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Abstract

We discuss the role of dynamical many-electron effects in the physics of iron and iron-rich

alloys at high-pressure/high-temperature conditions on the basis of recent ab initio studies

employing the dynamical mean-field theory. After reviewing previous applications of this

theory to iron at the ambient pressure, we first focus on the moderate-pressure range up

to 60 GPa and low temperatures. The electronic mass enhancement and scattering rate

are found to be significantly enhanced at the pressure-induced transition between ground-

state ferromagnetic body-centered-cubic α-Fe and hexagonal close-packed paramagnetic ε-Fe

resulting in a step-wise increase of the electrical resistivity and a significant correction to

the ε-Fe equation of state. The disappearance of magnetic order at the α-ε transition is the

cause of this enhancement with dynamical correlations suppressed by a large spin polarization

in the α-phase. An electronic topological transition is predicted to be induced in ε-Fe by

many-electron effects; its signatures are experimentally observed in this phase at the pressure

of about 40 GPa. Next section focuses on the geophysically relevant pressure-temperature

regime of the Earth’s inner core (EIC). The three iron allotropes (α, ε and face-centered-

cubic γ) considered as possible stable phases at such conditions feature qualitatively different

many-electron effects as evidenced, e. g., by a strongly non-Fermi-liquid metallic state of

α-Fe and an almost perfect Fermi liquid in the case of ε-Fe. A recent active discussion on

the electronic state and transport properties of ε-Fe at the EIC conditions is reviewed in

details. We also discuss the impact of a Ni admixture, which is expected to be present

in the core matter. We conclude by outlining some limitation of the present DMFT-based

framework relevant for studies of iron-base systems as well as perspective directions for

further development. Key features of this theoretical framework are reviewed in some details

in the Appendix.
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1 Introduction

Iron is a key material for our civilization since the advent of ”Iron Age” at about 1000 BC.

The technological utility of iron originates in a vast phase space provided by iron-based alloys,

allowing for divers microstructures to be produced with small variations in the composition

and an appropriate thermal treatment. In particular, the rich zoo of steels is composed by

three stable phases - the ferrite (body-centered cubic, bcc, α) austenite (face-centered cubic, fcc,

γ) and cementite (orthorhombic carbide Fe3C) - in addition to various metastable phases, for

example, the body-centered tetragonal martensite α′ (see, e.g., [1]). This multitude of phases

observed in iron-based alloys and compounds stems from the complex physics of pure iron, which

features three distinct allotropes at the ambient pressure: ground-states bcc α-Fe transforms

into fcc γ-Fe at 1185 K; the fcc phase subsequently transforms to yet another bcc phase, δ-Fe, at

1667 K. Though α and δ-Fe have the same bcc crystal structure, their physics is quite different,

with the vibrational entropy believed to be playing the key role in stabilization of the later

[2]. Iron is a classic itinerant ferromagnet, and the ferromagnetic order is well recognized to be

crucial in stabilizing α-Fe [3]. However, as noted above, the α phase still exists above the Curie

temperature of 1044 K. The fcc γ phase is paramagnetic in its bulk form stable only at high-

temperatures. However, γ-Fe can be stabilized in small precipitates in an fcc matrix, e.g., in Cu,

down to zero temperature, and at low temperatures it exhibits a complex non-commensurate
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Figure 1: The pressure-temperature phase diagram of iron in the moderate pressure range up to

50 GPa. The superconducting transition temperature for ε-Fe is multiplied by 100. The yellow

horizontal dashed line in the α-Fe region indicates its ferromagnetic Tc.

antiferromagnetic order [4].

Under applied pressure above 10 GPa α-Fe transforms into another allotrope, hexagonal close-

packed (hcp) ε-Fe [5, 6]. This phase is found to be stable at room temperature up to the highest

pressure reached to date [7]; ab initio density-functional-theory (DFT) calculations predict iron

to remain in the ε phase up to a pressure of the order of 10 TPa [8]. Experimental studies of ε-Fe

under moderate pressures reveal a superconducting dome in the range of pressure from 10 to

30 GPa with the maximum value of superconducting Tc of about 2 K [9]; this superconductivity

is likely of non-conventional nature and mediated by spin-fluctuations [10]. No magnetic order

has been detected in ε-Fe down to temperatures as low as 8 K [11, 12]. A puzzling non-Fermi-

liquid (nFL) temperature scaling ∝ T 5/3 of the low-temperature resistivity of ε-Fe was also

reported [13, 14].

