward transformations are carried out via
Fast Fourier Transforms (FFT), hence the overall computational scaling of the method with respect
to the number N of grid points is a rather appealing O(N logN).

The situation is less straightforward for the same problem but different BC, e.g., free (isolated)
BC. In this case the solution of Poisson’s equation in vacuum can formally be obtained from a three-
dimensional integral:

V (r) =

∫
dr′G(|r− r′|)ρ(r′) , (7)
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TABLE I. Libraries included in the ESL and ESL bundle. The first twelve are dedicated to electronic structure
(ES) functionality; the last ten are tools of more general (GEN) applicability beyond electronic structure theory.
They are described in Section IV, except for Futile, which is described in Section VI B 2. The licence acronyms
expand as follows: GPL: GNU General Public Licence, in versions 2.0[31] and 3.0;[32] LGPL: GNU Lesser
GPL, version 3.0;[33] MPL: Mozilla Public Licence, version 2.0;[34] MIT: Massachusetts Institute of Technology
Licence;[35] CeCILL-C: The CeCILL-C Free Software License Agreement;[36] BSD: Berkeley Software Distri-
bution licence, in either the 2-clause[37] or the 3-clause[38] versions.

Library Functionality Licence

PSolver ES: Poisson solver for 0, 1, 2 and 3 dimensions, varying dielectrics and Poisson-Boltzmann GPL-2.0

Libxc ES: Pointwise evaluation of exchange & correlation for LDAs and GGAs MPL-2.0

libvdwxc ES: Evaluation of Van der Waals non-local exchange & correlation GPL-3.0

libGridXC ES: Evaluation of exchange & correlation in regular grids incl. non-local Van der Waals DFs BSD 3-clause

pspio ES: Input/output of pseudopotentials in most popular formats LGPL-3.0

libPSML ES: Standardized pseudopotential markup language specification and associated library BSD 3-clause

ESCDF ES: Electronic-structure data format specification and associated library LGPL-3.0

ELSI ES: Unified interface calling a variety of Hamiltonian solver libraries BSD 3-clause

PEXSI ES: Pole expansion and selective inversion solver library BSD 3-clause

LibOMM ES: Iterative minimization non-orthogonal solver BSD 2-clause

PIKSS ES: Parallel iterative Kohn-Sham solvers GPL-3.0

wannier90 ES: Postprocessing to obtain maximally-localized Wannier functions and derived quantities GPL-2.0

ELPA GEN: High-performance dense eigenvalue solver library LGPL-3.0

NTPoly GEN: Sparse linear-scaling solver library MIT

SLEPc-SIPs GEN: Shift-and-invert parallel slicing solver BSD 2-clause

SuperLU DIST GEN: Sparse linear system solver BSD 3-clause

Scotch GEN: Graph partitioning library CeCILL-C

MatrixSwitch GEN: Matrix-format-independent abstraction layer of linear algebra operations BSD 2-clause

flook GEN: Connection between Fortran and Lua for embedded scripting code control MPL-2.0

LibFDF GEN: Flexible data format for input of control parameters BSD 3-clause

xmlf90 GEN: Fortran library to parse and write well-formed XML files BSD 2-clause

Futile GEN: Low-level toolbox (handles YAML-code mapping, dynamic memory, timing, error, etc.) GPL-3.0

where G(r) = 1/r is the Green function of the Laplacian operator in the unconstrained R3 space. The
long range nature of the kernel operator G does not allow us to approximate free BC with a very large
periodic volume. Consequently, the description of non-periodic systems using a periodic formalism
always introduces long-range interactions between supercells that compromise the results.

Due to the simplicity of plane wave methods, various attempts have been made to generalize
the reciprocal space approach to free BC. [39–41] All of them use a FFT at some point, and thus
have a O(N logN) scaling. These methods use ad hoc screening functions to subtract the spurious
interactions between super-cells. They have some restrictions and cannot be used blindly. For example,
the method of Füsti-Molnar and Pulay[40] is only efficient for spherical geometries and the method
of Martyna and Tuckerman[41] requires artificially large simulation boxes that are computationally
expensive. Nonetheless, the usefulness of reciprocal space methods has been demonstrated for a variety
of applications, and plane-wave based approaches are widely used in the chemical physics community.

Two-dimensional periodic systems, such as surfaces, are another prominent choice of BC. The many
surface-specific experimental techniques developed in recent years produce important results that can
greatly benefit from theoretical interpretation and analysis. The development of efficient computa-
tional techniques for systems with such boundary conditions thus became very important. A number
of explicit Poisson solvers have been developed in this framework [42–44] based on a reciprocal space
treatment. Essentially, these Poisson solvers are constructed by implementing a suitable generaliza-
tion for surface BC of the same methods that were developed for isolated systems. As for the free
BC case, screening functions are applied to subtract the artificial interaction between the supercells
in the non-periodic direction. Therefore, they exhibit the same kind of intrinsic limitations, e.g., good
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accuracy is only achieved inside the bulk of the computational region, with the consequent need for
artificially large simulation boxes, which may increase the computational overhead.

Following these considerations, a series of efficient and accurate Poisson solvers have been developed
that compatible with all possible combinations of mixed isolated/periodic boundary conditions. The
solvers also support screened and unscreened Coulomb operators in vacuum [45–47] and distributed,
non-uniform dielectrics including the Poisson-Boltzmann equation. [48, 49] In contrast to Poisson
solvers based solely on a reciprocal space treatment, the fundamental operations of this Poisson solver
are based on a mixed reciprocal-real space representation of the charge density. This allows different
boundary conditions in different directions to be naturally satisfied. Screening functions or other
approximations are thus not needed.

The basic advantage of this approach is that the real-space values of the potential V (r) are obtained
to very high accuracy on the uniform mesh of the simulation domain, via a direct solution of Poisson’s
equation by convolving the density with the appropriate Green’s function of the Laplacian. As already
mentioned, the Green’s function can be discretized for the most common types of boundary conditions
encountered in electronic structure calculations, namely free, wire, slab and periodic. This approach
can therefore be straightforwardly used in all DFT codes that are able to express the densities ρ(r)
on uniform real-space grids. This is very common because the XC correlation potential is usually
calculated on such a grid, at least in pseudopotential-based codes. This approach has also proved to
be, in its parallel CPU version, the fastest in most cases [50] and is therefore integrated in various
DFT codes such as abinit, [21] CP2K, [51] Octopus, [23, 52] and Conquest. [53]

To conclude, the Poisson solver algorithm has already been ported on Graphic Processing Units
(GPU) [54] and is readily available in the ESL package. It enables affordable calculation of exact
exchange operators in large systems. [55]

B. Libxc

The exchange-correlation functional is at the heart of density-functional theory,[29] and it is ul-
timately responsible for the accuracy of any such electronic structure calculation. It is, therefore,
perhaps not surprising that hundreds of different approximations to this term have been proposed
over the last decades. Most of these can be classified into five families, usually often identified as dif-
ferent rungs of Jacob’s ladder, [56] leading from the Hartree world to the Heaven of chemical accuracy.
The rungs correspond to the local-density approximation, the generalized-gradient approximation,
the meta-generalized-gradient approximation, functionals that depend on the occupied Kohn-Sham
orbitals, and finally, functionals that also depend on the virtual orbitals. Libxc [18, 19] is a library that
contains the mathematical expressions for functionals belonging to the first three families, together
with the semi-local parts for the functionals of the last two rungs.

Libxc has, by now, a long history, with its roots at the beginning of this century and version
1.0.0 appearing in 2010 (the current stable version is 4.3.4). The number of functionals included has
increased steadily over the years with more than 500 functionals, arising from more than half a century
of theoretical developments, implemented to date. Recently, the library was completely restructured
to allow the definition of the functionals to be written in Maple 2016 (Ref. 57), which simplifies the
insertion of new functionals (Maple’s symbolic language is considerably simpler than C, and well
adapted for mathematical manipulations). Moreover, all derivatives are evaluated symbolically by
Maple. This significantly reduces the possibility of errors in the implementation and opens the way
for the evaluation of higher derivatives of the functionals. Currently, Libxc supports up to fourth-
derivatives, required, for example, for the calculation of Hessians of potential energy surfaces for
excited-states.

There are a number of advantages of Libxc for the users of electronic structure codes. First, they
have instant access to nearly all the exchange-correlation functionals ever developed. Furthermore,
most functionals are implemented in Libxc shortly after their publication, giving access to the latest
theoretical developments in density-functional theory often only requiring a simple recompilation of
the library. Finally, it makes the comparison of different codes and methods much simpler. Libxc is by
now used by more than 30 electronic structure codes, developed both by the Physics communities (such
as Abinit, [58] BigDFT, [25] FHI-aims, [59] WIEN2k, [60] etc.), the Quantum Chemistry community
(such as Psi4, [61] Orca, [62] PySCF, [63] or Turbomole, [64] etc.), commercially developed codes
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(QuantumATK [65]), as well as other libraries, e.g., libGridXC [see Sec. IV D]. Libxc guarantees
reliable, bug free implementations of the functionals, which are often cross-checked with reference
code from the original authors of the functionals. Finally, Libxc provides a simple means to perform
benchmark calculations in a variety of physical systems and using diverse numerical methods (see, e.g.
Ref. 66).

