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Abstract. The Atomic Simulation Recipes (ASR) is an open source Python
framework for working with atomistic materials simulations in an efficient and
sustainable way that is ideally suited for high-throughput projects. Central to
ASR is the concept of a Recipe: a high-level Python script that performs a
well defined simulation task robustly and accurately while keeping track of the
data provenance. The ASR leverages the functionality of the Atomic Simulation
Environment (ASE) to interface with external simulation codes and attain a
high abstraction level. We provide a library of Recipes for common simulation
tasks employing density functional theory and many-body perturbation schemes.
These Recipes utilize the GPAW electronic structure code, but may be adapted
to other simulation codes with an ASE interface. Being independent objects
with automatic data provenance control, Recipes can be freely combined through
Python scripting giving maximal freedom for users to build advanced workflows.
ASR also implements a command line interface that can be used to run Recipes
and inspect results. The ASR Migration module helps users maintain their data
while the Database and App modules makes it possible to create local databases
and present them as customized web pages.
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1. Introduction

As computing power continues to increase and the era of exascale approaches, the
development of software solutions capable of exploiting the immense computational
resources becomes a key challenge for the scientific community. In the field of
materials science, ab initio electronic structure (aiES) calculations are increasingly
being conducted in a high-throughput fashion to screen thousands of materials
for various applications[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and
to generate large reference data sets for training machine learning algorithms to
predict fundamental materials properties[17, 18, 19, 20, 21, 22] or design interatomic
potentials[23, 24, 25, 26]. The results from such aiES high-throughput calculations are
often stored in open databases allowing the data to be efficiently shared and deployed
beyond the original purpose[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

While a few thousands of calculations can be managed manually, a paradigm
in which data drives scientific discovery calls for dedicated workflow solutions that
automatically submit and retrieve the calculations, store the results in organized data
structures, and keep track of the origin, history and dependencies of all data, i.e. the
data provenance. Ideally, the workflow should also attach explanatory descriptions to
the data that allows them to be easily accessed, understood, and deployed – also by
users with limited domain knowledge.

Materials scientists from the aiES community are employing a large and
heterogeneous set of simulation codes based mainly on density functional theory
(DFT)[38]. These codes differ substantially in the way they implement and solve
the fundamental physical equations. This is due to the fact that different types of
problems require different numerical approaches, e.g. high accuracy vs. large system
sizes, periodic vs. finite vs. open boundary conditions, or ground state vs. excited state
properties. In principle, the large pool of available aiES codes provides users with a
great deal of flexibility and freedom to pick the code that best suits the problem at
hand. In practice, however, the varying numerical implementations and the diverse
and often rudimentary user interfaces make it challenging for users to switch between
the different aiES codes leading to a significant “code barrier”.

To some extent, a similar situation exists with respect to materials properties.
Although aiES codes provide access to a rich variety of physical and chemical
properties, individual researchers often focus on properties within a specific scientific
domain. While this may be sufficient in many cases, several important contemporary
problems addressed by the aiES community are multi-physical in nature and require
properties and insights from several domains. For example, evaluating the potential of
a material as a photocatalyst involves an assessment of solar light absorption, charge
transport, and chemical reactions at a solid–liquid interface. Calculating new types
of properties for the first time is often a time-consuming process involving trial and
error and the acquisition of technical, implementation-specific knowledge of no direct
benefit for the user or the overall project aim. This situation may result in a “property
barrier” that hampers researchers’ exploitation of the full capacity of aiES codes.

In this paper, we introduce The Atomic Simulation Recipes (ASR) – a highly
flexible Python framework for developing and working with computational materials
workflows. The ASR reduces code and property barriers and makes it easy to
perform high-throughput computations with advanced workflows while adhering to
the FAIR Data Principles[39]. There are already some workflow solutions available in
the field, some of the most prominent being AFlow[30], Fireworks[40], AiiDA[41],
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and Atomate[42]. However, these are either designed for one specific simulation
code and/or constitute rather colossal integrated entities, the complexity of which
could represent an entry barrier to some users. The ASR differs from the existing
solutions in several important ways, and we expect it to appeal to a large crowd of
computational researchers, e.g. those with Python experience who like to develop their
own personalized (workflow) scripts and databases, less experienced users who prefer
plug-and-play solutions, and those who wish to apply non-standard methodologies,
e.g. compute GW band structures or Raman spectra, but feel they lack the expertise
required for using standard low-level codes.

The basic philosophy of ASR is to prioritize usability and simplicity over system
perfection. More specifically, ASR is characterized by the following qualities:

• Flexibility: The Python scripting interface and high degree of modularity
provide users with almost unlimited freedom for developing and deploying
workflows.

• Modularity: The key components of ASR, namely the workflow development
framework (ASR core), the Database and App modules, the task scheduler
(MyQueue), and the simulation codes, are separate independent entities.
Moreover, the Recipe library concept supports modular workflow designs and
reuse of code.

• Data locality: Generated data is stored in a special folder named .asr where
it can be accessed transparently via command line tools (similar to Git).

• Compatibility: For compatibility with external simulation codes, the ASR
core is fully simulation code-independent while specific Recipe implementations
communicate with simulation codes via the abstract ASE Calculator interface.

• Minimalism and pragmatism: ASR is based on simple solutions that work
efficiently in practice. This makes ASR fast to learn, easy to use, and relatively
uncomplicated to adapt to future demands.

At the core of ASR is the concept of a Recipe. In essence, a Recipe is a piece
of code that can perform a certain simulation task (e.g. relax an atomic structure,
calculate a Raman spectrum, or identify covalently bonded components of a material)
while recording all relevant results and metadata. The use of Recipes makes it simple
to run simulations from either Python or the command line. For example,

$ asr run "asr.bandstructure --atoms structure.json"

will calculate the electronic band structure of the material structure.json.
Subsequently, the command

$ asr results asr.bandstructure

will produce a plot of the band structure. With two additional commands, the ASR
results can be inspected in a web browser, see example in Fig. 6.

