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Abstract

Kohn-Sham density functional theory (DFT) is routinely used for the fast electronic struc-

ture computation of large systems and will most likely continue to be the method of choice for

the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of

simplified DFT methods designed for consistent structures and non-covalent interactions of

large systems with particular focus on molecular crystals. The covered methods are a minimal

basis set Hartree-Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-

3c), and a generalized gradient approximated functional evaluated in a medium-sized basis

set (B97-3c), all augmented with semi-classical correction potentials. We give an overview

on the methods design, a comprehensive evaluation on established benchmark sets for ge-

ometries and lattice energies of molecular crystals, and highlight some realistic applications

on large organic crystals with several hundreds of atoms in the primitive unit cell.
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1 Introduction

Computational materials science is a dynamic area of modern scientific research. Approaches

that are based on the fundamental laws of quantum mechanics are now integral to almost

any materials design initiative in academia and industry [1, 2]. A typical materials discovery

workflow (see sketch in Fig. 1) starts with a set of requirements on the properties of a material,

which could be a combination of stability, and mechanical, or electronic features. However, the

possible materials space is huge and the task of theoretical models is in reducing this space to

a smaller number of promising candidates. Our ability to do these predictions are regularly

Figure 1: Sketch of a possible materials discovery work-flow. The compromise between high

accuracy and affordable computational cost in solving the Schrödinger equation is shown.

tested by blind competitions like the statistical assessment of the modeling of proteins and

ligands (SAMPL [3, 4]) and crystal structure prediction of organic compounds (CSP [5–7]).

While the static Schrödinger equation is a formally exact description, its direct solution is

prohibitive for many-particle systems. Thus, approximations to either the Hamiltonian or the

many-particle wavefunction ansatz are needed. Depending on the required accuracy and the

available computational resources, different electronic structure methods are needed ranging

from fast “low-cost” to more involved high-level methods. Exciting progress has been made in

the field of high-level methods (variant B in Fig. 1). On the one hand, embedding techniques [8–

10] and local approaches of coupled cluster theories [11–13] made the gold standard of quantum

chemistry applicable to molecular systems with a few hundred atoms [14] and molecular crystals

of small molecules [15, 16]. On the other hand, new algorithmic developments in the field of

quantum Monte-Carlo lead to substantial computational savings [17], enabling the calculation

of lattice energies of a range of molecular crystals within reasonable computational effort [18].

Another approach, which is less accurate but more affordable is the random phase approximation

(RPA) [19–23] that has recently shown good results, in particular if singles corrections are

introduced [24–26]. While RPA is not considered a benchmark type method, it has the advantage

of lower computational cost. Specifically combined with efficient implementations of analytical

nuclear gradients, this enabled the geometry optimization of large complexes and even molecular

dynamics applications [27, 28]. When numerical thresholds are pushed to the limit, the different

benchmark type methods have been shown to agree within sub-chemical accuracy, i.e. within



1 kcal/mol or 43 meV [29].

However, aiming at increasing system size and large-scale screening of many compounds, more

efficient methods that typically start from an effective one-particle theory are needed (variant

A in Fig. 1). Even with growing computational facilities, the routine application of electronic

structure methods to large systems requires efficient methodologies. Here, Kohn-Sham density

functional theory is often the method of choice due to its excellent accuracy to computational

cost ratio [30–32]. Recent developments of semi-local density functional approximations com-

bine exact constraints with various degrees of parametrization in order to improve the short- to

medium range electron correlation [33–35]. Another substantial development in the last decade

is in the incorporation of London dispersion interactions (also known as the attractive part of van

der Waals forces [36]) in the DFT framework [37–39]. This enabled the large scale application

of electronic structure methods for large non-covalently bound systems important for host-guest

complexes, protein-ligand binding energies, molecular crystals, porous cages, and nanostruc-

tured materials. A comprehensive benchmark for main-group thermochemistry, kinetics, and

non-covalent interactions (GMTKN55) demonstrated that the improved density functionals per-

form excellently for these energetic properties [40]. Indeed, the dispersion corrected SCAN-D3

functional [41] is the best performing non-hybrid method in most test sets. But considering the

improvement of high-level methods enabling affordable single-point energies, the major strength

of the low-cost methods will be in providing reliable geometries, perform conformational sam-

plings, and running molecular dynamics. With this in mind, we and other groups have presented

a couple of low-cost methods in the past years employing similar strategies. One central idea,

which has a long tradition in the quantum-chemistry community, is to use the error compen-

sation between a small atom-centered single-particle basis set and an incomplete treatment of

electron correlation [42–46]. We have been working on a hierarchy of simplified DFT methods

that were specifically designed for consistent structures and interactions of large systems like

molecular crystals. The covered methods are a minimal basis set Hartree-Fock (HF-3c [47]),

a small basis set global hybrid functional (PBEh-3c [48]) and its screened exchange variant

(HSE-3c [49]), and a generalized gradient approximated functional evaluated in a medium-sized

basis set (B97-3c [50]), all augmented with semi-classical correction potentials. As other groups

have followed with similar strategies [51–54], the methods are implemented in several program

packages, and are well received by the chemical physics community, it seems appropriate to give

an overview in this Topical Review. Most methods discussed are based on a DFT description in

specialized single-particle expansions. We give a brief (educational) background of the theoret-

ical framework in section 2.1, summarize the treatment of London dispersion interactions with

semi-classical potentials in section 2.2, and explain the construction of the “3c” hierarchy of

simplified DFT methods. In section 3, we compare the described methods based on established

molecular crystal benchmark sets and highlight a few selected realistic applications to large or-

ganic crystals with several hundreds of atoms in the primitive unit cell. A future perspective is

given in section 4.



2 Methodologies

2.1 Theoretical framework

Density functional theory (DFT) is based on the inspiring work of Hohenberg and Kohn [55].

In the following the electronic energy is written as a functional of the electron density n(r)

E[n(r)] = T [n(r)] + Vne[n(r)] + Vee[n(r)] =

∫
n(r) v(r) dr + F [n(r)] (1)

where T [n(r)] is the kinetic energy, Vne[n(r)] is the electron-nucleus, Vee[n(r)] is the electron-

electron interaction energy, and F [n(r)] is a universal functional of n(r). The first Hohenberg-

Kohn theorem states that any approximate density ñ(r) determines its own external potential

ṽ(r) and hence its own wave function Ψ̃. The application of the standard variational principle

gives, therefore, 〈
Ψ̃|Ĥ|Ψ̃

〉
=

∫
ñ(r) ṽ(r) dr + F [ñ(r)] = E[ñ(r)] ≥ E[n(r)]. (2)

Thus, the exact electron density minimizes the exact energy expression and is accessible through

a direct minimization of the electronic energy with respect to density variations. In Kohn-Sham

(KS) theory the total energy expression is given as a sum of the single-particle kinetic energy

contributions expressed in terms of orbitals,

Ts[n(r)] ≡ Ts[φi] = −1

2

∑
i

∫
dr φ∗i (r)∇2φi(r) (3)

the Hartree (Coulomb) repulsion of the density with itself,

J [n(r)] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

| r − r′ |
(4)

and the so-called exchange-correlation (XC) functional EXC [n(r)]

F [n(r)] = Ts[n(r)] + J [n(r)] + EXC [n(r)]. (5)

The XC functional is defined as

EXC [n(r)] = T [n(r)]− Ts[n(r)] + Vee[n(r)]− J [n(r)]. (6)

The KS equations describe non-interacting particles (T = Ts and Vee = 0) moving in an external

potential veff (r), defined by

veff (r) = v(r) +
δ J [n(r)]

δ n(r)
+
δ Vee[n(r)]

δ n(r)
. (7)

The Hamiltonian for a system with non-interacting electrons moving in an external potenital

veff (r) is simply given by

Ĥ = −
∑
i

1

2
∇2
i +

∑
i

veff (ri). (8)

This operator is separable and can, therefore, be expressed via an anti-symmetrized product

of single-particle eigenfunctions φi (KS orbitals), the solutions of a coupled set of non-linear

single-particle equations (
−1

2
∇2 + veff (r)

)
φi(r) = εi φi(r). (9)



DFT is exact provided that the XC energy is exact. In practice, the XC energy has to be

approximated, which is regularly classified according to the Jacob’s ladder hierarchy [56]. The

simplest approximation assumes a (locally) uniform electron density and is thus dubbed local

spin density approximation (LDA). In the frame of this approximation, the expression for the

XC energy is given by

EXC [n(r)] =

∫
n(r)εLDAXC [n(r)] dr. (10)

Here, εLDAXC is the exchange-correlation energy density per particle of an electron gas with uniform

spin densities [57]. LDA is still used in the solid state community with recent extensions to finite

temperature free energies [58]. While extended metallic systems can be described reasonably well

by LDA, typical molecular systems require inclusion of the density gradient as in the generalized

gradient approximation (GGA).