C. libvdwxc

libvdwxc [67] is a software library which evaluates the the non-local correlation term for density
functionals in the vdW-DF family [68, 69] such as vdW-DF, [70] vdW-DF2, [71] and vdW-DF-cx. [72]
It also implements the recent spin-generalization of these functionals. [73] It is written in C and
released under the GNU GPL licence.

Libxc evaluates functionals point-wise and hence supports only local and semi-local functionals.
The purpose of libvdwxc is to complement Libxc by providing just the missing non-local term. lib-
GridXC contains an alternative implementation — see Section IV D below.

The vdW-DF functionals are the sum of three terms: The correlation energy from LDA; the
exchange energy from a GGA functional, which is often chosen differently for different vdW functionals;
and finally the non-local vdW correlation energy which is characteristic of the vdW-DF family. This
latter term is an integral over a kernel function φ(r, r′):

Enl
c [n] =

1

2

∫∫
n(r)φ(r, r′)n(r′) dr dr′. (8)

Direct integration of this expression scales as O(N2) and is very expensive, so most codes use the spline
interpolation method due to Román-Pérez and Soler. [74] This reduces the integral to a convolution
in Fourier space whose computational cost is only O(N logN).

The algorithm uses a number (conventionally 20) of helper functions, [74] θn(r), and their Fourier
transforms. This still requires more memory and computation time than a standard GGA functional.
libvdwxc focuses on parallel scalability in order that this computation will not become a bottleneck.
It works in parallel using MPI with the Fourier transform library FFTW. [11, 75] For parallel compu-
tations, the grids use the 1D block distribution of FFTW. libvdwxc additionally supports the PFFT
library, [76] an extension to FFTW which improves scalability for massively parallel architectures.

libvdwxc takes the density and its gradient on a uniform 3D grid as input. The grid directions need
not be orthogonal. It calculates the total energy and its derivatives at each point, following Libxc
conventions for ease of integration with DFT codes.

D. libGridXC

The libGridXC library[77] started life as SiestaXC, a collection of modules within Siesta to com-
pute the exchange-correlation energy and potential in DFT calculations for atomic and periodic sys-
tems. The “grid” part of the name refers to the discretization for charge density and potential used
in those calculations. The original code included a set of low-level routines to compute the exchange-
correlation energy density and potential, εxc(r) and Vxc(r), respectively, at a point for (semilocal) LDA
and GGA functionals (i.e., a subset of the functionality now offered by Libxc), and two high-level rou-
tines to handle the computations in the whole domain (with radial or 3D-periodic grids), including
computations of any gradients, integrations, etc, needed. The most relevant feature of SiestaXC was
its pioneering implementation of efficient and practical algorithms for van der Waals functionals, [74]
in particular for the evaluation of the non-local correlation term. These algorithms have found their
way into numerous other implementations, as exemplified in Sec. IV C on libvdwxc. Another strength
of the code is its support for non-collinear spin densities, as needed in particular for calculations with
spin-orbit-coupling. Like libvdwxc, it inputs the density on a uniform grid, not necessarily orthogonal,
and outputs the XC energy and potential on the same grid. But in contrast with libvdwxc, the density
gradient is evaluated internally.

The current libGridXC retains most of the SiestaXC functionality, and enhances it by offering
an interface to Libxc that supports a much wider selection of XC functionals. The code, written in
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Fortran, has been streamlined and re-packaged into a proper stand-alone library, with an automatic
build-system. It is used by modern versions of Siesta, it is being adopted in ABINIT, and it is also
being considered for BigDFT and other codes.

E. pspio

For a long time, the development of pseudopotentials has generally been coupled to a parent DFT
code. This has resulted in a proliferation of file formats and incompatibilities, preventing or severely
limiting collaboration involving different codes. Even worse, some versions of a pseudopotential for-
mat are not compatible with some versions of the DFT code they originated from. To address this
issue, many discussions took place from 2002 on to define a common file format for pseudopoten-
tials. While this led to the successful creation of the PAW-XML format for projector augmented-wave
(PAW) datasets, [78] no agreement was reached at the time for norm-conserving pseudopotentials (see,
however, Section IV F below).

pspio takes exactly the reverse perspective: since many file formats exist and will continue to exist
for the foreseeable future, let us design and implement a library that is able to read and write all of
them, including the different versions of each format. Any pseudopotential generator or DFT code
using pspio will thereby be free of file-format problems. However, pspio is not intended to act as a
“universal translator”, which would basically require implementation of a pseudopotential generator
within the library. Indeed, different file formats store different quantities, some of which have to be
reconstructed to convert one format to another. As a consequence, direct format conversion is only
possible in a very limited number of cases.

pspio currently supports the FHI98PP, ABINIT6 and UPF-1 file formats. Support for Siesta PSF

and ONCV formats is currently being tested. It can be found in Ref. 79.

F. libPSML

Several well-known programs generate pseudopotentials in a variety of formats, tailored to the
needs of specific electronic-structure codes. While some generators are now able to output data in
different bespoke formats, and some simulation codes are now able to read different pseudopotential
formats (with the help from pspio in Section IV E, for example), the common historical pattern in the
design of those formats has been that a generator produced data for a single particular simulation
code, most likely to be the one maintained by the same group. The consequence was often that a
number of implicit assumptions, shared by generator and user, have entered into the formats and
fossilized there.

This leads to practical problems, not only of programming, but also of interoperability and repro-
ducibility, which depend on spelling out a large number of details which are not always well known or
documented for all codes or existing formats.

PSML (for PSeudopotential Markup Language) [80, 81] is a file format for norm-conserving pseu-
dopotential data which is designed to encapsulate, to the greatest extent possible, the abstract concepts
in the domain’s ontology, and to provide appropriate metadata and provenance information. PSML
files can be produced by the ONCVPSP [30] and ATOM [82] pseudopotential generator programs,
and are a download-format option in the Pseudo-Dojo database of curated pseudopotentials. [83, 84]

The software library libPSML [80, 81] can be used by electronic structure codes to transparently
extract the information in a PSML file and adapt it to their own data structures, or to create con-
verters for other formats. It is currently used by Siesta and ABINIT, making full pseudopotential
interoperability possible and thus facilitating comparisons of calculation results.

A feature of the PSML format and library is worth noting: the exchange-correlation flavor used
in the generation of the pseudopotential is encoded in the PSML file as a set of Libxc “ids”. It
exemplifies the importance of software standards in scientific computing and their implementation in
widely available libraries. Given the comprehensive support for functionals in Libxc, this is very close
to a “universal” specification. The combination of libPSML and Libxc (with maybe libGridXC as an
intermediate layer) is thus a basic ingredient for interoperability.
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G. Electronic structure common data format (ESCDF)

The electronic structure common data format (ESCDF) [85] and the accompanying library
libescdf [86] are currently being developed with the aim of simplifying a number of I/O related
issues: (1) many codes deal with the same information, foremost structural data about the system of
interest, which could easily be interchangeable between codes, and for which a common format would
be useful; (2) having a common standard available would simplify workflow systems, chaining e.g. ab
initio calculations with post-processing spectroscopy calculations and data visualization; (3) parallel
I/O of large data sets for general output or for code-specific restart files is becoming increasingly im-
portant and having a common tool to facilitate this at a low level would help many code developers.
Over the last decades, there have been several attempts to introduce such common standards in the
ESC, with varying degrees of success. The main challenge is that much of the data is not actually
interchangeable between codes which are based on different computational methods. For instance,
it is, in general, not meaningful to use wave functions generated in a plane wave pseudo-potential
method in an all-electron LAPW code. ESCDF acknowledges that fact and does not try to impose a
rigid standard but, rather, to provide lower level tools which define a common vocabulary for writing
data and to provide the necessary meta-data to clearly describe how the data in a given file is repre-
sented. This ambition for flexibility is further illustrated in the specification of structure, which allows
for periodicity in any dimension (0 to 3), as used by the PSolver (Section IV A), and even beyond,
as for non-periodic embedding in infinite or semi-infinite structures, as used by multiple-scattering
methods.[87–89]

The ideas behind the ESCDF are, to a large extent, based on the ETSF-IO library and associated
specifications, [90, 91] which it tries to extend and modernize by moving from netCDF-4 to HDF-
5 [92] as the underlying technology. They also build on the wavefunction format of the BerkeleyGW
code,[93] which was defined as both a specification and a library of reading and writing routines, used
by Octopus and other DFT codes in preparing inputs for GW and Bethe-Salpeter calculations. The
development has been driven by a collaboration of ETSF developers and new developers, in particular
from the EUSpec [94] network, which had the specific goal of providing tools for chaining calculations
and post-processing tools. The ESCDF specifications also have been aligned as much as possible with
existing specifications from the NOMAD project [95] and have also informed NOMAD about their
new extensions. The ESCDF specifications are developed and maintained by a dedicated curating
team.