In practice, Recipes are implemented as Python modules building on the
Atomic Simulation Environment (ASE)[43]. Recipes conform to certain naming and
structured programming conventions, making them largely self-documenting and easy
to read. To keep track of data provenance, Recipes utilize a caching mechanism
that automatically logs all exchange of data with the user and other Recipes in a
uniquely identifiable Record object. Not only does this guarantee the documentation
and reproducibility of the results, it also allows ASR to determine whether a given
Recipe task has already been performed (such that its result can be directly loaded and
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returned) and to detect if a Recipe task needs to be rerun because another piece of data
in its dependency chain has changed. In addition, Recipes implement presentation and
explanatory descriptions of their outputs and may also define a web panel for online
presentation.

The Recipes of the current ASR library cover a variety of computational tasks and
properties (see Table 1). Most of the 40+ available Recipes utilize DFT. However,
some Recipes do not involve calls to a simulation code (e.g. symmetry analysis or
construction of phase diagrams) while others employ beyond-DFT methodology (e.g.
the GW method or the Bethe–Salpeter equation). These library Recipes can be
used “out of the box” or modified to fit the user’s need. New Recipes may be
developed straightforwardly following the documentation and large body of available
examples. Recipes can be combined into complex workflows using Python scripting for
maximal flexibility and compatibility with ASE and other relevant Python libraries like
PymatGen[44], Spglib[45] and Phonopy[46]. The Python workflows may be executed
on supercomputers using the MyQueue[47] task scheduler front-end or other similar
systems.

The ASR contains a number of tools for working with the ASE database module,
which makes it easy to generate and maintain local materials databases. Relying on
the Recipes’ web panel implementations, these databases may be straightforwardly
presented in a browser allowing for easy inspection, querying, and sharing of results
on a local or public network. As an example of an ASR-driven database project we
refer to the Computational 2D Materials Database (C2DB)[48, 49] ‡.

While the core of ASR, i.e. the Recipe concept and caching system, is fully
simulation code-independent, most Recipe implementations of the current library
contain calls to the specific aiES code GPAW[50]. We are currently working
on a generalization of the ASE Calculator interface which will decouple Recipe
implementations from simulation codes. In the future, many Recipes will therefore
work with multiple simulation codes.

Another on-going effort is to generalize the organization of calculated results.
For example results are currently presented mainly by material. This is practical for
a database which primarily associates a number of properties with each material, but
not for presenting sets of results parametrized over other variables than the material.
These limitations will be removed over the next releases.

The rest of this paper is organised as follows: In Section 2 we provide a general
overview of the main components of ASR. Section 3 zooms in on the central Recipe
concept and its caching system while Section 4 gives an overview of the currently
available Recipes. In Section 5, the Database and App modules are described.
Section 6 gives a brief presentation of the Computational 2D Materials Database
as an example of an ASR-driven high-throughput database project and provides a few
concrete examples of Recipe implementations. Section 7 describes the different user
interfaces supported by ASR while Sections 8 and 9 explain how ASR manages data
migration and provenance, respectively. Sections 10 and 11 cover documentation and
technical specifications. Finally, Section 12 summarises the paper and presents our
future perspectives for ASR.
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Figure 1. Schematic overview of the main modules of the ASR and their
interrelations. ASR consists of a Python library of Recipes for materials
simulations and a caching system for recording of results and metadata. Recipes
are envisioned to communicate with simulation codes via ASE interfaces, although
most current Recipe implementations contain parts that are specific to the GPAW
code. An arrow from X to Y means that Y calls X. The blue frames on the
Instructions Recipe box symbolise a caching layer that records all data flow
to/from the Recipes.

2. Overview of ASR

Fig. 1 shows a schematic overview of the main components of the ASR and their
mutual dependencies. An arrow from X to Y indicates a direct dependence of Y
on X, e.g. via function calls (Y calls X). The ASR modules have been divided into
the ASR core modules (Cache and Recipe) and the ASR user interfaces (command-
line interface, Python, Task scheduler front-end, and Apps). In addition, the ASR
Database and Data migration modules contain tools for working with databases and
maintaining data, respectively.

Recipes implement specific, well defined materials simulation tasks as Python
modules building on the ASE[43] and other Python libraries. A Recipe integrates
with a Cache module that keeps track of performed tasks and manages all relevant
metadata. The Cache also allows the user to inspect the data generated by a Recipe via
the ASR command line interface (CLI) or using Python. Likewise, the Recipes may be
executed directly from the CLI or called via Python scripts, the latter giving maximal
flexibility and compatibility with existing Python libraries. For the purpose of high-

‡ http://c2db.fysik.dtu.dk
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Recipe 1

main(a,b):

c = recipe2.calculate(a)
d = recipe1.calculate(b)
e = recipe1.calc_corr(c,d)

return Result

calculate(a):

simulation_code(a)

return Result

calc_corr(a,b):

return Result

Cached  Records

…

Recipe 2

Recipe 3

Recipe 4

3 
In

st
ru

ct
io

ns

Dependency

Caching
Record_Recipe1_main

• Result

• Instruction version

• Input arguments
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Figure 2. A Recipe consists of a set of Instructions (see Fig. 3) implementing the
computational steps needed to obtain a desired result. An Instruction may call
other Instructions of the same, or separate, Recipes. An Instruction always returns
a Record holding its result, normally represented as a Result data structure,
together with the dependencies on other Instructions and all additional metadata
required to trace back and reproduce the result.

throughput computations, advanced Python workflows combining several Recipes may
be constructed and executed remotely using task scheduling systems like MyQueue[47].

The ASR Cache and Recipe modules work on a folder/file basis. This locality
of data makes the ASR highly transparent for the user. The ASR Database module
contains functions for converting the ASR data stored in a tree of folders into an
ASE database and vice versa. The ASR App module generates web pages for online
presentation, browsing and searching of the databases generated by the ASR Database
module. Finally, the Data migration module provides tools for transforming data
(results or metadata) to ensure backward compatibility when Recipes are updated.