EGGAXC =

∫
εLDAXC [n(r)] g (n(r),∇n(r)) dr (11)

Different expressions are possible for the so-called enhancement factor g. The most promi-

nent GGAs are the Perdew-Burke-Enzerhof (PBE) exchange and correlation functionals [59]

and the Becke exchange (B88 [60]) combined with the Lee-Yang-Parr (LYP) correlation func-

tional [61]. A natural extension to GGAs is to use higher-order derivatives of the electron density

or other semilocally-available information, leading to the meta-GGA class. A typically employed

variable is the KS kinetic energy density τ = 1
2

∑
i |∇φi|2. Popular meta-GGAs are the Tao-

Perdew-Staroverov-Scuseria (TPSS) functional [62] and the Minnesota functionals M06L [63],

M11L [64], and MN12L [65] by Truhlar and coworkers. A recently introduced empirical meta-

GGA with a smoothness constraint and a VV10 long-range dispersion correction (long-range

dispersion effects see below), B97M-V, was presented by Mardirossian and Head-Gordon [66].

Constraint-satisfaction based meta-GGA functionals have gained more attention [67–70] with

a most recent development being the strongly constrained and appropriately normed (SCAN)

functional [33]. Driven from the fact that LDA and GGAs suffer from self-interaction errors

(integer discontinuity [71]) techniques have been developed for constructing functionals which

combine a fractional amount aX of non-local (one-determinantal) Hartree-Fock exchange with

local XC functionals. Such hybrid functionals have reduced self-interaction error which drasti-

cally improved, e.g., the description of band-gaps of periodic materials, thermochemistry, and

kinetics of chemical reactions. These hybrid DFAs were originally introduced by Becke and are

motivated by the adiabatic connection [72]. The hybrid energy expression is then given as

EhybridXC = (1− aX)EGGAX + aXE
HF
X + EGGAC . (12)

In principle, any semi-local XC component can be combined with Fock exchange, popular ones

are PBE0 [73] and B3LYP [74, 75]. Heyd and co-workers decomposed the Coulomb operator

into short- (SR) and long-range (LR) contributions of the form

1

r
=

erf (ω r)

r
+

erfc (ω r)

r
(13)

where erf(x) is the normal error function, erfc(x)= 1 − erf(x), and ω is an adjustable range

separation parameter [76]. Those range-separated hybrids (rsh) have the energy expression

ErshXC = (1− aX)EGGA,SRX (ω) + aXE
HF,SR
X (ω) (14)

+EGGA,LRX + EGGAC



In molecular calculations especially long-range corrected functionals are widely used in the cal-

culation of excited states by means of time-dependent DFT because the orbital energies obtained

with them are much more amenable for such calculations [77–81]. In the procedure of solving

the Kohn-Sham equations in systems with translational invariance, several simplifications can

be applied due to symmetry. The effective potential, which enters the Kohn-Sham Hamiltonian,

is periodic with respect to the translation vector T

veff (r) = veff (r + T ) (15)

where T is a Bravais lattice vector of the solid. This periodic boundary condition (PBC) leads to

Bloch’s theorem which states that the periodicity of the bulk material constrains the one-electron

wave function to obey

φi,k(r + T ) = exp (i k T ) exp (i k r)ui,k(r) = exp (i k T )φi,k(r) (16)

where k is the vector of reciprocal space and φi,k(r) as product of a lattice-periodic Bloch func-

tion ui,k(r) and a single-particle basis set. Translational symmetry now ensures that one has

to consider only k-vectors which lie inside the first Brillouin zone [82] when solving the Kohn-

Sham equations under PBCs. The integration in the first Brillouin zone is then replaced by an

integration over a k-point mesh (special point theorem [83]). Different expansions for the single-

particle basis sets are possible. One possibility is to solve the Kohn-Sham equations directly by

using a grid where functions are represented by their value over a set of points in real space [84].

Furthermore, numerically tabulated atom-centered orbitals (NAOs) are well known in the liter-

ature allowing the creation of optimized element-dependent basis sets that are compact as well

as accurate in production calculations with respect to total energy convergence [85]. Conceptu-

ally somehow different are the so-called Daubechies wavelets which have the characteristic that

they form an orthogonal and smooth basis set, localized both in real and Fourier spaces [86].

Another possibility in generating orbitals relies on an expansion in Slater type orbitals (STOs)

where integrals may be calculated numerically [87] or in a mixed scheme with analytical and

recursion/expansion-based evaluations [88]. Most quantum chemical codes use Gaussian type

orbitals (GTOs) to solve integrals analytically [89–91] while others use a combinations of GTOs

with projector augmented-wave (PAW) methods [92, 93]. Especially the PAW ansatz is often

used in material science [94, 95] and will thus be discussed in more detail. In the PAW method

the all-electron (AE) wave function ΨN is transformed into the so-called pseudo Hilbert space

(PS) by means of a linear transformation

|ΨN

〉
= |Ψ̃N

〉
+
∑
i

(
|φi
〉
− |φ̃i

〉) 〈
p̃i|Ψ̃N

〉
. (17)

Here, the PS wave functions Ψ̃N are the variational quantities and i is a shorthand for the atomic

site. The AE partial waves φi are obtained for a reference atom whereas the PS partial waves

φ̃i are equivalent to the AE partial waves outside a defined radius [96]. The projector functions

p̃i are dual to the partial waves 〈
p̃i|φ̃j

〉
= δij . (18)

By incorporating equation 17, one is able to show that in the PAW method the AE charge

density is given by

n(r) = ñ(r) + n1(r)− ñ1(r), (19)



where ñ(r) is the soft pseudo-charge-density calculated directly from the pseudo-wave-functions

on a plane-wave grid

ñ(r) =
∑
N

fN
〈
Ψ̃N |r

〉〈
r|Ψ̃N

〉
. (20)

Here, fN denotes the occupation number. The onsite charge densities n1(r) and ñ1(r) are treated

on a radial support grid [97–101]. Both charge densities are defined as

n1(r) =
∑
(i,j)

ρij
〈
φi|r

〉〈
r|φj

〉
(21)

and

ñ1(r) =
∑
(i,j)

ρij
〈
φ̃i|r

〉〈
r|φ̃j

〉
(22)

where ρij are the occupancies of each augmentation channel (i, j) which are calculated from the

pseudo-wave-functions applying the projector functions

ρij =
∑
N

fN
〈
Ψ̃N |p̃i

〉〈
p̃j |Ψ̃N

〉
. (23)

It is common to expand only those plane-waves-functions which exhibit small kinetic energies.

Hence, the plane-wave basis set can be truncated to include only plane-wave-functions within

a particular cutoff energy. The truncation of the basis set at a finite cutoff energy will lead

to errors in the computation of the energy and its derivatives. To minimize this error in a

systematic way, it is recommended to increase the value of the cutoff energy until the calculated

total energy converges within a required tolerance. For states with metallic characteristic and

small fluctuations in the charge density, very few planes-waves are sufficient. In contrast, systems

with rather localized electron density as in molecular crystals, large plane-wave basis sets are

needed which make the DFT calculation rather costly [102]. In particular, the convergence of

unit cells in free optimizations requires a very accurate stress tensor due to the shallow potential

energy surface.

In these situations, atom centered functions like GTOs can significantly reduce the number of

basis functions. This approach is based on the expansion of orbitals in Bloch sums

φi,k(r) =
∑
µ

Cµi(k)φµ,k(r) µ = 1, . . . ,M (24)

where µ labels all atomic orbitals (AOs) in the reference primitive cell and the Bloch functions

are created from atom-centered basis functions χµ

φµ,k(r) =
∑
T

exp (i k T ) χµ (r −Aµ − T ) . (25)

Gaussian-type orbitals benefit from a fast convergence behavior for describing the core electrons

due to strong localization. However, in contrast to plane-waves small AO basis sets strongly

suffer from basis set incompleteness errors, especially the basis set superposition error (BSSE).

Already semi-diffuse AOs can exhibit near linear dependencies in periodic calculations which

directly excludes the reduction of the BSSE by a systematic increase of the AO basis. To

overcome this problem, a general geometrical procedure has been developed in 2012 which



corrects for the BSSE in a semi-empirical way [103]. This geometrical counterpoise correction

(gCP) has been further extended to be applicable to periodic systems in 2013 [104]

EgCPBSSE =
σ

2

∑
A

∑
A 6=B

V gCP
A (|| rA − rB + T ||) (26)

with

V gCP
A (RAB) = EAmiss

exp
(
−αRβAB

)
√
SAB Nvirt

B

. (27)

The difference in atomic energy between a large (nearly complete) basis set and the target basis

set for each free atom, EAmiss, is used as a measure to generate the repulsive potential V gCP
A .