One of the core features of the implementation of libescdf is the separation of the format specifica-
tion and the library code. The specifications are defined in a JSON file, which can easily be extended
without the need to change the code in the library. Specific code for the library is then generated au-
tomatically from the JSON file and the format documentation is also auto-generated from this central
specifications file. This strategy will make the library more maintainable and effectively decouples the
science from the underlying software design.

Currently, both the specifications and the library are still under development, with several sections
of the former already complete. As soon as it is possible, libescdf will be interfaced with the ESL
Demonstrator project and included in the ESL Bundle (see Sec. V).

H. ELSI and supported solver libraries: ELPA, PEXSI, NTPoly, SLEPc-SIPs, SuperLU-DIST,
Scotch

This group of libraries solves or circumvents the Kohn-Sham or generalized Kohn-Sham eigen prob-
lem, i.e. the central problem of electronic structure calculations. They can be used in conjunction
with the open-source ELSI library (ELectronic Structure Infrastructure, https://elsi-interchan
ge.org), but the associated solvers can be and are also used in a standalone fashion with differ-
ent electronic structure packages. ELSI provides a unified software interface that connects electronic
structure codes to various high-performance solver libraries to solve or circumvent eigenproblems en-
countered in electronic structure theory. [96] In addition to providing interfaces, matrix conversion,
etc., ELSI also abstracts common tasks in handling eigenvalue problems in an electronic structure
code. The tasks handled by ELSI and related solvers often amount to the most compute-intensive
ones in electronic structure codes. These ESL components therefore already offer support for sev-

https://elsi-interchange.org
https://elsi-interchange.org
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eral past and present pre-exascale hardware developments, notably Intel’s many-core architectures as
well as NVidia’s GPUs. Solvers currently supported in ELSI include conventional dense eigensolvers
(ELPA, [97, 98] EigenExa, [99] LAPACK, [9] and MAGMA [100]), the orbital minimization method
(LibOMM [101]), sparse iterative eigensolvers (SLEPc [102] and SLEPc-SIPs), the pole expansion
and selected inversion method (PEXSI [103]), and linear scaling density matrix purification methods
(NTPoly [104]). As sketched in Fig. 2, an electronic structure code interfacing to ELSI automatically
has access to all the eigensolvers and density matrix solvers supported in ELSI. In addition, the ELSI
interface is able to convert arbitrarily distributed dense and sparse matrices to the specification ex-
pected by the solvers, taking this burden away from the electronic structure code. A comprehensive
review of the capabilities of the latest version of ELSI, including parallel solution of problems found in
spin-polarized systems (two spin channels) and periodic systems (multiple k -points), scalable matrix
I/O, density matrix extrapolation, iterative eigensolvers in a reverse communication interface (RCI)
framework, is presented in a separate publication. [105]

FIG. 2. Interaction of the ELSI interface with electronic structure codes. An electronic structure code has
access to various eigensolvers and density matrix solvers via the ELSI API. Whenever necessary, ELSI handles
the conversion between different units, conventions, matrix formats, and programming languages. (a) lists the
electronic structure codes that currently use ELSI. (b), (c), (d), and (e) list the programming language, solvers,
matrix formats, and output quantities, respectively, supported by ELSI.

The development of ELSI, including its API design, internal data structure, build system, testing,
and integration with electronic structure codes, was driven from its inception by contributions and
feedback from the community. In workshops organized by the ESL, ELSI has been a primary focus
from the outset. Moreover, developers and users of several electronic structure codes participate in
open ELSI monthly video meetings to exchange ideas, ensuring a direct information flow in order to
develop ELSI as a software package that fits the needs of as many electronic structure projects as
possible. To date, the ELSI interface has been adopted by the DFTB+, [106] DGDFT, [107] FHI-
aims, [26] and Siesta [22] codes. To aid in the selection of the solver that is best suited for a particular
application problem, ELSI provides a series of benchmarks to assess the performance of the solvers
for different problem types and on different computer architectures. [96, 105] This benchmark effort
has been greatly accelerated by a separate FortJSON library, shipped with ELSI, which enables the
output of runtime parameters, matrix dimensions, timing statistics etc. into a standard JSON file.
Thanks to the popularity and portability of JSON, ELSI log files written by FortJSON can be easily
processed and analyzed by existing tools. Comparing different solvers in different codes on an equal
footing is thus significantly simplified by the ELSI infrastructure.

ELSI ships with its own tested versions of several individual solver libraries (which are also included
in the ESL) but, additionally, linking against already compiled upstream versions from each solver
library is supported as much as possible. The installation of the different components is handled by a
single CMake-based build system that either compiles redistributed source code of the solvers or links
ELSI against user-supplied solver libraries.
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I. LibOMM non-orthogonal eigensolver

Now integrated into the larger bundle of eigensolvers provided by ELSI, LibOMM was developed
during the first ESL workshop as a standalone library, and can still be used as such. It is written in
Fortran with C bindings, and can be compiled either for serial or MPI parallel operation.

The orbital minimization method (OMM) is an iterative solver method based on finding the set of
Wannier functions describing the occupied subspace by the minimization of a specially-defined energy
functional. The peculiarity of the OMM is that only an unconstrained minimization is required, thus
avoiding a potentially expensive orthogonalization step; the properties of the functional drive the
Wannier functions towards orthonormality as it is minimized. The OMM has an interesting history
(discussed briefly in Ref. 101) stemming from research on linear-scaling DFT methods. The LibOMM
library, however, is based on a later re-implementation of the method used in Siesta as an efficient
cubic-scaling solver for a basis of finite-range numerical atomic orbitals. [101] As such, the library
provides a tensorial correction for non-orthogonal basis sets, either via a Cholesky factorization of the
overlap matrix or a preconditioner suitable for localized orbitals.

The library is built for maximum efficiency in data reuse; the API is designed for repeated calls
within an outer self-consistency loop in the host code. Data is reused between calls in two ways:
(a) some matrices, such as the coefficients matrix of the Wannier functions, are repeatedly passed in
at each call, updated during the call and passed out again; (b) other data is allocated and stored
internally by the library, and, therefore, a final call to free all memory must be performed.

The library is also written to be agnostic with respect to both the data storage scheme of the
matrices and the implementation of the matrix operations. This is achieved by making use of an
underlying library for matrix operations, MatrixSwitch, described in Section IV L.

J. PIKSS: Parallel iterative Kohn-Sham solvers

In addition to ELSI and its supported solvers (Secs. IV H and IV I), the parallel iterative Kohn-Sham
(KS) solvers library PIKSS is a bundle of several iterative diagonalization eigensolvers that have been
extracted from the Quantum ESPRESSO (QE) suite, and recast in an independent, code-agnostic
fashion. It includes the popular Davidson diagonalization and a band-by-band conjugate gradient
minimization methods, but also implements the more recently developed Projected Preconditioned
Conjugate Gradient (PPCG),[108] and Parallel Orbital (ParO) update solvers[109] that allow new
parallelization paradigms.

As ideal within the ESL concept, the library is designed such that the interaction with the main
electronic structure code is via routine library calls with a well-specified API. The operations performed
by the library depend on the chosen diagonalization method, but generally include application of the
hamiltonian to a set of candidate wavefunctions, computation of the overlap matrix, approximation
of inverse matrices, etc.

Unlike the original, strictly plane-wave implementation in QE, the KS-Solvers library allows for any
internal representation of the wavefunction and Hamiltonian. To further exemplify how to expand the
usability of the solvers, a Reverse Communication Interface version for one of the solvers (Davidson
diagonalization) is also provided. The library is currently hosted in Ref. 110.

Initially integrated within KS-Solvers but currently being developed as a stand-alone library, the
miniPWPP module serves as a demonstrator for the KS-Solver library. miniPWPP, a barebone DFT
implementation based on planewave-empirical pseudopotential framework, showcases the usage of the
several methods within KS-Solvers library. It allows performance comparison of them on different
hardware platforms (e.g. CPU, GPU), and with different parallelization paradigms (e.g. over bands,
task groups etc.). Both the KS-Solvers and miniPWPP, along with other libraries (i.e. FFTXlib and
LAXlib) that originated from Quantum ESPRESSO suite and tailored for plane wave basis, will be
inserted in the ESL bundle in future releases.

K. wannier90

Wannier functions (WFs) [111, 112] provide a localised real-space representation of the electronic
structure of materials that is complementary to the reciprocal-space representation of Bloch bands.
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The freedom associated with the choice of gauge of Bloch states can be used to construct exponentially
localized WFs. [113] So-called maximally-localized Wannier functions (MLWFs) [14] are obtained by
choosing the gauge that minimizes the total quadratic spread of the WFs. Both the case of isolated
bands, [14] i.e., a composite set of bands that is separated from other bands in the Brillouin zone (BZ)
by energy gaps, and the case of entangled bands [114] can be treated.