3. What is a Recipe?

A Recipe is a Python module implementing the Instructions needed to obtain a
particular result, for example to relax an atomic structure, calculate an electronic
band structure or a piezoelectric tensor. This section describes the structure and
main components of a Recipe. A schematic overview of the Recipe concept is shown
in Fig. 2.

3.1. Instruction

An Instruction is to be understood as a Python function wrapped in a caching layer
provided by ASR, see Fig. 3. Whenever an Instruction is called, the caching layer
intercepts the input arguments and asks the cache whether the result of the particular
Instruction call already exists (cache hit) or whether there are no matching results
(cache miss). If a matching result exists (because it was calculated previously), the
caching layer skips the actual evaluation of the Instruction and simply reads and
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Figure 3. An Instruction is a Python function (orange) wrapped in a caching
layer (light blue). When the function is called with a set of input arguments, the
caching layer consults the cache to check if a Record for that exact function call
already exists. In case of a cache hit, the Record is read and returned. In case
of a cache miss, the function is evaluated and the Record is stored before it is
returned.

returns the previously calculated result. In the case of a cache miss, the Instruction
is evaluated, after which the result is intercepted by the caching layer and stored
together with the relevant metadata in a Record object. The precise content of the
Record object and the conditions for a cache hit/miss are described in Section 3.3.

One of the great benefits of this design is its simplicity. Because the
Instruction/caching layer is implemented as a simple wrapper around a Python
function, usage of the caching functionality requires minimal additional knowledge.
In practice, this means that working with ASR and implementing new ASR Recipes
becomes really simple.

The caching system works on a per-folder basis (similar to Git): a cache is
initialized by the user in a folder and any instruction evaluated within this folder
or sub-folders will utilize this cache. This mimics the behaviour of the MyQueue
task scheduler so as to maximize the synergy between these tools. In practice, the
“one-cache-per-folder” system works well together with a “one-material-per-folder”
structure. The latter is currently still a requirement for utilizing the Database
functionalities described in Section 5. However, the caching system can work with
several atomic structures in the same folder as the cache can distinguish ASR tasks
performed on different atomic structures. Data written by ASR is encoded as JSON.

Any Instruction can be called directly by the user (from Python or the CLI), but
special importance is given to the “main Instruction”. The main Instruction usually
provides the primary interface for the user to the Recipe and returns the final result
of the Recipe. Other Instructions are called by the main Instruction and evaluated
as needed. These may be Instructions implemented in the Recipe itself but may also
be Instructions of separate Recipes. The main Instruction takes all input arguments
required by the Recipe and uses them to call other Instructions.

Having multiple Instructions in a Recipe is usually motivated by code reusability
or reduction of resources. The former is relevant when another Recipe needs to perform
an identical Instruction (see Section on Dependencies). The latter is relevant when the
task can be divided into Instructions with different resource requirements, in which
case the separation may save computational time or resources. In particular, this is
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useful if a recalculation of a subset of the generated data is required.
The input arguments of an Instruction comprise all the information required to

specify its task. When calls to an external simulation code are involved, the input
arguments include a code specification, the computational parameters like k-point
density, basis set specification, or exchange–correlation (xc) functional, as well the
atomic structure.

An Instruction carries a version number to facilitate data migrations, i.e.
transformations of the values or organisation of data produced by the Instruction.
This may be required for backward compatibility when Instructions are updated, see
Section 8.

3.2. Dependencies

It often happens that an Instruction can benefit from the functionality implemented by
other Instructions. An example is the main Instruction of the “band structure” Recipe
which calls an Instruction of the “ground state” Recipe to compute the electron density
that the band structure should be based on. The caching layer logs whenever an
Instruction requests data from another Instruction and uses that information to build
a list of data dependencies. The data dependency list is stored in the Record object
making it possible to trace what other pieces of data were used in the construction of
the current result.

Implementation of data-dependencies in Recipes requires no extra coding.
Whenever an Instruction calls another Instruction, the caching layer will automatically
intercept the call and (1) determine if there exists a matching Record (cache hit/miss);
(2) log the data dependency by registering the unique IDs and revision UIDS (see
Section 8) of any dependent Records.

3.3. The Record object

The Record object is the basic data unit of ASR. It stores the results of Instructions
together with metadata documenting how the results were obtained, and is used by
the cache system to identify already performed Instruction calls. The Record object
contains the following information:

• Result object (see Section 3.4)

• Input arguments, if relevant including

– Atomic structure
– Simulation code specification
– Computational parameters

• Instruction version (see Section 8)

• External codes versions

• Randomly generated unique ID

• Dependencies (see Section 3.2)

• Revision History (see Section 8)

• Execution time and resources (number of cores)

To identify a cache hit/miss when evaluating an Instruction, the caching layer
searches the cache for Records with matching Instruction name, version, and input
arguments. A cache hit is then defined as the existence of a matching Record. A
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recursive comparison is used to compare input arguments with those from existing
Records within a small numerical tolerance for floating point numbers. Any later
evaluations of the Instruction with identical arguments will result in a cache hit.

3.4. The Result object

To store and document the result produced by a Recipe, ASR offers a Result object
that wraps the actual result data (stored as a Python dictionary) in a simple data
structure that also contains specification of the result data types along with short
explanatory descriptions of the data. In addition, the Result object may implement
methods to present itself in different formats, see below. Using the Result object
is optional, but in practice all instructions that return more than a simple object or
value utilizes a Result object for improved data documentation.

3.5. Presentation of results

The Result object may implement presentation options of the result data in various
formats, for example text to terminal, figures, and web panels. The ASR Database and
App modules draw on the Recipes’ web panel implementation to create web pages for
presenting, browsing, and distributing databases containing collected Result objects,
see sections 5 and 6. This provides an efficient way of inspecting and sharing data as
it is generated, which is highly practical for projects involving multiple collaborators.