Here, α, β, and σ are fitting parameters, SAB is a Slater-type overlap integral and Nvirt
B is the

number of virtual orbitals on atom B in the target basis set. The SAB is evaluated over a single s-

type orbital centered on each atom and using optimized Slater exponents weighted by the fourth

fitting parameter η. The gCP parameter were obtained by least-squares minimization against

counterpoise correction data obtained by the scheme of Boys and Bernadi (BB-CP [105]). Several

basis sets have been parametrized and it could be shown that the gCP correction removes most

of the BSSE and is able to closely reproduce BB-CP corrected curves for, e.g., lattice energies

of molecular crystals [104].

2.2 London dispersion interaction

Mean field electronic structure methods like Hartree-Fock (HF) or semi-local DFT are widely

used in computational chemistry and physics. These methods do not describe long-range elec-

tronic correlation effects, and hence they cannot account for so-called London dispersion effects.

Nonetheless, such interactions are mandatory for describing the chemistry or physics of large or

condensed-phase systems in an accurate and asymptotically correct way. The exact expression

for treating long-range correlation effects is accessible by introducing the adiabatic connection

fluctuation dissipation theorem [106] which uses response functions to express the effect of an

external perturbation (Coulomb interaction scaled by λ) acting on the electron density.

Ec = −1

2

1∫
0

dλ

∫
drdr′

1

| r − r′ |

∞∫
0

dω
[
χλ(r, r′, iω) − χ0(r, r

′, iω)
]

(28)

The induced density and the external potential are related through a position- and frequency-

dependent charge density susceptibility

χ0(r, r
′, iω) = −4

∑
i

∑
a

ωai
ω2
ai + ω2

φi(r)φa(r)φa(r
′)φi(r

′). (29)

Unfortunately, most systems can not be treated exactly due to increasing computational costs

with increasing system size. In order to circumvent this obstacle, semi-classical methods were

developed to enable the computation of London dispersion interactions [107] even for large sys-

tem sizes. The computationally efficient semi-classical D3 scheme requires only the geometry

as input to calculate the inter- and intra-molecular dispersion energy based on pre-calculated

time-dependent density functional theory (TD-DFT) data. Within the D3 method the Coulomb



operator is expanded into multipoles where a coarse-grain partitioning to atomic polarizabili-

ties at imaginary frequency enables the calculation of interatomic dipole-dipole dispersion co-

efficients [108]. The exact Casimir-Polder equation gives access to such pairwise dispersion

coefficients

CAB6 =

∞∫
0

dω αA(iω)αB(iω). (30)

Aside from the pure geometrical D3 dispersion model, electron density dependent approaches like

the Tkatchenko-Scheffler [109] (TS) model with its many-body analogon [110] (MBD@scsTS),

the exchange dipole moment [111–113] (XDM) model of Becke and Johnson, or the local-response

dispersion [114, 115] (LRD) model by Sato and Nakai exist. Somewhat different approaches that

also rely on a local description of the response function are the non-local density functional based

dispersion corrections for which the well established family of van-der-Waals density function-

als [116–120] (vdw-DFs) and VV10 [121, 122] are appreciable examples. In 2010 the DFT-D

approach dubbed D3 [123] has been proposed. In distinction to earlier proposed approaches,

the molecular environment is explicitly taken into account by the empirical concept of fractional

coordination numbers (CNs) which are constructed by a pairwise sum. Through the concept

of fractional coordination numbers, different hybridization conditions are represented for each

element which is in agreement with chemical intuition. In this way the chemical environment

is taken into account only via the molecular geometry. System specific dispersion coefficients

are then derived, by taking the electrical dipole polarizability α(iω) for differently coordinated

symmetric hydrides (AmHn and BkHl) into account. For all elements with Z ≤ 94, several of

such reference hydrides have been treated non-empirically by TD-DFT calculations with a vari-

ant of the PBE0 hybrid functional with a modified amount of non-local exchange (aX = 37.5%).

A modified Casimir-Polder equation [124] has been used to calculate atom pairwise dispersion

coefficients CAB6,ref (CNA, CNB) for atoms A and B in these reference systems

CAB6,ref (CNA, CNB) = 3
π

∞∫
0

1
m

[
αAmHn(iω)− n

2 α
H2(iω)

]
(31)

× 1
k

[
αBkHl(iω)− l

2 α
H2(iω)

]
dω.

Here, AmHn and BkHl are the reference systems for A and B with the corresponding coordi-

nation number CNA and CNB. These reference systems describe different bonding situations

and are distinguished by their CN . In D3 every possible element and hybridization combina-

tion is precalculated and stored. During a calculation of a target system, the atom pairwise

CAB6,ref (CNA, CNB) dispersion coefficients are interpolated via a Gaussian weighting function to

generate system specific CAB6 (CNA, CNB) dispersion coefficients as follows

CAB6 (CNA, CNB) =

NA∑
i

NB∑
j
CAB6,ref (CNA, CNB)Lij

NA∑
i

NB∑
j
Lij

(32)

with

Lij = exp
[
−4
(
(CNA − CNA

i )2 + (CNB − CNB
j )2

)]
. (33)

This strategy ensures an efficient calculation of accurate system specific dispersion coefficients

simply by geometrical means (cf. Fig. 2). For clarity, the lengthy notation CAB6 (CNA, CNB) is
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Figure 2: Comparison of experimentally derived molecular dispersion coef- ficients (from

dipole oscillator strength distributions) with calculated ones (1225 cases, compilation by A.

Tkatchenko). Note the logarithmic scale and variation of the coefficients over three orders of

magnitude. The test set contains small to medium-sized, inorganic and organic molecules (H2–

C8H18).

abbreviated in favor of CAB6 . The atom pairwise dipole-quadrupole interaction E
(8)
disp is included

with the respective CAB8 dispersion coefficient, which is generated in D3 approximately from

recursion relations. Higher order multi-polar terms are neglected in D3 but effectively absorbed

in the s8 scaling factor into the 1/R8 term. The atom pairwise two-body dispersion energy is

than calculated as

ED3
disp = −1

2

∑
AB

∑
n=6,8

sn
CABn
Rn

f
(n)
damp(R

AB
0 ). (34)

Different approaches are available for choosing f
(n)
damp(R

AB) where RAB is an inter-atomic dis-

tance for atom pair AB. The rational Becke-Johnson damping function has become the default

in combination with D3:

f
(n)
damp,BJ(RAB0 ) =

RnAB
RnAB +

(
a1RAB0 + a2

)n (35)

The scheme incorporates functional-specific parameter a1 and a2 as well as the radii RAB0 =√
CAB8 /CAB6 . The leading non additive dispersion contribution dubbed Axilrod-Teller-Muto [125,

126] (ATM) term is defined as derived from third-order perturbation theory as

EABC =
CABC9 (3 cos θa cos θb cos θc + 1)

(RAB RBC RCA)3
. (36)

Here, θa, θb, and θc are the internal angles of the triangle formed by RAB, RBC , and RCA while

CABC9 is the triple-dipole constant defined by

CABC9 =
3

π

∞∫
0

dω αA(iω)αB(iω)αC(iω). (37)



Due to the fact that the total three-body contributions are rather small (∼5-10%) their coeffi-

cients are approximated by geometric means of dipole-dipole dispersion coefficients as

CABC9 ≈ −
√
CAB6 CBC6 CCA6 . (38)

This approximation was tested for different element combinations so that a general deviation of

about 10-20% to the exact expression could be determined [123]. The energy expression for the

three-body contribution is then given as

E
(9)
disp =

triples∑
ABC

EABC fdamp,(3)(RABC), (39)

where the sum is over all atom triples ABC in the system applied with a damping scheme

proposed by Chai and Head-Gordon [127]

fdamp,(3)(RABC) =
1

1 + 6
(
RABC/

(
4/3R

ABC
0

))−16 . (40)

In equation 40 the geometrically averaged inter-atomic distances RABC as well as cutoff radii

R
ABC
0 are used. In densely packed systems the correction is in general repulsive. Attractive

contributions are only found for more linear arrangements. As demonstrated by a database of

1225 inter-molecular CAB6 coefficients (see Fig. 2), the semi-classical D3 schemes yields highly

accurate results competitive to approaches that directly use electronic structure informations

to scale tabulated atomic references. The accuracy can be further increased by incorporating a

partitioned atomic charge information as recently shown [128].