MLWFs are used routinely, for example, to analyse and understand chemical bonding, to per-
form high-accuracy fine-grained interpolation of quantities in the BZ (such as band energies, Berry
phase properties and electron-phonon interactions), to characterise topological materials, to construct
compact tight-binding models of materials, and to compute charge transport properties. We direct
the reader to Refs. 112 and 115 for details of the underlying theory of MLWFs and their diverse
applications. Instead, here we focus on (1) the aspects of the wannier90 code [13, 115, 116] and
its development that have enabled it to emerge as a paradigmatic example of an interoperable soft-
ware tool, and (2) future plans that will take the code further in directions that reflect the broader
philosophy of the ESL.

From its conception, [117] wannier90 was designed to make the addition of new functionality as
easy as possible, by being modular, well-documented and well-commented, and to be as independent
as possible from the underlying code that calculates the Bloch bands from which the MLWFs are

constructed. As such, wannier90 requires only the matrix elements M
(k,b)
mn = 〈umk|unk+b〉, where

unk(r) is the cell-periodic part of the Bloch function ψnk(r) = unk(r)eik·r, together with an initial guess
for the choice of gauge. The latter can be obtained either by projecting an appropriate set of atomic-
like orbitals gn(r) onto the initial Bloch states, or by using the recently implemented “selected-columns
of the density matrix” (SCDM) method, [118–120] that does not demand the human intervention often
needed to define good projection functions.

Since these matrix elements, together with the eigenvalues of the single-particle hamiltonian, are
independent of the specific implementational details of the underlying electronic structure code (e.g.,
basis set, grids, symmetry operations, level of theory, pseudopotentials), wannier90 is fully interoper-
able with any code that is able to calculate them. The onus is largely on the developers of electronic
structure codes, therefore, to develop and maintain their own interface that provides these quantities.
wannier90 allows for two interface modes: (1) via reading and writing files to/from disk and run-
ning wannier90 as a separate external executable; and (2) via calls to the wannier90 library directly
from within a program. Electronic structure codes that interface to wannier90 include: Quantum
ESPRESSO, [24] ABINIT, [58] VASP, [121] Siesta, [22] WIEN2k, [60] Fleur, [122], Octopus, [23, 52]
ELK, [123] BigDFT, [25] GPAW, [27] pyscf, [124] and openmx. [125] New developments in wannier90,
therefore, are available to the vast majority of the user community rapidly, which serves to accelerate
research.

The most recent major release (v3.x) of wannier90 is able to compute a growing range of proper-
ties, [115] a range that is increasingly difficult to maintain in one code with a small group of developers.
Furthermore, there is a growing community of researchers and codes, including Gollum, [126] Wannier-
Tools, [127] NanoTCAD ViDES, [128] Yambo, [129] Z2Pack, [130] Triqs, [131] and EPW [132] that use
wannier90 to calculate an even wider range of properties. For these reasons, in 2016, ten years after
its first release, [117] wannier90 transitioned to a community-development model in which the code
is hosted on GitHub [116] and community-driven developments are invited via a fork and pull-request
approach. Code integrity is maintained via a documented coding style guide that contributors must
adhere to, together with nightly automated building and testing on a Buildbot [133] test farm, and
continuous integration with Travis CI [134], whereby a pull-request triggers a suite of test calculations
and is blocked if any tests fail.

What does the future hold for wannier90? Currently, only a small subset of the full functionality
of the code is accessible in the library mode of wannier90, and only in serial processing. The next
major planned development, therefore, is to completely re-engineer the library mode of the code such
that the full functionality of wannier90 (including parallel processing) is accessible via library calls
from within, e.g., an overarching workflow, a dynamical simulation, or a self-consistent field iteration.
This would enable advanced materials properties to be calculated seamlessly on the fly. Using the
code in this way is made significantly more practical due to recent developments in generating MLWFs
automatically with minimal user-intervention. [118] Some challenges will need to be overcome, however,
including: determining the optimal strategy for parallelisation given that this is likely to conflict with
that of the host electronic structure code; and handling errors thread-safely yet unobtrusively. When
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this development is complete, like the ouroboros that swallows its own tail [135], we envisage the main
wannier90 code becoming a wrapper for its own library calls.

L. MatrixSwitch

The MatrixSwitch library was developed alongside LibOMM during the first ESL workshop, but
is independent of it. Its aim is to act as an intermediary layer between high-level routines for physics-
related algorithms and low-level routines dealing with matrix storage and manipulation, allowing the
former to be written in a way which is close to mathematical notation, while also enabling seamless
switching between different matrix storage formats and implementations of the matrix operations. As
new formats are introduced in MatrixSwitch, they can immediately be used in the high-level routines
without any further modification of the code. Both dense and sparse formats are supported, as well
as serial and parallel distributions.

At the centre of MatrixSwitch is the matrix object, a Fortran derived type defined by the library
which acts as a wrapper for the specific storage format. A small number of basic operations are defined
for this object, such as setting and getting elements, matrix-matrix multiplication, matrix addition,
traces, etc. The API is also easily extensible to include more complex matrix operations which are
not part of the standard set, as the object is quite transparent and can be unpacked when needed to
operate directly on the underlying data structures.

An additional feature of the library is that it facilitates its usage only for a subset of the host code
(e.g., in a specific module), by permitting pre-existing matrix data conforming to one of the supported
storage formats to be simply registered by MatrixSwitch without the need for copying, converting, or
allocating new memory. The registered matrix can then be used for any MatrixSwitch operation as if
it were natively managed.

As well as being used by LibOMM, MatrixSwitch is also currently being used in parts of Siesta
(e.g., for the recently developed real-time time-dependent DFT algorithm) and in smaller codes used for
individual research projects. [136] MatrixSwitch has recently been extended[137] to use the DBCSR
library [138, 139] (Distributed Block Compressed Sparse Row), a linear-algebra parallel engine for
sparse matrices. The original Siesta linear-scaling solver based on OMM with finite support solu-
tions [140] is being refactored to use MatrixSwitch and thus take advantage of the DBCSR backend.
This strategy will be extended to other related solvers. [141]

M. flook

The flook library was developed with the objective to control flow and move lightweight operations
into scriptable code. It provides a simple way to code top steering tools (see Fig. 1 b) such as molecular
dynamics (MD) methods which are called only once every MD step and are typically light operations,
but it also allows deeper-level control of the code, such as the tuning of mixing parameters or stopping
calculations when certain criteria are met, for example.

The scripting can be efficiently implemented by embedding a Lua interpreter into the application
program. Lua is a lightweight embeddable scripting language.[142] The software library flook enables
Fortran and Lua to communicate together in a seamless way by passing variables to and from “tables”
in Lua. Having a hook between Lua and Fortran empowers end-users to create their own scripts in Lua
in order to extend the functionality of codes. Since any data can be moved between Fortran and Lua,
the Lua script which implements a particular functionality can be used to replace that functionality
inside the core Fortran code, if so desired.

This methodology works by assigning Lua functions to be called in Fortran. By populating a table
with the internal data-structure in Fortran using dictionaries one can easily enable variable passing
between Fortran and Lua using a single line of code. As an example, here is a snippet of Fortran and
Lua code which enables access to the atomic coordinates in the Siesta DFT package.

a. Fortran code:

type(dictionary_t) :: variables

! Add atomic coordinates to table of variables

variables = variables // (’geom.xa’.kvp.xa)
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b. Lua code:

-- Retrieve atomic coordinates and manipulate

local xa = siesta.geom.xa

Currently flook is used in Siesta to extend molecular dynamics methods, customize outputs, force-
constants calculations and convergence of precision parameters. It also exposes convergence variables
which allows the user to change these parameters while a calculation is running. A derived project (flos
[https://github.com/siesta-project/flos]) implements the scriptable Lua functions that may be
used for other projects using flook.

N. LibFDF

FDF stands for Flexible Data Format, designed within the Siesta project to simplify the handling
of input options. It is based on a keyword/value paradigm (including physical units when relevant),
and is supplemented by a block interface for arbitrarily complex blobs of data.

LibFDF [143] is the official implementation of the FDF specifications for use in client codes. At
present the FDF format is used extensively by Siesta, and it has been an inspiration for several other
code-specific input formats.

New input options can be implemented very easily. When a keyword is not present in the FDF
file the corresponding program variable is assigned a pre-programmed default value. This enables
programmers of client codes to insert new input statements anywhere in the code, without worrying
about “reserving a slot” in a possibly already crowded fixed-format input file.