3.6. General principles for Recipe development

To maintain and exploit the modular structure of ASR, the development of new
Recipes should follow a few general design principles. First, the task performed
by a Recipe should be well defined and clearly bounded to make it easy to use in
different contexts. It should always be considered whether the Recipe could be split
into smaller independent Recipes that could be useful individually. Additionally, it is
encouraged that Recipes are designed/programmed so as to be as broadly applicable as
possible, e.g. with respect to the type of material (structure dimensionality, chemical
composition, magnetic/non-magnetic, metallic/insulating, etc.). Any information
required to define the simulation task should be included in the input argument of
the Recipe, i.e. hard coding of parameters should be avoided. This should be done to
ensure a flexible use and enhance the data provenance (input arguments are stored in
the Records). Recipes should employ conservative parameter settings as default to
ensure that the results are numerically well converged independent of the application,
e.g. material type. Finally, in order to keep ASR Recipes simple and easy-to-read, and
in order to enhance the modularity, code-extensive functionalities should be separated
out into ASE functions and called from ASR whenever it is possible and sensible, i.e.
when the ASE function is useful in other contexts than the specific Recipe.

4. The Recipe library

The ASR currently provides more than 40 complete Recipes allowing users to perform
a broad range of materials simulation tasks ranging from construction and analysis of
crystal structures over DFT calculations of thermodynamic, mechanical, electronic,
magnetic, and optical properties to many-body methods for evaluating response
functions, quasiparticle band structures, and collective excitations. A non-exhaustive
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list of available Recipes is provided in Table 1. It should be stressed that the list
constitutes a snapshot of the current state of the Recipe library, which is continuously
expanding. For example, we are currently developing Recipes for creating and
modeling layered van der Waals structures and point defects in semiconductors.

Most of the currently implemented Recipes rely specifically on the GPAW[50]
electronic structure code. As previously mentioned, we are currently working on
a generalisation of the ASE Calculator interface to make the Recipes – or a large
portion of them – simulation code-independent. Until then, usage of ASR with other
simulation codes than GPAW is possible by porting of existing Recipes or development
of new ones. The amount of work involved will depend on the type of Recipe and the
state of the ASE interface for the specific simulation code.

A few specific examples of Recipe implementations are given in Section 6 where we
outline the main computational steps and the final output of the asr.bandstructure

and asr.emasses Recipes, respectively.

5. The ASR Database and App modules

The ASR Database and web App modules make it possible to package, inspect,
share, and present ASR-driven projects easily and efficiently. The main tools and
opportunities provided by these modules are described in more detail below.

5.1. Database

The ASR Database module can be used to collect Record objects from a directory tree
into an ASE database. This is achieved by the command asr database fromtree.
The procedure assumes a “one-material-per-folder” structure, relying on the existence
of an atomic structure file in each folder to select Records pertaining to that atomic
structure. The Database module proceeds to collect atomic structure-Record data
sets and assign them to a particular row of an ASE database. We shall refer to such a
database as an ASR database. Once an ASR database has been collected, it is possible
to define key–value-pairs and relate property data to specific atomic structures.

The Database module also enables the reverse operation, that is, unpacking an
existing ASR database to a directory tree containing Record objects. This is achieved
by the command asr database totree. The function is useful when continuing a
project, e.g. because existing data must be updated or new data must be added,
for which the database is available but not the original directory tree. Moreover, it
provides tools for merging and splitting databases.

It is possible to collect a database for any number of materials/Record objects –
even for a single material – and thereby take advantage of the App tools for presenting
and inspecting results in a browser with no extra efforts. However, collecting databases
is obviously most powerful in cases involving many materials/properties where the
database makes it possible to search and filter the data via the defined key–value-
pairs.

The easy installation of ASE through the standard PyPI Python package manager
makes the ASE database format highly accessible. Furthermore, the portability of an
ASE database (via several backends, e.g. SQLite, PostgreSQL, MariaDB and MySQL)
enables easy packaging and distribution of data among different parties.
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5.2. Web App

The ASE provides a flexible and easily extensible database web application making it
possible to present and inspect the content of an ASE database in a browser. ASR
leverages this ASE functionality to customize the web application layout and provide
more sophisticated features such as the automatic generation of web panels, generation
of figures, and documentation of the presented data by utilizing the web panel data
structures encoded in the Result objects. Normally a Recipe generates one web panel.
However, panels gathering data from several Recipes may be created. One example
of the latter is the “Summary” panel of the C2DB web pages discussed in the next
section. In this case, a number of Recipes write data to a web panel data structure
named “Summary” in their Result object. This information is stored in the database
when collected. When generating the C2DB web pages from the C2DB database, the
App constructs all web panels that are defined in the data pertaining to a particular
material. If several Recipes have written to the same web panel, the data will be
combined in an order controlled by a priority keyword written together with the web
panel data.

5.2.1. Adding information fields To enhance the accessibility of the data, it is possible
to add an explanatory description to specific data entries, i.e, key–value pairs and data
files, of an ASR database. These descriptions will appear as text boxes when clicking
a “?”-icon placed next to the data on the web panels, see Fig. 5. General information
boxes for web panels are always generated by ASR. They contain a customised field
that can be manually edited, e.g. providing a short explanation of the data presented
in the panel and/or links to relevant literature, and an automatically generated field
listing the ASR Recipes that have produced data for the web panel and the key input
parameters for the calculations. An example of such an information box is shown in
Fig. 5.

5.2.2. Linking rows of databases ASR provides functionality to create links between
rows of the same, or different, ASR databases. This allows the developer to connect
relevant materials when designing web panels such that the end user can move swiftly
between them when browsing databases. For example, the asr.convex hull Recipe
creates the convex hull phase diagram of a material using an ASR reference database
of stable materials (originally from from the OQMD[28]), and creates a table with
links to all the materials on the phase diagram. Other examples, could be to link
different defective versions of the same crystalline material or different isomers of the
same material/molecule.

The links are defined in links.json files in the folders of the relevant
materials. These files may be generated manually or automatically using the
Recipe asr.database.treelinks. When collecting the database, ASR reads the
links.json file for each folder and stores the information in the Data dictionary
of the corresponding row. The Recipe asr.database.crosslinks then creates links
between rows of the collected database and rows of other databases that are given as
input to the Recipe. When generating the web panels, ASR uses this information to
generate hyperlinks in HTML format and present them in the web application for each
material.
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6. High-throughput example: The C2DB

In this section we present an example of what can be accomplished by the ASR in
the realm of data intensive high-throughput applications, showcase some examples of
ASR-generated web panels, and discuss two specific Recipe implementations.