2.3 Hierarchy of cost-efficient density functionals

Nowadays increasingly large systems can be computed routinely with good accuracy by disper-

sion corrected DFT together with relatively large basis sets (triple-zeta quality or better in the

GTO expansion). Still, despite of the good cost-accuracy ratio of DFT for large systems, larger

model systems and smaller time scales for the computation might still make the conventional

DFT approaches unfeasible. To overcome this problem while keeping the good DFT accuracy,

several composite schemes were developed during the past five years. They are based on estab-

lished mean-field methods like HF or semi-local DFT and share a treatment within modified

basis sets to gain substantial speed ups. As noted in the previous section, several basis set

options are in principle available. We aimed for a seamless description of 0D to 3D systems and

do not specifically target bulk solids with very delocalized electron density. Thus, the use of

GTOs is most efficient and major parts of the effort has been devoted in revising established

GTO basis sets of minimal (MINIX), double-zeta (def2-mSVP), and triple-zeta (mTZVP) qual-

ity with focus on organic and organo-metallic systems. Each basis set is the foundation for one

of the 3c-methods and the general energy expression is:

E3c
tot = E

HF,DFT/basis
tot + ED3

disp + EgCPBSSE + ESRB (41)

The occurring basis set superposition errors are mostly removed by incorporating the gCP

correction (see equations 26,27) or by explicit parametrization of the underlying model of theory



and remaining short-range basis set errors on bond length are corrected by an atom-pairwise

potential, dubbed short-range basis set (SRB) correction. Missing long-range correlation effects

are accounted for by applying the semi-classical D3 dispersion correction (see section 2.2). A

Figure 3: Sketch of the 3c composite methods according to (a) their basis set size and amount

of Fock exchange and to (b) their semi-classical correction potential. Here, MES is short for

modified electronic structure, i.e. an adapted treatment of the semi-local XC, and gCP and SRB

are the short-range basis set correction and geometrical counterpoise correction, respectively.

Adapted with permission from Ref [50]. Copyright 2018 AIP.

Table 1: Comparison of the hierarchy of “3c” low-cost electronic structure methods.

HF-3c PBEh-3c(a) B97-3c

AO basis set MINIX def2-mSVP mTZVP

#parameters in Fx
(b) 0 2 4

#parameters in Fc
(c) 0 1 6

Fock exchange [%] 100 42 0

D3 dispersion yes yes yes

SRB correction yes no yes

gCP correction yes yes no
(a) HSE-3c identical apart from long-range screening of Fock exchange (range-separation ω = 0.11). (b) Exchange

enhancement compared to LDA. (c) Correlation enhancement compared to LDA, B97-3c has separate parametrization of

same-spin and opposite spin.

sketch of the methods ingredients is given in Fig. 3 and listed in Table 1. With increasing basis

set expansion, the amount of Fock exchange can be reduced and still yield (on average) correct

geometries. For the smaller basis sets (MINIX and def2-mSVP), we exploit that elongated main

group bond lengths due to the small GTO basis can be systematically compensated by higher

amounts of Fock exchange. Following Occam’s razor, we choose for each 3c-method the least

empirical (less flexible) XC form that still yields competitive results. In the minimal basis set

HF method (HF-3c), short-range electron correlation is completely neglected, which reduces the

area of applicability, but has several advantages as listed below. In a slightly larger basis set (as



in PBEh-3c, and HSE-3c), the semi-local description could be improved, but still uses one of the

simplest exchange- and correlation enhancement factors of the PBE [59] form. Various flexible

forms have been tested but they were not able to yield a systematical improvement. Finally, the

triple-zeta basis set (as in B97-3c) is large enough to profit from a more involved XC treatment

and we choose Becke’s B97 form [129]. While HF-3c needs all three semi-classical correction

potentials, the SRB correction is not needed for PBEh-3c/HSE-3c and the (quite empirical)

gCP correction can be dropped for B97-3c, i.e. the empiricism in these corrections decreases in

the order HF-3c, PBEh-3c/HSE-3c, and B97-3c. In the following sections the theoretical main

ingredients of all composite scheme are shortly summarized.

2.3.1 HF-3c

In 2013, the first three-fold corrected composite scheme based on HF theory has been published

by Sure and Grimme. Its main area of application is the computation of structures, vibra-

tional frequencies, and non-covalent interaction energies in huge molecular systems. Using HF

has the following advantages: First, in contrast to DFT, HF does not suffer from self inter-

action errors and extended charged systems are unproblematic even when treated without an

implicit solvation model (in vacuo). Second, due to the simple analytical expressions of the

HF equations gradients and Hessians are easily accessible without numerical noise in geometry

optimizations or frequency calculations. Third, HF is inherently able to treat the important

hydrogen bonding motif so that there is no need for atom-type dependent H-bond corrections

which are often applied to semi-empirical approaches [130, 131]. The proposed HF method can

be applied without further parametrization to almost any element of the periodic table and

includes important effects like Pauli-exchange intrinsically. By following the standard definition

of electron correlation, it is clear that HF is not able to describe Coulomb correlation effects.

The suggested method is hence not generally applicable but yields simple properties as equi-

librium structures, vibrational frequencies or non-covalent interaction energies, when changes

in the electronic structure during a chemical process remain small. Processes which require to

account especially for dynamic correlation effects (reaction energies for, e.g., bond cleavage) are

not covered here. The total energy in HF-3c is

EHF−3ctot = E
HF/MINIX
tot + E

D3(BJ)
disp + EgCPBSSE + ESRB (42)

In the following, all corrections are shortly described: First, the D3(BJ) dispersion correction

scheme is incorporated into the HF-3c method for describing non-covalent interactions in a

reasonable manner. Second, the basis set is of minimal quality for typical (”organic”) elements

H, C, N, O and mostly of split-valence (SV) or polarized split-valence (SVP) quality for the other

elements (cf. table 2). The basis set superposition error (BSSE) is significant for a small basis set

and is mostly corrected by a gCP correction (cf. equation 26). Importantly, also intra-molecular

BSSE is treated this way, which is difficult to correct efficiently otherwise. According to the well-

established practice, basis set effects are separated into BSSE and the basis set incompleteness

error (BSIE). Following this sense, the gCP scheme accounts for the atom-pairwise part of the

BSSE and the third short-ranged basis correction (SRB) corresponds to the BSIE. SRB corrects

for systematically overestimated bond lengths for electronegative elements (e.g., N, O, F) and



Table 2: Composition ot the MINIX basis set.

Element Basis

H-He, B-Ne MINIS

Li-Be MINIS+1(p)

Na-Mg MINIS+1(p)

Al-Ar MINIS+1(d)

K-Zn SV

Ga-Kr SVP

Rb-Xe def2-SV(P) with ECP

is given as a pairwise sum in the following

ESRB = −s
2

∑
A 6=B

(ZA ZB)3/2 exp
(
−γ(RAB0 )3/4RAB

)
. (43)

In equation 43, RAB0 are the default Becke-Johnson cutoff radii as determined ab-initio for the D3

dispersion correction scheme and ZA, ZB are the nuclear charges of atom A,B. The correction

is applied for all atom types with Z ≤ 18. The empirical fitting parameters s = 0.03 and γ = 0.7

were determined to minimize HF-3c forces for given B3LYP-D3(BJ)/def2-TZVPP equilibrium

structures for 107 small organic molecules. E
D3(BJ)
disp and EgCPBSSE have been included during the

fitting process of ESRB, which was carried out to minimize the HF-3c RMS gradient for reference

geometries. Here, all D3(BJ) and gCP parameters were held constant at their initially optimized

values within this procedure. All empirically derived parameters of the HF-3c composite method

are given in table 3. Molecular crystals represent an important benchmark to study the accuracy

Table 3: Empirical parameters of the HF-3c method.

Parameter

Contribution s γ

ESRB 0.03 0.7

a1 a2 s8

E
D3(BJ)
disp 0.4171 2.9149 0.8777

α β σ η

EgCPBSSE 1.1549 1.1763 0.1290 1.1526

of the theoretical method in order to describe intermolecular interactions in a reasonable way.