O. xmlf90

xmlf90 is a package to handle XML in Fortran. It has two major components: (i) A XML parsing
library, with the most complete programming interface based on the very successful SAX (Simple API
for XML) model,[144] although a partial DOM interface and a very experimental XPATH interface
are also present. The SAX parser in particular was designed to be a useful tool in the extraction
and analysis of data in the context of scientific computing, and thus the priorities were efficiency
and the ability to deal with potentially large XML files while maintaining a small memory footprint.
(ii) A library (xmlf90-wxml) that facilitates the writing of well-formed XML, including such features
as automatic start-tag completion, attribute pretty-printing, and element indentation. There are also
helper routines to handle the output of numerical arrays. xmlf90 is the parsing engine for the libPSML
library of Section IV F.

V. THE ESL BUNDLE

Adopting a modular approach has many advantages: smaller software units to develop and main-
tain, easier testing of each component, faster propagation of fixes, better separation of technical
domains, reduced duplication of code, to cite a few obvious ones. However, it also implies some risks:
if not addressed explicitly, the asynchronous evolution of the individual components — aka modules
— quickly becomes a severe obstacle to the improvement and maintenance of the whole. Libxc is
an emblematic example of this kind of situation: whenever a new exchange-correlation functional is
implemented in Libxc, a few dozen DFT codes are just one compilation away from using it. However,
if the API of Libxc changes, each DFT code has to update its interface to Libxc to be able to use the
new version, which results in a situation where some codes use one version of the library while others
are stuck with an older version.

When one module depends on another, or a number of others, a few aspects have to be considered
with great care:

• A given version of the dependent module is compatible with only some versions of those it is
dependent on.

https://github.com/siesta-project/flos
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FIG. 3. Internal dependencies between the components of the ESL Bundle. White background: components
extracted from electronic-structure codes participating in the ESL. Blue background: components created within
the ESL or through its activities. Orange background: components maintained outside the ESL. The complete
tree of solvers accessed by ELSI appears in Fig. 2.

• Even when the two versions are compatible, not all configuration options available will actually
work, i.e. the two modules may have conflicting requirements in some situations.

• In addition to technical aspects, social considerations have to be taken into account, in particular
when the two modules are developed by different teams.

To mitigate these risks, we provide all the ESL software libraries in the form of a bundle. The ESL
Bundle provides a set of ready-to-use software modules such that to each version of the ESL Bundle
there corresponds a well defined set of module versions that are compatible among themselves. The
contents of the ESL Bundle are curated through the activities of the ESL and supervised by the ESL
Steering Committee (for more details about the governing structure of the ESL, see Appendix A).
Adding, updating or removing modules is discussed during ESL workshops and Steering Committee
meetings until an agreement is reached, before being thoroughly tested to detect possible compatibility
issues. The validation of any change within the ESL Bundle sometimes involves a high level of
complexity, which is why it is performed by a team of volunteers and includes manual steps. Indeed,
the ESL Bundle is meant to be used in production by ESC codes, not just to be successfully installed
on a given set of systems. What will finally decide whether a module can be updated will be the
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usability of its new version by these ESC codes, which is why complementary tests should be conducted
with the codes themselves before releasing a new version of the ESL Bundle. Fig. 3 summarises the
dependencies between individual modules, which are actively monitored in collaboration with their
respective developers. Changes and improvements brought by the ESL are reported to the original
developers of the affected modules and contributed back to the upstream module whenever possible.

However, providing a bundle by itself is not enough. To ensure its usability, the ESL Bundle must
be easy to compile and install on different platforms and by users with different needs and goals. With
so many different components, written in different programming languages and using different build
systems, this is far from being a trivial task. This is why the ESL Bundle needs to be distributed in
different forms, each targeting a different use case. We describe two of these distribution channels in
greater detail in the following subsections. A third distribution channel currently under consideration
is to provide the ESL Bundle as Debian and RPM packages. Several components, like Libxc, are
already included in the official repositories of several popular Linux distributions, like Debian or
Fedora, as well as in the MacPorts package manager for macOS, but we would like to extend this to
the whole ESL Bundle. A fourth channel of distribution for the bundle is the collection of docker
images released publicly on docker hub, at https://hub.docker.com/u/eslib . After each release
a new docker image is built using JHBuild scripts, tagged and used to test the ESL Demonstrator.
These images can be handy for quick access to a binary distribution of the bundle, of benefit to both
developers and curious users.

A. JHBuild bundler

To provide the ESL Bundle in a fully self-contained way with a common installation interface for
all of its components, we use the JHBuild framework. [145] JHBuild is an actively-maintained Python
build framework used by the GNOME Project[146], an open-source desktop environment for Unix-like
operating systems, which has been solving the same challenges as the ESL over the last two decades.
JHBuild is able to build a collection of modules, that it names modulesets, from a minimal amount
of information: download URL, type of build system, and one-to-one dependencies, plus optional
on-the-fly corrections (patches). JHBuild determines the correct order of compilation of the modules
by itself and strictly separates the aspects related to the modulesets from those belonging to the
build environment. The latter is achieved by using configuration files to tune the build parameters,
globally or for each module. In the case of the ESL Bundle, we provide a curated collection of such
configuration files for Linux-based systems and macOS. The use of JHBuild greatly simplifies the
installation of the ESL Bundle and is ideal for developers or users of electronic structure codes that
require one or more components to be installed on their personal computers, but do not care too much
about performance.

B. HPC-oriented distribution

Once we consider software provisioning for HPC resources, where software such as the ESL Bundle
should leverage the available hardware and seamlessly integrate into the existing software stack, the
situation becomes vastly more challenging. In this context, the ESL is far from alone in the depth and
complexity of its software stack. Application developers, HPC sites, and end users around the world
spend significant amounts of time creating and verifying optimised software installations for such re-
sources. Although the problems that arise with installing scientific software are ubiquitous, there is
currently inadequate collaboration between HPC sites and/or HPC domains. At the “Getting Scien-
tific Software Installed” Birds-of-a-Feather session at SC’19 less than 30% of the survey respondents
answered ’yes’ when asked whether they work together with other HPC sites on software installation.

EasyBuild [147] is a tool for providing optimised, reproducible, multi-platform scientific software
installations in a consistent, efficient, and user-friendly manner. EasyBuild is currently used by well
over 100 HPC sites worldwide (including Jülich Supercomputing Centre, CSCS, Compute Canada,
SURFsara, SNIC, . . . ). Leveraging EasyBuild for HPC-oriented distribution provides the ESL with
an HPC-oriented build infrastructure that can quickly and reliably distribute the bundle to a large
number of HPC sites.

https://hub.docker.com/u/eslib
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FIG. 4. Use of ESL libraries within electronic structure codes. The rectangular boxes at the top show electronic
structure programs (end users), red indicating open-source programs (licensed via GPL), while FHI-aims is
distributed by a registered non-profit organization (Molecular Simulations from First Principles e.V., MS1P –
https://ms1p.org/) under a proprietary licence, and QuantumATK is under commercial licence distributed by
the software company Synopsys. This set contains codes connected to the ESL, mostly via contributors to ESL
being developers of these codes (there are many other codes that use at least some of the depicted libraries).
Blue ellipses indicate libraries described in this paper. The larger (green) ellipse corresponds to ELSI as a
general interface to several Hamiltonian solvers, with its associated libraries. Arrows indicate dependencies.
Thick black dashed lines indicate libraries dependent on other libraries, blue lines show libraries directly used
by the codes, and red lines indicate libraries that were re-engineered by extracting them from a particular code
(and are also used by that code). DBCSR [138, 139] is included here because it has been coupled [137] to
MatrixSwitch as a parallel sparse linear-algebra engine. ELPA is also used by ABINIT, QuantumESPRESSO,
and GPAW.

EasyBuild employs so-called compiler toolchains, or simply toolchains for short, which are a major
facilitator in handling the build and installation processes. A typical toolchain consists of one or more
compilers, usually put together with some libraries which provide specific functionality, e.g., for using
an MPI stack for distributed computing, or which provide optimized routines for commonly used
math operations, e.g., the well-known BLAS/LAPACK APIs for linear algebra routines. For each
software package being built, the toolchain to be used must be specified. Notably, EasyBuild already
supports over 1800 software packages, including many of the (direct and indirect) dependencies of
the ESL Bundle. These verified and consistent infrastructures allow ESL development efforts to focus
primarily on its component libraries which can be synchronised with the EasyBuild toolchain release
cycle (which currently has two updates per year). This is why EasyBuild replaces JHBuild for the
distribution of the ESL Bundle on HPC environments.

VI. USE CASES IN END USER CODES

Fig. 4 illustrates the usage of ESL packages by the electronic structure programs engaged in the
ESL project. There are more cases of usage not covered here, namely, other electronic structure codes
which use some of the libraries described above. As stated previously, ESL collects both libraries that
have been built or extracted from codes purposely for ESL, together with independently developed
and maintained libraries, as e.g., Libxc and wannier90, which predate ESL, and whose authors agree
with (and contribute to) their incorporation into the ESL. The libraries in Fig. 4 are the ones that
are (or are being) included in the ESL Bundle described in Section V.