Historically, the ASR evolved in a symbiotic relationship with the Computational
2D Materials Database (C2DB) — an extensive database project organising various
properties of more than 4000 two-dimensional (2D) materials. The C2DB distinguishes
itself from existing computational databases of bulk[28, 29, 30] and low-dimensional[51,
15, 52] materials by the large number of physical properties available. These include
convex hull diagrams, stiffness tensors, phonons (at high-symmetry points), projected
density of states, electronic band structures with spin–orbit effects, effective masses,
band topology indices, work functions, Fermi surfaces, plasma frequencies, magnetic
anisotropies, magnetic exchange couplings, Bader charges, Born charges, infrared
polarisabilities, optical absorption spectra, Raman spectra, and second harmonics
generation spectra. The use of beyond-DFT theories for excited state properties
(GW band structures and BSE absorption for selected materials) and Berry-phase
techniques for band topology and polarization quantities (spontaneous polarization,
Born charges, piezoelectric tensors), are other unique features of the C2DB.

Building the first version of C2DB without a fully functioning workflow framework
was a long and painstaking endeavour, but absolutely critical for the successful
development of the ASR. Today, the entire C2DB project can be generated by a
single (MyQueue) Python workflow script comprising a sequence of ASR Recipe calls
and simple Python code for controlling and directing the workflow via statements
like “if band gap > 0:”. Relying on the MyQueue task scheduler (see Section
7.3), generation of the C2DB is accomplished by the single command “mq workflow

c2db workflow.py tree/*/*/*/”, which will submit the C2DB workflow in folders
matching the pattern tree/*/*/*/. With the current C2DB workflow, this statement
will launch up to 23 unique Instructions for each of the 4047 materials amounting to
a total of 59822 individual aiES calculations (some Recipes like phonon and stiffness
calculations launch multiple aiES calculations). When the current workflow is run
with the GPAW code, about 258 calculations are unsuccessful (most often due to
convergence errors in the self-consistency DFT cycle) corresponding to a success rate
of 99.5%.

Apart from the data provenance control that ensures the documentation and
reproducibility of the data, there are two aspects of the ASR that are particularly
crucial for making high-throughput computations work efficiently in practice. First,
the caching functionality ensures that Recipes which have already been performed are
automatically skipped by ASR (unless something in the input for a Recipe has changed
since it was last executed). This means that only a single workflow script needs
to be maintained and submitted every time something has been changed, e.g., new
materials have been added, the workflow script has been updated, it has been decided
to rerun certain tasks with new parameters, or a Recipe has been modified. Such
functionality is essential because running and maintaining high-throughput projects
inevitably requires that subsets of calculations are repeated at different points in
time. Secondly, the carefully designed and well tested Recipes minimise the number
of unsuccessful calculations and the risk of human errors.
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Figure 4. The search page of C2DB with the first few rows of the database shown
below. The default web page generated by ASR includes only the top most search
field, but the panel can be customized by additional fields and buttons for more
convenient data filtering.

6.1. Recipe and web page examples

Below we present a few examples of output generated by the ASR-C2DB workflow
(for a full impression we refer the reader to the C2DB website).

6.1.1. Search page Fig. 4 shows the C2DB search page, which consists of a
search/filtering section followed by a list of the database rows presented by a selected
number of key–value pairs. Clicking one of the highlighted key names once (twice)
will sort the rows in increasing (decreasing) order of that key. Which keys should
be shown by default can be customized, but the user can always add extra keys via
the “Add column” button. By default, the search page generated by the ASR App
module will contain only the search field in the upper section, but additional fields or
buttons may be added for easy filtering according to the most relevant parameters.

6.1.2. “Summary” panel Fig. 5 shows the C2DB web page for monolayer MoS2. All
the web panels produced by the various Recipes of the workflow are seen, but only
the “Summary” panel is unfolded. This panel is designed to provide an overview
of the most basic properties of the material, and gathers data from the Result

objects generated by the following Recipes: asr.gs, asr.gw, asr.hse, asr.phonons,
asr.magstate, asr.stiffness, asr.convex hull, and asr.structureinfo.

Fig. 5 also shows the information box of the “Effective masses” web panel. It
contains a short explanation of the effective mass tensor and how it is evaluated by
the Recipe as well as a link to a relevant paper. The automatically generated part
shows that the panel contains data generated by the asr.emasses Recipe. The two
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C2DB
The Computational 2D Materials Database

Figure 5. Screenshot of the web page for monolayer MoS2 from the
C2DB project (only the “Summary” panel is unfolded). The panel presents
data from the Result objects generated by the following Recipes: asr.gs,
asr.gw, asr.hse, asr.phonons, asr.magstate, asr.stiffness, asr.convex hull,
asr.structureinfo.
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fields at the top of the page “Download raw data” and “Browse raw data” provide
access to the entire data set comprised by all Result objects of the specific material
entry of the database.

6.1.3. “Band structure” Recipe As another example, Fig. 6 shows the “Electronic
band structure” panel for monolayer CrW3S8 as calculated and presented by the
Recipe asr.bandstructure. The band structure is calculated with the PBE xc-
functional including spin–orbit interactions. The out-of-plane spin projections of the
states is shown by the color code. The main computational steps carried out by this
Recipe are:

• Perform a self-consistent ground state calculation (by calling the calculate

Instruction of the ground state Recipe asr.gs) to obtain a converged electron
density.

• Determine crystal symmetries and corresponding band path (uses ASE
functionalities).

• Calculate the Kohn–Sham eigenvalues along the band path. For magnetic
materials, this step calls the Recipe asr.magnetic anisotropy to obtain the
magnetic easy axis for evaluating spin projections.

• Call the main Instruction of the ground state Recipe to get the Fermi level (in 3D)
or the vacuum level (in ¡3D) for use as zero-point energy for the band structure.