Computing cohesive energies as well as optimized cell volumes is nowadays affordable for medium

to large molecular crystals, which is, furthermore, comparable to a broad pool of experimental

data. For this purpose different benchmark sets have been proposed to assess the performance

of different methods for describing molecular crystals. One well established example is the X23

benchmark set which consists of 23 different molecular crystals ranging from pure dispersion

driven to H-bonded systems. The original HF-3c methods performs rather well (comparable to

LMP2 methods [132]) but shows a tendency of overbinding molecular crystals, especially for



weakly bound systems. To cure this drawback a refinement of the HF-3c has been attempted

by tuning the dipole-quadrupole dispersion term in the energy expression (see Ref. [132]). This

method termed as scaled HF-3c (sHF-3c) has a by 0.7 scaled s8 factor which describes the

−CAB8 /R8
AB contribution. While the performance of cohesive energy prediction slightly worsens,

optimized unit cell volumes are in much better agreement with experiment.

2.3.2 PBEh3c

In 2015, a DFT-based composite electronic structure approach has been proposed for the efficient

calculation of structures and interaction energies in large chemical systems. It is based on the

well-known and numerically robust PBE generalized gradient approximation in a modified global

hybrid functional with 42% of non-local Fock-exchange dubbed PBEh-3c. The starting point for

calculating the electronic energy is a standard hybrid density functional treatment with a small

basis set. Generally, the Ahlrich’s-type split valence basis set def2-SV(P) [133] (together with its

ECP for heavier elements) is employed. For the elements B-Ne, the similar double-zeta sets are

used which contain one extra uncontracted s-function leading to slightly shortened (improved)

bond lengths. Exponents for d-polarization functions are resembling those from the 6-31G∗ basis

set [134] to values of α(d) = 0.8 for carbon to fluorine whereas standard values are applied to

boron α(d) = 0.5 and neon α(d) = 1.8. A weakness of the def2-SV(P) basis set is the systematic

overestimation of bond distances involving hydrogen which is caused by missing p-polarization

functions on hydrogen. This effect could be compensated by scaling all hydrogen s-function

exponents by a value of 1.22 which accounts for an increased nuclear charge in typical molecular

environments. This factor has been manually adjusted to match X-H bond lengths as well as

atomization energies of the methane, ammonia, and water molecule. For all other elements,

the standard def2-SV(P) basis set is used throughout without any changes and the entire new

basis set is termed def2-mSVP (where ”m” stands for modified). Note that def2-SV(P) and

def2-mSVP involve practically the same computational costs. Two terms are added to correct

the DFT energy EPBEhtot in order to include long-range correlation effects and to correct for the

occurring BSSE.

EPBEh−3ctot = EPBEhtot + E
D3ATM(BJ)
disp + Edamped,gCPBSSE (44)

In equation 44, PBEh denotes the density functional used (PBEh in the double-zeta basis

set). For the present method, all D3(BJ) and gCP parameters have been re-parametrized using

interaction energies of the S22 set [135]. Due to linear dependencies between D3 and gCP

parameters during the fitting procedure, the s8 was set to zero for this composite scheme, i.e.

a purely dipole-dipole interaction. Furthermore, three-body interactions (dipole-dipole-dipole

interactions n=9) are included via the ATM term. The second correction term denotes a slight

modification of equation 26. In contrast to the earlier proposed HF-3c method, the PBEh-3c

composite scheme puts more emphasis on accurate thermochemistry. Therefore, the effect of

the applied gCP correction, given in equation 26, in relation to this property has been further

investigated. It turned out that in few cases the correction introduces artifacts in the short-

range inter-atomic part and, furthermore, adds too much repulsive force to short covalent bonds.

In HF-3c, this effect could be canceled via the additional ESRBBSIE term which is omitted here.

Hence, the basic form of the gCP correction has been maintained but damped to be excluded



Table 4: Empirical parameters of the PBEh-3c method.

Parameter

Contribution κ µ βPBE aX

EPBEhXC 1.0245 0.123457 0.03 0.42

a1 a2 s8 a3

E
(2)(3)
disp 0.4860 4.5 0a 1a

α β σ η

Edamped,gCPBSSE 0.27649 1.9560 1a 1.32492

k1dmp k2dmp
4 6

aConstrained value.

in the short-range regime. Furthermore, the global hybrid density functional part is based on

PBE GGA exchange and correlation according to

EPBEhXC = (1− aX)EPBEhX + aX E
HF
X + EPBEC , (45)

where the parameter aX = 0.42 describes the amount of non-local Fock exchange. In order to

have more flexibility in the electronic part, the enhancement factor gX of the PBE exchange,

given by

gPBEX = 1 +
µ s2

1 + µ s2

κ

, (46)

has been modified to yield better atomization energies and certain difficult electron correlation

effects. The parameter µ = 10/81 is equal to the one of PBEsol [136] whereas κ = 1.0245 is

the average between the values of PBEsol and revPBE [137]. The PBE correlation functional

EPBEC contains a parameter βPBE = 0.03 which controls the admixture of GGA correction to

the LDA correlation energy. This parameter was adjusted via matching atomization and total

energies of a few small molecules and reaction energies from the GMTKN30 [138] benchmark

set. All parameters are given in table 4.

2.3.3 HSE-3c

In 2016 a screened non-local exchange variant of the global hybrid PBEh-3c based on the

Henderson-Janesko-Scuseria [139, 140] exchange hole model (cf. equation 47) has been pub-

lished [49]. The relatively large amount of Fock exchange within the PBEh-3c composite method

hampers SCF convergence, which is especially pronounced in condensed systems with metallic

characteristic, i.e. with orbital energy gaps smaller than 3.5 eV. Unfortunately, this excluded

important classes of solids or other condensed phase systems from a numerically stable descrip-

tion (e.g., the naphthalene crystal falls into this category). For instance, numerical problems

have been detected by describing organic semiconductors, extended protein structures, and

pharmaceutically relevant organic polymorph structures. The problem has been solved by com-

bining PBEh-3c with the Heyd-Scuseria-Ernzerhof [141, 142] (HSE06) exchange functional. The

method dubbed HSE-3c has the following energy expression

EHSE−3ctot = EHSE−3ctot + E
D3ATM(BJ)
disp + EgCPBSSE . (47)



Here, EHSE−3ctot includes among others (e.g., the kinetic energy) the exchange-correlation (XC)

functional which is given as follows

EHSE−3cXC = (1− ax)EPBEh−3c,SRX (ω) + axE
HF,SR
X (ω) (48)

+EPBEh−3c,LRX (ω) + EPBEh−3cC .

The XC functional is evaluated in an unmodified small Gaussian AO basis set of double-zeta

quality termed def2-mSVP, as described in section 2.3.2. The short-range (SR) Fock admixture

parameter ax, the modified PBE exchange, and the modified PBE correlation are fixed to the

PBEh-3c values. The HJS exchange hole model H(sσ(r)) has been parametrized to match the

enhancement factor of the PBEh-3c exchange functional (cf. equation 46)

H(sσ(r)) =

7∑
k=2

ak s
k
σ(r)

9∑
k=1

bk skσ(r)

(49)

with parameters {ai, bi} and the reduced spin density gradient sσ(r)

sσ(r) =
∇nσ(r)

n
4/3
σ (r)

. (50)

The error function separation is controlled via the standard parameter ω = 0.11 (fixed at the

HSE06 value) which switches the HSE-3c potential to a pure GGA at long-range. For treating

long-range London dispersion interactions the semi-classical D3(BJ) dispersion energy correction

is applied, respectively. Furthermore, three-body interactions (dipole-dipole-dipole interactions

n=9) are included. Due to the small atom-centered single particle basis set, the significantly

occurring BSSE is effectively removed by the gCP correction. All empirically derived parameter

are given in Ref [49].

Figure 4: Relative speed of HSE-3c compared to its global hybrid variant for a series of acene

crystals (benzene to hexacene). The smaller the band gap, the larger the speed up due to the

screening of exchange interactions with identical technical settings (crystal17 program).



We test the applicability of HSE-3c for small gap systems on a series of acene crystals (see

Fig. 4). This is an ideal test case as the band gap decreases with increased π system. We see

indeed a substantial improvement compared to the global hybrid PBEh-3c up to two orders of

magnitude for hexacene. Additionally, a comparison with Ahlrich’s SVP basis set shows that

the def2-mSVP basis is indeed faster while yielding variationally lower total energies for the

tested molecular crystals.