The lines in Fig. 4 show dependencies between components of the ESL and user codes. The red lines
indicate dependencies on libraries (depicted as ovals) that have been extracted as independent library
components of the ESL from the connected user code (the rectangles). Of course, the original codes use
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them as well. The blue lines show which user codes use components that were independently developed
in the ESL. Some of the libraries, although not extracted from any given code, were developed by
code developers of a particular code. However, such connections are not indicated in the figure. In
the following we describe the links and ESL usage illustrated in Fig. 4 for the codes shown, starting
with the ESL Demonstrator, a very lean electronic structure code created from scratch in a couple of
weeks and built on the ESL.

A. ESL Demonstrator

Four years after the ESL was initiated, the ESL team realised it had gathered sufficient libraries
to account for nearly all the complex parts of a simple DFT code. In February 2018, the 5th ESL
workshop was focused on building an entire DFT code from scratch, within a fortnight. The purpose
of such demonstrator code is to showcase the usage of ESL libraries and to provide a framework to
test the ESL Bundle. It is not in any way intended to be a competitor to existing DFT codes. Instead,
it can be seen as being part of the ESL documentation, guiding new users and developers of the ESL.
As such, some effort has been made to make it clear, simple and easily extendable.

The resulting code, the ESL Demonstrator, is a functional DFT code which makes extensive use of
the ESL libraries presented in Fig. 5. It uses pspio for reading pseudo potentials, PSolver to calculate
the Hartree potential, LibFDF as the input engine, libGridXC to calculate the XC potential on a
grid, Libxc to evaluate the XC functional on the points of that grid, ELSI for calculating eigenstates,
and flook to make scriptable control flows. During the development it was also decided to follow the
Sphinx documentation style to retain a unified documentation scheme.

FIG. 5. Libraries used in the full DFT program developed as a demonstrator for the ESL. It allows the user to
choose between plane-waves or atomic orbitals as basis sets. The libraries themselves are as in Fig. 4, and as
described in this section.

The development of the demonstrator code was carefully divided between teams formed from the
14 people who attended the workshop coding session. The tasks were assigned to suit the individual
expertise within each team whilst also taking into account the backbone code of the demonstrator. In
particular there are several parts of a DFT program required, 1) user input, 2) Hartree potential, 3)
XC potential, 4) eigenstate solver, 4) scriptable work-flows. While most codes use either a plane-wave
or a localized orbital basis, the ESL Demonstrator allows users to use either of the two. Such a decision
makes the code slightly more complicated, but it allows an increase in the range of libraries used and
provides newcomers to DFT codes an easy access point to two classes of basis sets that require very
different numerical methods.

The ESL Demonstrator successfully uses the aforementioned libraries. It currently only allows
non spin-polarized, Γ-point calculations as well as serial execution. Some of the missing features are
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due to shortcomings in the ESL Bundle. For example, it currently contains no libraries to generate
k-point grids, which restricts the ESL Demonstrator to Γ-point only calculations. Other missing
features are not due to the underlying libraries, but simply reflect the early stage of development of
the ESL Demonstrator. Our plan is to keep extending the ESL Demonstrator to cover more features
provided by existing ESL libraries and by new libraries added to ESL Bundle in the meantime. Work
is underway on allowing parallel execution and spin-polarized calculations.

An important effect of developing the ESL Demonstrator is the exposure of possible bugs, missing
features and testing how integrable and inter-operable libraries actually are. Indeed the development
of the demonstrator led to the discovery of certain bugs and build problems in ESL libraries. The
ESL Demonstrator acts a de facto test for the ESL Bundle where a successful build and run of the
demo is a prerequisite to release a new bundle. The code is hosted here https://gitlab.com/Elect

ronicStructureLibrary/esl-demo.

B. ESL in participating codes

1. ABINIT

ABINIT pioneered the open-source model within the electronic-structure community. It is a plane-
wave-based code that has allowed contributions from quite an open community of developers, some
of them coding new features, tools, etc. in modules being integrated into the code. In that sense it
can claim to have taken the first intellectual step within the electronic-structure community that led
to the ESL. In addition to this contribution to the ESL concept, ABINIT benefits from the usage of
Libxc for the local and semi-local exchange-correlation terms, and it now incorporates libGridXC on
top of Libxc for the global grid treatment on non-local functionals. It also makes use of PSolver for
the computation of the Hartree terms to energy and potential, and the PSML standard and associated
library for pseudopotential input.

2. BigDFT

For several years already, the monolithic sources of BigDFT have been divided into several sub-
directories, that slowly became independent from each other and were finally separated into their
own modules, living in a separate Git tree and that are shipped with their own build system. This
direction of work was seen by the developer team as a way to keep the development sustainable in
terms of functionalities and maintenance. It started with a library implementing a tool box for For-
tran, Futile that is available in the ESL. This tool box started with in-memory representation of a
YAML document,[148] but was quickly extended to keep track of dynamic memory allocations, time
measurements, error handling, etc. The versatile Poisson solver used in BigDFT is now completely
independent from its origins and also available in the ESL. Some other components of BigDFT avail-
able in the ESL, were developed from the start as separated libraries, like the sparse matrix library
CheSS.[149] BigDFT is also taking advantage of codes developed outside the project. Like numer-
ous other DFT codes, it is using Libxc for the exchange and correlation calculation. An interface
exists to post-process the calculated wave functions using wannier90. While initially coded for the
Hutter-Goedecker-Hartwigsen pseudopotential formalism,[150] a link with pspio was written to allow
a greater range of pseudopotentials. Finally, BigDFT is distributed as a bundle, like the ESL. It takes
care of the compilation and linking of the various libraries and the end project itself, to deliver a single
executable to the end user.

3. FHI-aims

FHI-aims developers have greatly contributed to the ESL through joint involvement in the broader,
U.S. NSF-funded ELSI project, described in Section IV H. ELSI was inspired by the ESL and repre-
sented an early U.S. initiative in this effort, in an otherwise primarily European endeavour. Through
ELSI, FHI-aims now benefits from a range of Hamiltonian solvers in a seamless framework. This list
includes ELPA, which originated within FHI-aims and is maintained as a standalone solver library

https://gitlab.com/ElectronicStructureLibrary/esl-demo
https://gitlab.com/ElectronicStructureLibrary/esl-demo
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led by the Max-Planck Computing and Data Facility, as well as PEXSI, NTPoly and all other solvers
supported by ELSI. The libraries used by FHI-aims are not restricted to solvers, as Libxc is supported
for the calculation of the exchange-correlation contribution for local and semi-local functionals.

4. GPAW

The GPAW code allows for different modes of operation, according to the way Kohn-Sham wave-
functions are represented.[27, 151] They are based on, namely, finite differences (FD), plane waves
(PW), or linear combination of atomic orbitals (LCAO). The LCAO mode uses ELPA for fast parallel
diagonalization of the Hamiltonian matrix. GPAW also uses Libxc plus libvdwxc to support LDA,
GGA, meta-GGA, and vdW-DF exchange-correlation functionals.

5. Multiple scattering codes

Codes built around the computation of the Kohn-Sham Green’s function, by means of multiple
scattering (MS) theory, give immediate access to spectroscopic properties, transport and many other
response functions. In addition, these methods can deal with many different problems in electronic
structure theory for systems with and without periodicity, such as disordered alloys and semi-infinite
surfaces.[88] Multiple-scattering codes typically import data such as self-consistent Kohn-Sham po-
tentials or charge densities from other ES codes. The set of ESCDF format specifications and the
associated library is ideal for that purpose. It is being already used by data transfers between codes
such as the Munich SPR-KKR[88, 89] and MSSpec.[87]

6. Octopus

Octopus is currently interfaced to several libraries that are part of the ESL Bundle. The Libxc
library, although it is now completely independent, was originally developed within Octopus. When
treating finite systems in Octopus, the default method to solve Poisson’s equation is the one provided
by PSolver. Evaluation of exchange and correlation functionals that depend explicitly on the density
is done exclusively using the Libxc and libvdwxc libraries. Support for reading pseudopotentials using
the pspio library is also provided, as well as the possibility of using wannier90 to compute maximally-
localised Wannier functions from the Bloch states. Finally, the ELPA library can be used whenever
direct diagonalization of matrices is required.

7. QuantumATK

QuantumATK is a commercially-developed platform which includes its own LCAO and plane-wave
DFT solvers, as well as semi-empirical tight-binding and force-fields. The code is closed-source, but
makes use of several external software libraries; among these are three libraries in the ESL Bundle:
Libxc, ELPA and PEXSI (the last two included independently of ELSI). ELPA and PEXSI are used
not only for the LCAO-DFT solver but also for the various semi-empirical tight-binding solvers.

QuantumATK is a unique case amongst the list of current codes using ESL libraries, for a number
of reasons: (a) its closed-source and commercial nature means that there are strict constraints on the
licensing of libraries it can use (the most common being MIT, BSD and LGPL); (b) it uses C++ as
its backend language (with a Python frontend), and the ESL libraries are therefore linked to C++
rather than Fortran or C; and (c) executables are compiled and shipped for Windows as well as Linux.