In addition to these computational steps, the main Instruction of the Recipe formats
two figures to present the band structure itself and the Brillouin zone with the band
path and the positions of the valence band maximum (VBM) and conduction band
minimum (CBM). Note that the position of the VBM and CBM, as well as a number of
other properties like the band gap and band edge energies (not shown), are determined
by the Recipe asr.gs, which is called by asr.bandstructure.

6.1.4. “Effective masses” Recipe Fig. 7 shows a screenshot of the “Effective masses”
panel for monolayer CrW3S8 generated by the Recipe asr.emasses. The effective
mass tensor is calculated with the PBE xc-functional including spin–orbit interactions.
The color code represents the spin projections along the z-axis. In addition to the
effective masses themselves, the Recipe evaluates a “band parabolicity” parameter
defined as the mean absolute relative error (MARE) between the parabolic fit and the
true bands in an energy range of 25 meV. The main computational steps carried out
by this Recipe involve three subsequent k-point grid refinements; specifically:

• Perform a self-consistent ground state calculation on a uniform k-point grid (by
calling the calculate Instruction of the Recipe asr.gs) to obtain a converged
electron density as well as Kohn–Sham band energies.

• Locate the preliminary positions of the VBM and CBM and calculate band
energies on a higher-density k-point grid around the VBM and CBM to locate
the VBM and CBM positions with higher accuracy.

• Define final high-density k-point grids in the vicinity of the VBM and CBM points,
and calculate band energies.

• Locate VBM and CBM and fit bands by second-order polynomial using band
energies in an energy range of 1 meV from the band extremum.
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Figure 6. Screenshot of the “Band structure” panel for monolayer CrW3S8

from the C2DB project. The web panel contains data computed by the
asr.bandstructure Recipe.

• Calculate band structures for the web panel and evaluate the “parabolicity
parameter”.

It should be noted that even though effective mass calculations appear to be a simple
task, it is surprisingly tricky to design a scheme that performs efficiently, robustly, and
accurately across all types of band structures including flat bands, highly dispersive
bands, highly anisotropic bands, and bands exhibiting complex spin–orbit effects like
Rashba splittings.

6.1.5. General comments In contrast to the “Summary” panel, which has
been customized for the C2DB project (that is, the web panel sections of the
relevant Recipes have been appropriately adjusted), the “Electronic band structure”
and “Effective masses” panels are the default web panels produced by the
asr.bandstructure and asr.emasses Recipes, respectively.

The examples given here concern two-dimensional (2D) materials. However, the
Recipes asr.bandstructure and asr.emasses (like all other Recipes of the current
ASR library) apply also to 1D and 3D materials, as well as 0D where it is meaningful.
As mentioned in Section 3.6, this kind of generality should always be strived for when
designing Recipes. Achieving this may be straightforward or more involved depending
on the Recipe. The Recipe for the stiffness tensor represents an easy case, where the
dimensionality merely dictates the number of axes along which the material must be
strained. The Recipe for the band structure is more involved in this regard, as the
determination of the band path requires separate treatments in 2D and 3D as does
the determination of the spin projection axis (in 2D the out-of-plane direction is a
natural choice while in 3D the magnetic easy axis is more appropriate).
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Figure 7. Screenshot of the “Effective masses” panel for monolayer CrW3S8

from the C2DB project. The panel contains data computed by the asr.emasses

Recipe.

7. User interfaces

The ASR can be used via four different interfaces, c.f. Fig. 1: A command line interface
(CLI), a Python interface, a task scheduling front-end, and an app-based interface.
Below we describe each interface in more detail.

7.1. The CLI

The CLI provides convenient commands for easy interaction with ASR via the cache

and run subcommands. The cache subcommand allows inspection of the Records

stored in the cache, in particular their Result data. For example, $ asr cache ls

name=asr.gs will list all Records produced by the “ground state” Recipe. The run

subcommand can be used to execute Recipes directly from the command line. For
example, $ asr run asr.gs will run the ground state Recipe.

7.2. Python interface

The Python scripting interface allows inspection of Records and execution of Recipes
directly from Python. This makes it possible to implement more complex logic and
integrate directly with ASE and any other tools in the user’s Python toolkit.

7.3. MyQueue interface

For high-throughput computations, ASR can be used in combination with a workflow
manager that can handle the interaction with the scheduler of the supercomputer,
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such as Fireworks[40] or MyQueue[47]. The latter is a personal, decentralized, and
lightweight front-end for schedulers (currently supporting SLURM, PBS, and LSF),
which has been co-designed with ASR. MyQueue has a command line interface, which
allows for submission of thousands of jobs in one command and provides easy-to-
use tools for generating an overview of the status of jobs (‘done’, ‘queued’, ‘failed’
etc.). It also has a Python interface that can be used to define workflows. A Python
script defines a dependency tree of tasks that MyQueue will submit without user
involvement. The dependencies take the form: “if task X is done then submit task
Y”. MyQueue works directly with folders and files, which makes it transparent and
easy to use. Together ASR and MyQueue provide a powerful and extremely flexible
toolkit for high-throughput materials computations.

Individual Instructions of the Recipes may be defined as separate MyQueue
tasks, such that computational resources can be specifically dedicated each Instruction
ensuring a flexible and efficient execution of any workflow. It is, however, not a
requirement to specify resources on a per Instruction basis, in which case the resources
specified for the main Instruction will apply to all Instructions of the Recipe.

7.4. App interface

The App interface is a web-based read-only interface that allows the user to present and
inspect the data stored in an ASE database on a local or public network. Distributing
the data on a local network is convenient for larger projects and/or projects involving
several users, as it allows for easy sharing and monitoring of the data as the project
evolves. Once a project is finalized, the App may be used as a platform to present the
data to the world via web pages. The data presentation used by the App is defined
in the Result object of the Recipes.

8. Data maintenance

It sometimes happens that a Recipe, or one of its Instructions, has to be updated, e.g.
because a bug has been detected or it has been found appropriate to store additional
metadata. Such updates may imply that previously generated Records are no longer
consistent with the current implementation of the Recipe. Depending on the nature
of the change made to the Recipe, it may be possible to update the Record objects
without rerunning the Recipe (data migration) or it may be necessary to rerun the
entire Recipe or some of its Instructions (data regeneration).