2.3.4 B97-3c

In 2018 a revised version of the well-established B97-D DFA has been proposed. It is a pure GGA

variant of Becke’s power-series ansatz from 1997 and is explicitly parametrized by including long-

range electron correlation effect in terms of the D3 dispersion correction. Different from other

composite schemes, the orbitals are expanded in a modified triple-zeta Gaussian AO basis set

dubbed mTZVP, which is available for all elements up to Rn. The remaining BSSE is adsorbed

in the modified B97 parameterization and thus, an additional treatment by a gCP correction

is not needed. It could be shown that B97-3c is excellent for molecular and condensed phase

geometries, competing with the performance of most hybrid functionals evaluated in larger basis

set expansion [50]. B97-3c can be applied to hundreds of atoms on a single processor and due

to lacking non-local exchange, it is suggested as a robust computational tool in particular for

systems with partial multi-reference character. The B97 functional is based on a remapping

of the reduced spin gradient variable sσ(nσ(r)), where nσ(r) denotes the electron density with

σ = α/β spin. The XC functional is given as

EB97
XC = EX + ECαβ +

∑
σ

ECσσ. (51)

The correction factors are expanded in a power series in the remapped variable u(s2). Becke, as

well as Head-Gordon, [143, 144] showed that three-terms in the series are a good compromise

between flexibility and ”robustness” for a GGA functional. The B97-3c energy expression is

calculated as

EB97−3c
tot = EmB97

tot + E
D3ATM(BJ)
disp + ESRB. (52)

The first term contains the re-fitted energy term of the B97 functional applied with the modified

mTZVP basis set. Furthermore, London dispersion effects are treated for pair- and triple in-

teractions as described before in the D3(BJ) version. The last correction term ESRB denotes a

slight modification of the short-range basis set correction developed for HF-3c (cf. equation 43).

ESRB = −qscal
2

∑
A,B

√
ZAZB exp

(
−rscal

RAB

RAB0

)
(53)

Here, qscal and rscal are fitting parameter, RAB is the inter-nuclear distance, ZA/B are the

nuclear charges and RAB0 standard D3 damping radii. The SRB correction mostly corrects for

artificially elongated covalent bond lengths that occur for most GGA density functionals.

2.3.5 Molecular dipole moments

As the in section 2.3 presented methods employ rather compact orbital basis set expansions,

it is challenging to describe the charge density very accurately, which might lead to errors in



the electrostatic, induction, and exchange interactions. For polar molecules, the electrostatic
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Figure 5: Molecular dipole benchmark: We compare computed dipole moments from three of our

“3c” methods (see section 2.3) as well as a modern tight-binding Hamiltonian GFN-xTB [145]

with experimental measurements [146].

contribution is particularly important and we thus test the leading order dipole for a set of

43 molecules [146]. Correlation between computed and calculated dipole moments is shown in

Fig. 5. The correlation increases in the order HF-3c, PBEh-3c, and B97-3c, which demonstrates

the relation to the larger basis set expansion. Results of PBEh-3c and B97-3c are quite en-

couraging with Peason correlations of 0.994 and 0.995, and mean absolute deviations (MADs)

of 0.11 and 0.09 Debye, respectively. This is competitive to results of other density function-

als evaluated in much larger basis set expansions, e.g. PBE, PBE0, and B3LYP/aug-cc-pvTZ

all yield an MAD of 0.09 Debye [146]. HF-3c uses a minimal basis set and is thus in between

traditional semi-empirical methods and standard DFT. While the dipole moments are not par-

ticularly good with MAD of 0.21 Debye, it is similar to Hartree-Fock in the popular 6-31G*

basis and clearly superior to the tight-binding Hamiltonian. Additionally, some errors in the

electrostatic interaction of HF-3c compensate with errors from the Pauli exchange repulsion as

analyzed in Ref. [103]. As we do not use any further approximation for Coulomb electrostatics

(as done in traditional semiempirical methods), we expect theses results to be transferable to

larger systems. Indeed, intermolecular interaction energies of large complexes and molecular

crystals turn out to be quite accurate (see section 3).

2.3.6 Implementations and computational cost

Due to the compact basis sets with low angular momentum functions, the presented “3c”-

methods can be ideally evaluated on modern CPU and GPU based architectures. All methods

have been implemented in a developer version of crystal17 [147]. crystal17 is an ideal

program for large scale screening of many crystal structures as it can employ all point and space

group symmetries [148]. Furthermore, it scales well on high-performance computational facilities



with up to 30 000 cores and electronic structure calculations on 14 000 atoms in the primitive

unit cell have been presented recently [149]. A simple scaling example is given in Fig. 6 where

different supercells of the one dimensional adenine-thymine helix are calculated at the sHF-3c

level of theory. We first see the efficient treatment of the full periodic structure by only one base
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Figure 6: Scaling behavior of the adenine-thymine (poly(dA)-poly(dT)) helix (one dimensional

periodicity) calculated at the sHF-3c level of theory using the crystal17 software suite. Each

cross represents an augmented supercell starting with the irreducible primitive cell (66 atoms).

All single-point calculations have been executed at the same hardware (one node with 28 CPUs).

pair in the irreducible unit (66 atoms). The eleven symmetry operators to generate the primitive

cell reduce the computational costs significantly by a factor of 15. While not all crystals have

such a high symmetry group, the most common space group for molecular crystals (P21/c) has

four symmetry operators that yield up to a 64 fold speed up for a cubic scaling method. We

can furthermore see that the electronic structure solution of a helix with 2904 atoms in the

primitive cell can be computed with less than 2000 CPU hours. This enables routine geometry

optimizations and even computation of phonon spectra for large complex systems on standard

computational facilities. The cost effective calculations by the sHF-3c method is intrinsically due

to their construction in restricted orbital expansions. All other numerical and implementation

enhancements like linear scaling DFT [150] can in principle be employed additionally. Apart

from the crystal17 package, additional implementations of most of the described low-cost

methods are available in the (mostly) molecular codes Orca [151], Turbomole [152], Psi4 [153],

CP2K [154–156], Fermions [157], and TerraChem [158, 159]. While crystal17 uses continuous

fast multipole methods to approximate long-range Coulomb and exchange integrals [160, 161],

all the other codes additionally employ density fitting techniques [162–164] with recent iterative

low-memory extensions to periodic systems [165–167]. This can make a substantial difference

for larger basis set calculations, especially for pure GGA functionals like B97-3c. In practice,

this leads to the relative speed for larger molecular complexes of 1:10:50 for HF-3c, B97-3c, and

PBEh-3c, respectively (see Ref. [50]). The GPU implementation of HF in TerraChem can lead

to a substantial boost in computational speed, making the full electronic structure description



(HF-3c and PBEh-3c level) of protein ligand binding affinities feasible [168].

3 Applications

All composite methods presented in the last sections are intended to cover a broad spectrum

of applications in the field of organic, inorganic and organometallic chemistry. Due to the cost

advantageous nature of each method, they are particularly suitable for the application of struc-

tural properties and non-covalent interactions occurring, e.g., in molecular crystals. Specifically

for predicting crystal structures of organic molecules as highlighted in the introduction, London

dispersion corrected DFT has been shown to be promising. Neumann and coworkers have been

successfully applying combinations of molecule specific force fields with DFT methods includ-

ing the D3 dispersion correction in the CSP blind tests organized by the Cambridge structural

database [6, 169–171]. We have extended this analysis to a broader range of DFT methods,

where the most recent developments showed promising accuracies [172]. In the following the

performances of the introduced low-cost methods are compared to high-level reference data in

relation to several benchmark studies. Furthermore, two selected examples are given to highlight

the benefits of the low-cost methods to solve quantum chemical problems.

3.1 Molecular crystal benchmark sets

3.1.1 Lattice energies compared to high-level references

Molecular crystals are an important class of systems with a huge impact on material science [173]

as well as on pharmaceutical industry [174]. Unfortunately, high-level methods are limited in

their application to a smaller range of systems. Therefore, efficient DFT methods are crucial

for routine applications. The central quantity to assess the stability of a crystal is given by its

lattice energy Elatt which is by definition the energy per molecule gained upon adopting the

crystalline form with respect to the gas state

Elatt =
1

Z
Ecrys − Egas. (54)

Here, Ecrys is the energy of the crystal with Z molecules within the primitive cell and Egas

is the energy of the isolated molecule in its lowest energy conformation. Recently, reference

energies based on high-level diffusion Monte-Carlo (DMC) have been calculated for a set of

eight molecular crystals [18] which contain different binding motifs like strong hydrogen bonds

as well as unsaturated π-systems with dominant London dispersion interactions. Table 5 shows

the results of the introduced composite methods in comparison to affordable many-body methods

like the random phase approximation (RPA@PBE) and second order perturbation (MP2). The

mean absolute (unsigned) deviations (MADs) of sHF-3c, HSE-3c, and B97-3c are comparable

with each other (1.1, 1.3, and 1.4 kcal mol−1) and outperform even the RPA@PBE method

which yields an MAD of 1.9 kcal mol−1 [18]. While RPA can be signifiantly improved by singles

corrections, the calculations get substantially more costly and are currently not applicable to

larger molecular crystals [26]. The commonly used MP2 perturbation theory is able to describe

simple hydrogen bonded systems, but fails for delocalized systems with small orbital gaps. In