8. Quantum ESPRESSO

This plane-wave program distribution contains a variety of optimised iterative Hamiltonian solvers
tailored for the plane-wave basis. Within the ESL effort, they were extracted and isolated into the
PIKKS KS-Solvers suite and library, together with additional components to perform fast-Fourier
transforms (FFTXlib) and parallel linear algebra operations (LAXlib). These will be inserted in



25

the ESL bundle in future releases. Use of these components is demonstrated in a simple empirical
pseuodopotential code that can be used as tool for further developments.[110] Quantum ESPRESSO
codes link to these libraries, as well as to other ESL libraries of different origin, such as Libxc, ELPA,
and wannier90.

9. SIESTA

Two libraries now in the ESL (libGridXC, LibFDF) originated as modules within Siesta. Several
more (flook, xmlf90 and libPSML) were developed with general usefulness in mind but also to address
issues of relevance to that program. Siesta is thus an important contributor to the ESL. In the
opposite direction, Siesta benefits from other ESL-provided functionality, most clearly in the area of
solvers, with an interface to ELSI that has significantly extended the choices available and enhanced
the performance of the code. The Libxc library is also used through the interface to libGridXC.
wannier90 has also been fully incorporated as a library. Work is now being done to incorporate the
new functionality available in the PSolver library in Siesta and there are plans to benefit from some
of the low-level utilities in the Futile package.

VII. FUTURE

The ESL represents a channel for possible spontaneous utility projects to develop and link into
present and new electronic structure packages. In this sense, the future evolution of the ESL from the
point of view of the sub-packages it contains is quite open.

For the mid- and long-term future of the ESL, a key metric of success will be wide usage. In
addition to communication (as done in this paper and on the web), the following aspects will be
important. (i) Content – useful features. High-level programmers should be able to find in the ESL
key tools for their programs. (ii) Performance. The libraries will need to be maintained, keeping
up with hardware evolution, and maintaining competitive standards of efficiency and scalability. An
important component of future performance will be the definition and stabilisation of APIs, in addition
to good standards of documentation. (iii) Easy use. The library has to be user friendly, not necessarily
for the end user, but for computational-scientist coders, who will implement new codes and/or features
linking to the ESL. (iv) Easy build. End users of programs that link to the ESL should be able to
compile their codes reasonably easily.

Concerning content, there is a list of candidate libraries to include, as well as modules in present
programs that can be extracted as libraries. In the short term, there are packages (some of them
mentioned above) that are being prepared for inclusion into the ESL and its bundle. This is the case
for the CheSS library,[149] which implements a linear-scaling Hamiltonian solver based on a Fermi-
operator expansion. It arises from the BigDFT program, but it already works as a separate library,
and is already used by other codes, such as Siesta. Similarly, the connection between MatrixSwitch
and DBCSR, illustrated in Fig. 4 will soon be bundled into the ESL. Also a candidate for bundling
into the ESL is the libPAW library,[152] currently distributed in the ABINIT package, but also used
in BigDFT and other codes. It is a collection of objects and routines intended to facilitate the porting
of the projector augmented-wave method “out of the box” onto any ES code regardless of the basis
used for the wave functions. DFTB+[106, 153] developers are also joining the ESL effort contributing
their semi-empirical electronic structure engine and the stand-alone SAYDX library (Structured Array
Data Exchange),[154] which is an auxiliary library that provides a platform for exchanging array data
using a simple tree structure. It offers a framework to build, manipulate and query such array data
trees, as well as send and receive them through various transport layers. They will be incorporated
into future ESL bundles.

Although the ESL and this paper focus on electrons, an important line of future work is the
incorporation of upper-level steering packages and libraries, prominently molecular-dynamics engines,
and, more generally, codes dealing with the nuclear degrees of freedom, both classically and quantum-
mechanically. Large-scale first-principles condensed-matter and molecular simulations are extremely
versatile, but most of their applicability demands an efficient treatment of both electrons and nuclei,
which will benefit from (i) improved robust communication between nuclear-dynamics drivers and
electronic-structure engines on varied platforms, and (ii) hierarchical parallelisation of the integrated
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code, to allow very large scale simulations on massively parallel computers. Library solutions for
both problems and, especially, their integration, represents a promising direction for the community,
building on initiatives such as i-PI.[16] It is a line of work that would involve the core of the CECAM
community, not only the electronic side, representing a great opportunity for the future of condensed-
matter and molecular simulations.

VIII. CONCLUSIONS

The electronic structure library project presented here is an initiative to stimulate, coordinate and
amplify the efforts in library sharing already started within the electronic structure community. It
was initiated by CECAM, which continues its support together with the E-CAM European Centre
of Excellence, spearheading a push within the community for a better model of electronic structure
software development which, it is hoped, will enhance dynamism, versatility, maintainability and op-
timisation of electronic structure codes. It will rationalise coding effort by avoiding useless repetition,
and by separating different types of coding task to be carried out by people with suitable profiles
and backgrounds, distinguishing between computational scientists and computer scientists or software
engineers. We believe that it will allow the re-engineering efforts needed for deployment of electronic
codes on novel computer architectures to be carried out more efficiently, widely, and by professionals
close to hardware companies and HPC centres.

Importantly, it is a community effort, pushed by people involved in the development of very promi-
nent and popular electronic structure codes, representing a wide spectrum of the community. Most
of the library packages presented in this paper were extracted from those codes, and many of these
are currently being used by codes other than their parent codes. There has been an emphasis on
library packages for highly-parallel heavy-duty tasks, the sharing of which is more challenging, but
very important for the ambitions of the ESL.

In addition to extracting, generating, and documenting the library packages and adapting their
APIs for general use, part of the ESL effort is dedicated to facing the new challenges arising with the
model. Most prominently, the integration of units with different data structures and parallelisation,
and the bundling of the set of packages in the ESL library for consistent and automatic building and
compiling.

Finally, as a community effort, the ESL community welcomes new additions to the ESL, and, of
course, the use of the ESL or its components by any electronic structure programmer, or indeed any
other community, as well as user feedback.
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and Emilio Artacho acknowledge support from the European Union’s Horizon 2020 research and in-
novation program under the grant agreement No. 824143 (Centre of Excellence project MaX). Miguel
A.L. Marques acknowledges partial support from the DFG through the project MA-6786/1. Daniel
G.A. Smith was supported by U. S. National Science Foundation (NSF) grant ACI-1547580. Mike
Payne acknowledges support from EPSRC under grant EP/P034616/1. Arash Mostofi acknowledges
support from the Thomas Young Centre under grant TYC-101, the Wannier Developers Group and
all of the authors and contributors of the wannier90 code (see Ref. 116 for a complete list). Alin M.
Elena acknowledges support by CoSeC, the Computational Science Centre for Research Communities,
through CCP5: The Computer Simulation of Condensed Phases, EPSRC grants EP/M022617/1 and
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Appendix A: Community organization and Steering Structure of the ESL

Formally, the ESL project was kick-started at a workshop organized at CECAM-HQ by Emilio
Artacho, Mike Payne, and Dominic Tildesley. Hosting around 20 participants, the workshop was held
during the summer of 2014 over a period of six weeks. After extensive discussions, the objectives and
scope of the library were agreed and the basic infrastructure was put in place. At this point, the key
element was the ESL wiki containing information about existing libraries and modules. Also at this
time, a governance structure was put into place consisting in a Curating Team (CT) and a Scientific
Advisory Board.

Since then, more workshops have been organized, roughly one per year, where the ESL has been
changed, improved, and expanded. It has evolved from a repository of information about software
libraries and tools in the domain of electronic structure to a curated bundle of tightly integrated
software libraries. As the project evolved and mutated, its governance adapted to better serve its
objectives. In 2019, the Advisory Board was replaced by a Steering Committee (SC). The SC proposes
and defines the guidelines that the CT should follow. There are quarterly meetings which are open
to the public and which focus on at least 3 tasks: i) deciding which new libraries should be added
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to the ESL Bundle, ii) proposing which versions of existing ESL software should be shipped and iii)
discussions of topics for coming workshops. The SC aims to include as many developers of software
included in the ESL Bundle and from codes using it as possible. It currently has 12 members and all
CT members are part of the SC as well. More recently, the curating team has been expanded from
3 to 6 members. The CT manages everyday activities within the ESL by holding monthly meetings,
creating proposal drafts and communicating with code developers and the SC. Each member of the
CT is tasked with supervising one specific aspect of the ESL. These include, amongst others, bundle
maintenance, organization of the ESL workshop, the ESL website, and ESL documentation. Note
that there are no competing interests between CT and SC. The ESL initiative aims to hold at least
one workshop a year. These have a duration of 14 days of which 2 days are for discussions and the
remaining 12 days of are for hands-on development activities. The focus of the workshops shifts each
year with the topic decided by the SC.