To support the migration of data, ASR implements a simple versioning system
for Instructions. An Instruction is associated with a integer version number which
is stored in the Record and identifies the version of the Instruction at the time of
creation. When an Instruction is changed, its version number may be increased by
the developer. Since the caching layer matches the current Instruction version number
against Records in the cache (see Section 3.3), older Records would no longer yield
cache hits and are then said to be invalidated.

To facilitate the migration of invalidated Records, it is possible to specify
Migrations that can be associated with an Instruction and thereby provide a way
to bring old Records up to date. In practice, a Migration bundles a Record

transformation function, a unique migration ID and a human readable description
of the effect of the migration, see Fig. 8. In general, a Record transformation function
induces a change to a Record. For example, this could be to convert a Record of version
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n to a later version n + 1 without rerunning the Instruction, but in general the effect
of the transformation could be anything. Use of transformation functions is typically
possible when the update involves changes to metadata and/or data restructuring
while the actual result of the Instruction is unchanged.

When a Migration is applied to a Record, a Revision object is produced. A
Revision contains a randomly generated UID, the UID of the applied Migration,
an explanatory description of the changes made to the Record, and an automatically
generated list of the Record entries that were changed, added or deleted. The auto-
generated list of changes is constructed by comparing the Record returned by the
transformation function to the input Record.

Upon migration of a Record, a revision history is updated by the latest Revision
and stored in the migrated Record. The revision history can be inspected by users to
learn which revisions, if any, have previously been applied to a given Record.

A Selector is used to identify the Records to be migrated, e.g. based on the
Instruction name and version number. The Selector is bundled together with a
Migration into a MigrationSelector, which can determine whether a particular
Record matches the selection criteria of the Selector. To migrate a Record, ASR
searches through all Recipes to collect their MigrationSelectors (if they have
any) and apply them to the Record to find a “migration strategy”, i.e., which
Migrations to be applied and in which order. The migration strategy is then encoded
in a MigrationStrategy, which couples a particular Record to an ordered list of
Migrations. The particular MigrationStrategy can then be applied to the Cache
to execute the migration of the associated Record.

Selector

MigrationSelector

Migration

Transformation fct.

Description

Migration uid=142

MigrationStrategy

…
Record

Instruction = X
version = 3

Record
Instruction = Y
version = 3

Record
Instruction = Z
version = 1

Record
Instruction = Z
version = 3

For all Records in cache:
Apply Selectors and construct 
MigrationStrategy

Apply Migrations. 
Add migrated Record to cache.
Update revision history

Migration uid=253

Record
Instruction = Z
version = 1

Recipe library

uid

Collect all 
MigrationSelectors

Figure 8. To support data maintenance, ASR provides migration tools
for bringing Records up-to-date with the latest version of the Instructions
that produced them thereby avoiding recalculations whenever possible. The
ASR migration procedure consists of the main steps: (1) Collect all
MigrationSelectors from all available Instructions. (2) Select the migratable
Records of the cache. (3) Determine a migration strategy (an ordered list of
Migrations) for each migratable Record. (4) Apply transformation functions to
migrate the Records and add them to the cache. (5) Update the revision history
by a Revision object that documents the effect of the migration.
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ASR provides a simple CLI, via asr cache migrate, to analyse existing Records

in the cache, and identify migratable Records.
Whenever the asr version used in a given project is upgraded, a project

participant should identify migratable Records, migrate them and then rerun the
project workflow. Up-to-date Records will then be taken directly from the cache,
whereas the Instructions with invalidated Records and no associated Migration, i.e.
Records that the developer cannot migrate directly to the newest version, will be
rerun.

In order to minimize the computational cost of bringing data up-to-date with
ASR, developers are strongly advised to supply Migrations with their Recipe updates
whenever possible.

To provide the best conditions for the long term deployment of ASR-generated
data, the asr version of important projects should be upgraded regularly and the
project workflow rerun. Obviously, this action may induce changes in the data.
Whether this is acceptable or not is ultimately a strategic decision. However, for
dynamic data projects, a regular version upgrade not only ensures that the data is
of the highest quality, it also makes it easier for other parties to deploy the data
because existing results (Records) can be reused directly with the newest version of
ASR without having to rerun Recipes to bring the data up-to-date.

9. Data provenance

Simply stated, data provenance is the documentation of the circumstances under
which a piece of data came into existence. This includes how the data originally
was constructed, how the data has changed over time (also known as data-lineage)
and a documentation of relevant system specifications such as architecture, operating
system, important system packages, executables etc. If data provenance is handled
perfectly, then data will in principle be reproducible, i.e. given access to exactly the
same systems and software, any piece of data can be reproduced. In a scientific
context, where reproducibility is key, data provenance is naturally very important.

In ASR, the basic unit of data is the Record object, which connects the result
of an Instruction with various pieces of contextual metadata, see Section 3.3. Taken
together, the metadata tell the story of how the original Record came into existence
(Instruction name/version and input arguments), which other Records were implicitly
used for the construction of this Record (Dependencies), what external package
versions were used, and how the Record has transformed over time (Revision history).
For simplicity, since it would be outside the scope of ASR, system information is not
stored with the Record, which, in our experience, is not practically relevant for the
purposes of ASR. As such, we characterize ASR as practically, but not perfectly, data
provenant.

10. Documentation

ASR itself is documented on Read the Docs. The data is documented through the
Record and Result objects, see previous Section on data provenance.
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11. Technical specifications

Some technical specifications are listed in Table 2. ASR can be installed via pip using
the command pip install asr.

ASR requires or is normally used with the following software:

• Python libraries: ASE, numpy, matplotlib, plotly, flask, click

• Computational and workflow software: GPAW or other ASE codes, MyQueue
(SLURM/PBS/LSF)

• Optional extras: spglib, phonopy, and pymatgen (for Recipes); jinja, mysql or
other ASE database backends

For community support see https://asr.readthedocs.io/en/latest/src/contact.
html.