Table 5: DMC8: Comparison of lattice energies for 8 molecular crystals (subsets of ICE10 [175]

and X23 [176, 177] ) compared to high-level DMC references [18]. Energies are given in kcal/mol,

RPA results from [26] and MP2 from [132, 178]

deviation Ecalc − Eref

system Ref. RPA MP2 sHF-3c HSE-3c B97-3c

1 ice Ih -14.2 1.7 0.1 -1.8 -2.8 -2.2

2 ice II -14.1 1.8 0.2 -1.3 -2.2 -1.6

3 ice VIII -13.7 1.9 0.2 0.7 -0.8 -0.7

4 carbon dioxide -6.7 1.0 -0.2 -0.0 -0.1 0.9

5 ammonia -8.9 1.3 -0.5 -0.1 -3.7 -2.7

6 benzene -12.7 1.9 -2.0 1.4 -0.2 -1.9

7 naphtalene -18.8 2.5 -3.0 1.4 0.2 -3.3

8 anthracene -25.2 3.1 -5.1 2.2 0.6 -4.4

mean deviation 1.9 -1.3 0.3 -1.1 -0.4

mean absolute deviation 1.9 1.4 1.1 1.3 1.4

this regard, the presented low-cost methods are reliable even though this set of systems is quite

challenging for effective mean field methods.

3.1.2 Lattice energies and geometries from experimental measurements

Another 33 molecular crystals are taken from the ICE10 [175] and the X23 [176, 177] benchmark

sets to process a statistically larger amount of data points. Here, semi-experimental references

are derived from measured sublimation enthalpies (∆Hsub) by removing zero-point (EZPV E)

and thermal effects with measurement temperatures T and adiabatic heat capacity differences

∆Cp

Elatt = −∆Hsub(T ) + ∆EZPV E +

T∫
0

dT ′∆Cp(T
′). (55)

The uncertainty of these references have a range of 1-1.5 kcal mol−1 due to uncertainties in the

sublimation measurement [180]. The zero-point and thermal effects on the unit cell volumes

have been estimated for both benchmark sets with an uncertainty of about 1-2%. Individual

results of the presented composite schemes as well as for the B3LYP hybrid functional applied

with a def2-SV(P) basis set are given in Fig. 7. The strong hydrogen bonds in the ICE10 set

are particularly challenging for small basis set expansions which is ideally compensated by the

scaled minimal basis set HF-3c method. HSE-3c is performing a bit worse, probably due to

underestimated BSSE, but it performs better than related hybrid functionals in a comparable

basis set expansion (cf. B3LYP/def2-SV(P) results in Fig. 7). B97-3c is performing in the upper

range of GGA functionals applied with a converged basis set like BLYP-D3 [175] with an overall

MAD of 1.2 kcal mol−1 for calculated lattice energies. On average 0.7% mass densities are 0.7%

too small.
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Figure 7: Lattice energies and mass densities of 33 molecular crystals from the ICE10 [175] and

X23 [176, 179] benchmark set. In addition to the three composite methods, we show results

from B3LYP in a small basis set taken from Ref. [48] and give the Pearson linear correlation

value. Adapted with permission from Ref [50]. Copyright 2018 AIP.

3.2 Selected examples

3.2.1 Shortest H· · ·H contact

Sterically overcrowded molecular structures originate from short H· · ·H contacts that may corre-

spond to potential energy minima or conformational transition states [181]. Especially the latter

involve severe H· · ·H repulsions leading to substantial interconversion barriers. The accompa-

nying unusual and therefore interesting characteristics of many overcrowded molecules depend

decisively on the type of their non-covalent H· · ·H interactions at short distances. The devel-

opment of theoretical tools for the computer-assisted treatment of such overcrowded molecules,

especially of methods based on quantum mechanics, requires reliable experimental reference

data of structures with short H· · ·H distances on which the theoretical models can be tested

and calibrated. Key features are the non-covalent interactions dominated by London dispersion

forces. The aim here is to use a low-cost approach which is able to describe such structural

motifs occurring, e.g., in molecular crystals within a reasonable amount of computational costs.

By taking a closer look at experimental X-ray data it is well known that hydrogen positions

obtained from such measurements suffer from large systematic errors due to missing scattering

abilities of hydrogen atoms whose electron densities usually do not coincide with the proton

locations, respectively [182, 183]. This effect is already visible when examining the electron

density distribution of normal C-H bonds. In this case, the maximum electron density is shifted

by 0.1 Å to the carbon atom, so that C-H bond lengths determined by X-ray experiments are

generally underestimated. Other experimental reference methods such as neutron diffraction at

low temperatures are completely free of such disadvantages, since the ability to bend neutrons

does not differentiate much by going from hydrogen to heavier atoms. Such low-temperature

neutron diffraction data (NRD) are therefore ideally suited as a reference to test theoretical

models. Recently, low-temperature single-crystal neutron diffraction measurements of the crys-



talline tri(3,5-tert-butylphenyl)methane, abbreviated as TPM in the following, (cf. Fig. 8) at

20.0 K have been reported showing an intermolecular H· · ·H distances of 1.566(5) Å, which is

the shortest non-covalent H· · ·H contact to date [184]. To rationalize this unusual structural

Figure 8: Representation of TPM as molecular dimer (left) and the primitive cubic cell with

P213 symmetry (right). The mentioned hydrogen-hydrogen bond is highlighted. The mentioned

short hydrogen bonds are stressed out on the left side.

motif, electronic structure simulations of the experimentally derived starting structure at the

HSE-3c level [49] were performed. The starting structure exhibits a cubic space group of P213

symmetry with eight molecular dimers in the primitive cell (856 atoms). All atomic positions

and cell lengths were relaxed until convergence has been reached. The good agreement with

the experimentally derived solid-state structure is reflected in particularly in the excellent de-

scription of the intermolecular H· · ·H distance. The calculated solid-state structure generally

matches the extrapolated experimental bond lengths at 0.0 Kelvin extremely well. The volume

of the primitive cell is reduced by 2% which is in the typical range for organic crystals [185]

due to missing zero-point vibrational and thermal effects. The finite temperature volume of

the primitive cell has been determined by exploiting the quasi-harmonic approximation to in-

clude zero-point and thermal vibrational effects which gives an absolute deviation of 0.1% with

respect to the experimentally measured volume. Packing effects have been estimated by re-

computing the TPM dimer in the gas phase at the same level of theory, results are summarized

in table 6. This strongly indicated that the short H· · ·H contact originated from a London

dispersion driven crystal packing effect. To strengthen this hypothesis, an energy decomposi-

tion analysis [186] (EDA) at the B3LYP-D3ATM (BJ)/def2-TZVPP level of theory is used to

separate the various energy contributions to the overall stability. Through this EDA approach,

the hydrogen bond interaction can be decomposed into electrostatic (ES), exchange-repulsion

(EXR), orbital-relaxation (OR), local correlation (loc-Corr), and dispersion interactions (DISP,

covered through the D3 correction). Figure 9 shows the EDA of the optimized dimer geometry

and a full dissociation curve with fixed monomer geometries. London dispersion interactions

are the dominant binding motif leading to the overall stability of the TPM dimer. To put the

efficiency of the presented low-cost electronic structure methods into perspective, we compare

the timings for a single self-consistent field solution of the TPM crystal in its Pa3 modification.



Table 6: Structural data of TPM determined by neutron diffraction (abbreviated as NRD) and

by the composite method HSE-3c [184].

NRD HSE-3c

T[K] 20.0 100.0 200.0 0.0(s) 0.0(g)

R-value 0.031 0.054 0.096 – –

Volume[Å3] 7833.1(4) 7901.4(4) 8040.4(4) 7676.9 –

H· · ·H [Å] 1.566(5) 1.577(6) 1.594(9) 1.555 1.634
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Figure 9: Energy decomposition analysis at the B3LYP-D3ATM(BJ)/def2-TZVPP level of theory

with respect to the H· · ·H distance of the TPM dimer. Left: The total interaction energy (bold,

green curve) shows a minimum around 1.59 Å (highlighted as dotted line). Right: The individual

components of the energy decomposition at the minimum geometry is shown.

Here, a semi-empirical DFTB3-D3 [187–189] method is compared with the three low-cost meth-

ods sHF-3c, PBEh-3c, and HSE-3c. Additionally, a projector augmented-wave method (PBE-

D3/PAW,1000eV) is used as cross-check computed with the VASP program [94, 95, 97, 98].