Appendix B: Sustainability and software engineering of the ESL demonstrator

Continuous Integration (CI) is a software engineering practice which allows code integration from
multiple contributors automatically into the main repository of a project. The process is enabled by
a set of tools and stages that assert the correctness of the code at each change. We strongly believe
that CI is a critical requirement for any scientific software project, in order to maintain a sufficient
level of quality over time.

CI is used within the ESL in a systematic way for the development of the ESL Bundle and the ESL
Demonstrator, as well as to check that the ESL Demonstrator can keep relying on new versions of
the ESL Bundle. The ESL Demonstrator is a basic example of ESC code built exclusively with ESL
components to explain to developers how to use them in their own codes (see section VI A). As such,
it has to be permanently kept in a working state. Some of the individual components of the ESL also
benefit from CI, upon choice of their respective developers.

As an example, the ESL Demonstrator relies on a series of widespread tools and technologies:
Gitlab CI[155], CTest from CMake[156], YAML[148] and Docker/Docker Hub[157]. All these ingredi-
ents are glued together to provide development workflows implemented in the ESL (see Fig 6). After
each commit, the CI infrastructure automatically checks that the code successfully builds and the
corresponding tests pass.

Docker is one of the tools designed to help with running and deployment of applications by using
container technology. It is relatively straightforward to use and we deploy the entire ESL Bundle on it.
We offer three Linux flavours for our Docker images: Ubuntu, Fedora and OpenSUSE. These Docker
images are the ones we use in the build and testing stage. The images are public and distributed via
Docker Hub.

The EasyBuild framework is of great help in this context. It has support for generating Singularity
and Docker container recipes which will use EasyBuild to build and install reference software stacks.
The latter will then be used within the CI infrastructure of the ESL, which mostly uses container-based
runners in the cloud.

Gitlab CI is the integrated Gitlab tool for continuous integration, continuous delivery and deploy-
ment, and is highly configurable. At the moment we are using it only for CI.

CTest is a testing tool distributed as part of CMake. It integrates seamlessly with CMake, which is
our build system of choice and one can easily use it to run unit tests or regression tests. We choose to
use the latter due to the lack of any maintained unit testing framework for Fortran. A test is deemed
passed or failed based on matching a regular expression at the end of execution. We also defined a
target that monitors the code coverage of our tests. In order to help with the automation of testing,
the output of the ESL Demonstrator is YAML-compliant, helping us to easily check the output. For
checking output we rely on a simplified version of Siesta’s YAML output testing.

In the ESL workflow (see Fig. 6), the user starts from a validated version of the master repository
by branching their own branch, a user branch. Once the work envisaged is done and the user commits
the changes to the branch, the Gitlab CI automatically runs the designed tests. If the tests fail, the
user corrects the errors and commits again. Once the tests pass, the code is ready for a merge request.
A merge request is issued by the user for inclusion in the master branch of the project. A peer review
process then kicks in. Two reviewers have to agree for the code to be included in the master branch.
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FIG. 6. Continuous integration workflow integrated with git.

If issues are found the code is returned to the user to fix the issues. If both reviewers agree then the
code is integrated.
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C. Köhler, T. Kowalczyk, T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Ne-
gre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Řezáč,
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[138] U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter, “Sparse matrix multiplication: The distributed

block-compressed sparse row library,” Parallel Computing 40, 47–58 (2014).
[139] See: https://github.com/cp2k/dbcsr and https://www.cp2k.org/dbcsr, accessed February 2020.
[140] P. Ordejón, D. A. Drabold, R. M. Martin, and M. P. Grumbach, “Linear system-size scaling methods

for electronic-structure calculations,” Physical Review B 51, 1456 (1995).
[141] D. R. Bowler and T. Miyazaki, “Methods in electronic structure calculations,” Reports on Progress in

Physics 75, 036503 (2012).
[142] R. Ierusalimschy, Programming in Lua, Fourth Edition (Feisty Duck Digital Book Distribution, 2016).
[143] “LibFDF,” (), see: https://gitlab.com/siesta-project/libraries/libfdf.
[144] “SAX, Simple API for XML,” See: https://en.wikipedia.org/wiki/Simple_API_for_XML.
[145] “Jhbuild,” (since 2003), https://wiki.gnome.org/Projects/Jhbuild.
[146] “Gnome project,” (since 1999), https://www.gnome.org.
[147] D. Alvarez, A. O’Cais, M. Geimer, and K. Hoste, “Scientific software management in real life: Deployment

of easybuild on a large scale system,” in 2016 Third International Workshop on HPC User Support Tools
(HUST) (2016) pp. 31–40.

[148] “Yaml,” (since 2001), https://yaml.org.
[149] S. Mohr, W. Dawson, M. Wagner, D. Caliste, T. Nakajima, and L. Genovese, “Efficient computation

of sparse matrix functions for large-scale electronic structure calculations: the chess library,” J. Chem.
Theory Comput. 13, 4684–4698 (2017).

http://elk.sourceforge.net
http://dx.doi.org/ 10.1002/wcms.1340
http://dx.doi.org/ 10.1002/wcms.1340
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1340
http://dx.doi.org/10.1103/PhysRevB.79.235118
http://dx.doi.org/ 10.1088/1367-2630/16/9/093029
http://dx.doi.org/ 10.1088/1367-2630/16/9/093029
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2017.09.033
http://vides.nanotcad.com
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/ 10.1103/PhysRevB.95.075146
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2015.04.023
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.07.028
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2016.07.028
https://www.buildbot.net
https://www.travis-ci.org
https://en.wikipedia.org/wiki/Ouroboros
http://dx.doi.org/10.1088/2053-1583/aa6811
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html#id8
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html#id8
https://github.com/cp2k/dbcsr
https://www.cp2k.org/dbcsr
https://gitlab.com/siesta-project/libraries/libfdf
https://en.wikipedia.org/wiki/Simple_API_for_XML
https://wiki.gnome.org/Projects/Jhbuild
https://www.gnome.org
http://dx.doi.org/ 10.1109/HUST.2016.009
http://dx.doi.org/ 10.1109/HUST.2016.009
https://yaml.org


35

[150] C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic separable dual-space gaussian pseudopotentials
from h to rn,” Phys. Rev. B 58, 3641 (1998).

[151] A. H. Larsen, M. Vanin, J. J. Mortensen, K. S. Thygesen, and K. W. Jacobsen, “Localized atomic basis
set in the projector augmented wave method,” Phys. Rev. B 80, 195112 (2009).

[152] T. Rangel, D. Caliste, L. Genovese, and M. Torrent, “A wavelet-based projector augmented-wave (paw)
method: Reaching frozen-core all-electron precision with a systematic, adaptive and localized wavelet
basis set,” Comp. Phys. Commun. 208, 1–8 (2016).

[153] B. Aradi, B. Hourahine, and T. Frauenheim, “DFTB+, a sparse matrix-based implementation of the
DFTB method,” The Journal of Physical Chemistry A 111, 5678–5684 (2007).

[154] “SAYDX — Structured Array Data Exchange,” https://github.com/aradi/libsaydx.
[155] “Gitlab-CI,” (since 2011), https://about.gitlab.com/product/continuous-integration.
[156] “CTest from CMake,” (since 2000), https://gitlab.kitware.com/cmake/community/wikis/doc/cte

st/Testing-With-CTest.
[157] “Docker,” (since 2013), https://www.docker.com.

http://dx.doi.org/ 10.1103/PhysRevB.80.195112
https://github.com/aradi/libsaydx
https://about.gitlab.com/product/continuous-integration
https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
https://www.docker.com

	No. 152 June 2021
	The CECAM Electronic Structure Library and the modular software development paradigm
	Abstract
	Introduction

	Shared libraries and the ESL
	The library sharing movement
	ESL
	Concept
	Challenges


	Common elements of electronic structure codes
	Existing library implementations in the ESL
	PSolver
	Libxc
	libvdwxc
	libGridXC
	pspio
	libPSML
	Electronic structure common data format (ESCDF)
	ELSI and supported solver libraries: ELPA, PEXSI, NTPoly, SLEPc-SIPs, SuperLU-DIST, Scotch
	LibOMM non-orthogonal eigensolver
	PIKSS: Parallel iterative Kohn-Sham solvers
	wannier90
	MatrixSwitch
	flook
	LibFDF
	xmlf90

	The ESL Bundle
	JHBuild bundler
	HPC-oriented distribution

	Use cases in end user codes
	ESL Demonstrator
	ESL in participating codes
	ABINIT
	BigDFT
	FHI-aims
	GPAW
	Multiple scattering codes
	Octopus
	QuantumATK
	Quantum ESPRESSO
	SIESTA


	Future
	Conclusions
	Authors contributions
	Acknowledgments
	Data Availability Statement
	Community organization and Steering Structure of the ESL
	Sustainability and software engineering of the ESL demonstrator
	References