12. Summary and outlook

This article has introduced The Atomic Simulation Recipes (ASR) as an open source
Python framework for developing materials simulation workflows and managing the
data they produce.

To facilitate the transition to a paradigm of data-intensive science, ASR was
designed to support the development of materials simulation workflows that operate
in accordance with the FAIR data principles, by providing tools and concepts that
are general enough that they do not restrict the user whilst being concrete enough
to make a real difference. The ASR achieves this through the notion of a Recipe: a
general Python script that performs a well defined simulation task and is wrapped
in a caching layer that logs all relevant metadata without involving the user. This
construction places essentially no restrictions on the developer’s freedom to design and
control the workflow, but resolves the critical and complex issue of keeping track of
the data provenance. We stress that the core of ASR, i.e. the Recipe concept and the
caching system, is fully simulation code independent. In particular, it is not tied to
materials simulations and could potentially be useful in other areas of computational
science.

Beyond the built-in data documentation, there are many benefits of using
standardized, well tested, and well documented Recipes. For example, it saves time
and promotes a more sustainable scripting culture by reducing the need for individual
researchers to write and maintain their own personal scripts (which can be hard for
other to read and are often lost when the developer leaves the group). Furthermore,
it reduces the risk of human errors and lowers the barrier for researchers to undertake
simulation tasks with which they have little prior experience.

The fact that Recipes are independent units with own data provenance control
implies that they can be freely combined to create advanced workflows using Python
scripting for maximal flexibility. Such workflows can be executed on supercomputers
using a workflow management software that supports a Python interface. To this end,
we have developed the MyQueue[47] task manager that works as a front-end to the
most common schedulers (currently SLURM, PBS, and LSF). While MyQueue will
resubmit jobs that have timed out or crashed due to lack of memory, code-related
failures must be handled manually. In the future, ASR should integrate more closely
with MyQueue to permit that errors from the simulation codes are automatically
analysed and reacted upon. Along the same lines, an automated estimation of the

https://asr.readthedocs.io/en/latest/src/contact.html
https://asr.readthedocs.io/en/latest/src/contact.html
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HPC resources (time/memory/nodes) required by individual tasks could limit the
number of failed jobs and improve the utilization of resources.

The current Recipe library already covers a wide range of materials simulation
tasks and more are continuously being added. Of special importance are Recipes for
advanced beyond-DFT calculations where the benefits in terms of a lowered user
barrier, improved data quality, and increased utilization of computing resources,
are particularly large. The Recipe concept should also be advantageous for
implementation of machine learning methods that could integrate with ASR databases
and “standard” Recipes to make for more intelligent and computationally efficient
workflows.

The ASR makes extensive use of the Atomic Simulation Environment (ASE) as
a toolkit to process atomistic calculations. In particular, ASE is used as a front-
end for ASR to communicate with external simulation codes. This has the clear
advantage that ASR can become decoupled from the simulation codes. This decoupling
is currently not in place, and the majority of the existing Recipe implementations
contain code parts that are specific to the GPAW electronic structure code. To make
ASR fully simulation code-independent, the ASE Calculator interfaces must be further
generalized. This includes extensions of the interfaces to access outputs of calculations
as well as a systematic mechanism to control multi-step tasks. The adaptation of this
interface to multiple codes will eventually require a community effort that we hope
many code developers will take part in. Until then, Recipes must to some extent be
code specific.
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Table 1. List of Recipes currently implemented in the ASR library. Most of the
Recipes depend explicitly on the GPAW electronic structure code. The Recipes
are grouped under thematic headings and listed in alphabetic order.

Recipe name Description

Atomic structure
asr.database.duplicates Remove duplicate structures from a database
asr.database.rmsd Root mean square distance between structures
asr.dimensionality Dimensionality of covalently bonded substructures of a material
asr.push Push atoms along specific phonon mode
asr.relax Relax atomic structure
asr.setup.defects Generate native point defects
asr.setup.displacements Generate structures with a single displaced atom
asr.setup.magnetize Initialize atomic magnetic moments
asr.setup.reduce Reduce supercell to primitive cell
asr.setup.symmetrize Symmetrize an atomic structure
asr.structureinfo Extract structural information

Thermodynamic properties
asr.chc Constrained convex hull stability analysis
asr.convex hull Convex hull stability analysis
asr.defectformation Formation energy of neutral point defect
asr.fere Define elemental reference energies

Mechanical properties
asr.phonopy Phonon band structure and dynamical stability
asr.piezoelectrictensor Piezoelectric tensor
asr.stiffness Stiffness tensor

Electronic properties
asr.bader Bader charge analysis
asr.bandstructure Kohn-Sham band structure
asr.berry Various band topology invariants
asr.borncharges Born effective charge tensor
asr.deformationpotentials Deformation potentials (only for 2D)
asr.dos Density of states
asr.emasses Effective masses
asr.fermisurface Fermi surface
asr.formalpolarization Formal polarization phase
asr.gs Electronic ground state
asr.gw G0W0 quasiparticle band structure
asr.hse HSE06 band structure
asr.pdos Orbital projected density of states
asr.projected bandstructure Orbital projected Kohn–Sham band structure

Magnetic properties
asr.exchange Magnetic exchange coupling
asr.magnetic anisotropy Magnetic anisotropy
asr.magstate Determine magnetic state

Optical properties
asr.bse Optical absorption from Bethe–Salpeter Equation (BSE)
asr.infraredpolarizability Infrared polarizability (caused by vibrations)
asr.plasmafrequency Plasma frequency (from intraband transitions)
asr.polarizability Optical polarizability (caused by electrons)
asr.raman Raman spectrum (first-order)
asr.shg Second harmonics generation
asr.shift Shift current
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Source code https://gitlab.com/asr-dev/asr

Releases https://pypi.org/project/asr/

License GNU GPLv3 or newer (free software)
Documentation https://asr.readthedocs.io/en/latest/

Table 2. Technical specifications

https://gitlab.com/asr-dev/asr
https://pypi.org/project/asr/
https://asr.readthedocs.io/en/latest/
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