Wall times computed on a single node with 16 CPUs (Intel(R) Xeon(R) E5-2660 v4) are given

in Table 7. The explicit timing should be interpreted carefully as different program packages

are used and only CRYSTAL17 can fully employ all symmetry operators. In terms of compu-

tational times, the presented composite schemes are in between the traditional semi-empirical

methods and the full DFT treatment in converged basis sets while keeping the good DFT-D

accuracy (see section 3.1).

3.2.2 Shortest P=O· · · I bond

The description of halogen bonding is commonly based on the concept of the so-called σ-

hole [190–192]. When the electrostatic potential, produced by the nuclei and electrons of a

molecule at any point r, is calculated on a molecular surface one obtains the surface electrostatic



Table 7: Timings of different methods for one single-point calculation of the TPM crystal in

Pa3 symmetry. Absolute timings are given in hours (h), minutes (m), and seconds (s), relative

timings are given relative to the ”cheapest” method.

Method [h:m:s] rel. time

DFTB3-D3 00:00:22 1

sHF-3c 00:02:54 8

HSE-3c 00:21:50 60

PBEh-3c 00:29:35 81

PBE-D3/PAW,1000eV 21:56:33 3599

potential (SEP). The SEP of a molecule is an important physical characteristic for understanding

non-covalent interactions. Significant progress in describing halogen (XB) bonding theoretically

has been achieved during the recent years and different levels of computational methods have

been employed with the main focus of finding the best accuracy-cost ratio [193]. Nonetheless, ex-

amples are reported for which the σ-hole concepts fails to explain the experimental finding [194–

196]. Beneath well established methods like NMR spectroscopy and UV/Vis absorption, and

emission titration, X-ray crystallography is frequently cited as unambiguous proof of XB inter-

actions present in the solid-state [197, 198]. Those interactions are crucial in understanding the

often underestimated influence of crystal packing effects in the solid-state [199–201]. Recently,

Schaub et al. have proposed an XB complex which represents one of the rare cases where oxy-

gen does not act as a bifurcated halogen bond acceptor [202]. Here, a linear coordination of

the halogen bond donor 1,4-diiodotetrafluorobenzene and the phosphoryl (P=O) group of the

triarylphosphine oxide (cf. Fig. 10 for the dimer structure cutout) is found. Most importantly,

Figure 10: Depiction of the dimer structure cutout from the experimentally derived crystal

structure (left) as well as the triclinic primitive cell with space group P-1 (right). The mentioned

short halogen bonds are stressed out on the left side.

the O· · · I distance of 2.683(5) Å is significantly shorter than the sum of the van der Waals radii

for iodine (1.98 Å) and oxygen (1.52 Å), with an overall shortening of 23.3 %. This complex

features the shortest documented halogen bond compromising a P=O· · · I motif and hence might

imply that the electron-rich oxygen atom at the central phosphoryl unit acts as an exceptionally

strong halogen-bond acceptor. However, this finding is in contrast to titration experiments,



which pointed at the absence of halogen bonding in solution. Quantum chemical calculations

of the experimentally measured X-ray structure with HSE-3c confirmed the structural motif of

the XB complex. Here, the short experimental O· · · I bond of 2.683(5) Å could be reproduced

to a value of 2.625 Å. Furthermore, the computed P=O· · · I bond angle differed by less than

one degree from the measured one, which intensified a virtually linear arrangement. In order to

-10

-5

0

5

10

15

20

25

EES EEXR EOR Eloc−Corr EDISP ETotal

TPSS-D3/def2-TZVP
@ HSE-3c

@ PBEh-3c

@ PBEh-3c-COSMO

E
/k

ca
lm

ol
−1

re
pu

ls
iv

e
at

tr
ac

tiv
e

Crystal

Gas phase

Solution

Figure 11: EDA results for the halogen bond interaction of the dimer shown in Fig. 10. Structures

were extracted from the HSE-3c optimized crystal structure, PBEh-3c optimized gas phase

structure, and PBEh-3c-COSMO optimized structure in solution (structures are given in the

ESI). The analysis has been executed at the TPSS-D3/def2-TZVP level of theory.

provide a closer look at the halogen bonding situation an EDA has been conducted for the dimer

structure (cf. left part of Fig. 10) at the PBEh-3c optimized structure in the gas phase, PBEh-

3c-COSMO optimized structure in solution, and HSE-3c optimized crystal structure. Here, only

one triarylphosphine oxide and the halogen bond donor are analyzed. The analysis has been

executed at the TPSS-D3/def2-TZVP level of theory (cf. Fig. 11). The total interaction energy

does not differ significantly for the three setups used (gas phase, solution, and crystal). With

more than one third of the overall interaction energy, the major contribution to the halogen-

bonding interaction is provided by the electrostatic interaction, whereas the other interactions

roughly contribute equally. Since the halogen bond motif in the crystal is not much larger

than in the free dimer, this cannot be considered a driving force in the crystallization process.

A closer look to the environment of the halogen bond donor and acceptor within the crystal

structure shows that the driving force is by far the stacking interaction of electron-deficient

1,4-diiodotetrafluorobenzene with fluorenyl flanks of the triarylphosphine oxides as has been

shown recently [202]. This study showed how the low-cost electronic structure methods could

be used to qualitatively and quantitatively explain the supposingly contradicting experimental

findings by an effective electronic structure description of gas, solution, and solid state of the

XB complex.



4 Future perspective

DFT has been the ’work-horse’ in electronic structure computation in both the solid state physics

and theoretical chemistry communities. In the past years, many-body electronic structure theo-

ries emerged that will partially replace DFT for computing electronic properties on given atomic

configurations. However, we still see DFT as an irreplaceable tool for (a) the routine calculation

of structures and properties of systems with medium size of about 102 atoms and (b) the elec-

tronic structure description of increasingly large systems with well above 103 atoms. In order to

keep DFT as a state-of-the-art methodology, both functional as well as numerical developments

will be important. In this topical review, we presented a set of low-cost methods and mainly

focused on the electronic structure part by combining compact orbital basis sets with semi-

classical correction potentials. Substantial speed-ups of one to three orders of magnitude can be

achieved while keeping the good DFT-D accuracy. A major focus was on accurate intra- and in-

termolecular geometries as this will in our view be a most important area for DFT applications.

This hierarchy of methods is well suited for the every-day calculation on systems of modest to

large size, but more importantly it will be able to make use of new developments in employing

modern hardware, density fitting, or linear-scaling techniques as long as they can be mapped

to a similar orbital expansion. We expect a significant impact of efficient DFT methodologies

on the crystal structure prediction algorithms and on large scale material screenings in general.

In a complementary multilevel treatment, the generated DFT structures can be further used to

compute the desired property by any, possible more accurate, electronic structure method.
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[28] B. Ramberger, T. Schäfer, and G. Kresse. Analytic interatomic forces in the random phase

approximation. Phys. Rev. Lett., 118:106403, 2017.
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homöopolaren Bindungskräften. Z. Phys., 60:491–527, 1930.

[108] H. B. G. Casimir and D. Polder. The influence of retardation on the london-van der waals

forces. Phys. Rev., 73:360–372, 1948.

[109] A. Tkatchenko and M. Scheffler. Accurate Molecular Van Der Waals Interactions

from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett.,

102:073005, 2009.

[110] R. A. DiStasio, V. V. Gobre, and A. Tkatchenko. Many-body van der waals interactions

in molecules and condense matter. J. Phys.: Condens. Matter, 26:213202, 2014.

[111] A. D. Becke and E. R. Johnson. Exchange-hole dipole moment and the dispersion inter-

action. J. Chem. Phys., 122:154104, 2005.

[112] A. D. Becke and E. R. Johnson. A density-functional model of the dispersion interaction.

J. Chem. Phys., 123:154101, 2005.

[113] A. D. Becke and E. R. Johnson. Exchange-hole dipole moment and the dispersion inter-

action: High-order dispersion coefficients. J. Chem. Phys., 124:014104, 2006.

[114] T. Sato and H. Nakai. Density functional method including weak interactions: Dispersion

coefficients based on the local response approximation. J. Chem. Phys., 131:224104, 2009.

[115] T. Sato and H. Nakai. Local Response Dispersion Method. II. Generalized Multicenter

Interactions. J. Chem. Phys., 133:194101, 2010.
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[184] S. Rösel, H. Quanz, C. Logemann, J. Becker, E. Mossou, L. Cañadillas-Delgado,
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Differences and Halogen-Bond Selectivity. Cryst. Growth Des, 16(5):2662–2670, 2016.
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