This rich phase diagram (Fig. 1) with several allotropes exhibiting various magnetic orders, a

non-conventional superconductivity as well as instances of a nFL behavior in the ε-phase hint

at a complex many-electron physics of iron metal. Many-electron effects in iron are expected to

arise due to the on-site Coulomb repulsion between rather localized 3d states hybridized with

itinerant 4s bands. The typical width W of the iron 3d band is in the range of 5 to 6 eV

for the ambient-moderate pressure range; the estimated value of the local Coulomb interaction

parameter U (Slater F 0) is in the range from 2.3 to 6 eV, in accordance with constrained

local-density approximation [15, 16, 17] and constrained random-phase approximation [18, 19]

calculations (see Appendix A for a short overview of these methods). In spite of a large spread in

the theoretical estimates of U , one may conclude that the ratio U/W in Fe is less than or equal

to 1. Taking into account only the effect of U ≤ W one would expect rather weak electronic

correlation effects in a multiband system away from half-filling [20]. Indeed, the strength of
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electronic correlations in iron is found to be much more sensitive to Hund’s coupling JH , which

value is in the range of 0.85 to 1 eV. In this respect the physics of iron is close to that of ”Hund’s

metals” [21, 22, 23], in which the strength of correlations away from half-filling is determined

mainly by JH . In particular, model studies point out to a key role of JH in stabilizing the

ferromagnetic phase in multiband systems away from half-filling [24]. Another important aspect

is the interplay between the local Coulomb interaction, characterized by large JH , and crystal-

field splitting of Fe 3d states. This interplay is particularly striking in the bcc α phase, where

the partial eg density-of-states (DOS) features a large peak pinned at the Fermi level due to a

van Hove singularity [25, 26]. Correspondingly, this high DOS at the Fermi level in nonmagnetic

α-Fe explains its tendency towards the ferromagnetism in accordance with the Stoner criterion.

The Stoner ferromagnetism of α-Fe is well captured by density functional theory (DFT) calcu-

lations in conjunction with the local spin-density approximation (LSDA) exchange-correlation

functional predicting the theoretical ordered moment of 2.2 µB that agrees well with experi-

ment. Though DFT-LSDA incorrectly predicts γ-Fe to be the ground states [27], this error is

corrected by semi-local exchange-correlation potentials like generalized gradient approximation

(GGA) [28, 29]. However, the existence of paramagnetic bcc phase is a significant challenge for

density functional theory. Direct DFT calculations predict too small volume and too high bulk

modulus for non-magnetic α-Fe; moreover, this non-magnetic phase is mechanically and dynam-

ically unstable within DFT [30, 31], in clear disagreement with experiment. DFT calculations

predict paramagnetic γ-phase to be dynamically unstable as well [31]. A number of methods

has been developed in the DFT framework to remedy its deficiency in describing paramagnetic

phases. Several such techniques were subsequently applied to iron, like the disordered local mo-

ments (DLM) method [32, 33, 34], the spin-statistical-averaging method of Körmann et al. [35],

or the spin-wave approach of [36], for a recent review of those techniques see, e.g., [37]. The

spin-disorder contribution to the resistivity of iron at ambient and extreme conditions has been

also evaluated using such DFT-based methods [38, 39]. However, these techniques represent

the paramagnetic state by a certain combination of systems with static local moments; their

applicability to the cases like ε-Fe, where no static magnetic order or local-moment behavior is

observed at any T , is not obvious. Moreover, such approaches are typically useful to describe

the thermodynamics of local-moment paramagnets, but they are not designed to capture their

spectral properties. And even for ferromagnetic α-Fe the DFT electronic structure is only in

a rough qualitative agreement with experimental photoemission spectra, missing, in particular,

the observed quasiparticle renormalization of the 3d bands by 40-50% and a lifetime damping

of quasiparticle states [40] .

This inability of pure DFT to fully capture the physics of iron at ambient condition, in particular,

of high-temperature paramagnetic α-Fe as well as the γ and δ phases has prompted a number of

theoretical studies of this system employing a combination of DFT with a dynamical mean-field

theory (DMFT) treatment of the narrow 3d iron band.

In particular, Leonov and coworkers applied this DFT+DMFT approach in conjunction with

a quantum Monte Carlo impurity solver to obtain total energies and phonon dispersions in

paramagnetic α and γ phases [41, 31]. Their calculations predicting dynamically and thermody-

namically stable paramagnetic α-Fe in the range of temperatures from Tc to 1.3Tc, in qualitative

agreement with experimental phase diagram. Leonov et al. have subsequently extended their
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phonon-dispersion calculations of the bcc phase to the temperature range of existence of δ-Fe [42]

finding it dynamically unstable in the harmonic approximation, this result was very recently

challenged by another DFT+DMFT study [43]. Theoretical DFT+DMFT calculations of the

one-electron spectra of iron [44, 45, 46, 47, 48, 49, 43] have been mostly confined to the ferro-

magnetic α phase, for which experimental angular-resolved photoemission (ARPES) spectra are

available [40, 48]. Refs. [50] and [51] also studied the one-electron spectral function and magnetic

susceptibilities of the paramagnetic α and γ phases. Sánchez-Barriga et al. [48] concluded that

a purely-local single-site DMFT self-energy is not sufficient to obtain a quantitative agreement

between the theoretical k-resolved spectral function and experimental ARPES spectra, though

they employed an approximate treatment of the DMFT quantum impurity problem. The most

recent DFT+DMFT studies [49, 43] employing a numerically-exact quantum Monte Carlo ap-

proach [52] obtain a reasonable quantitative agreement with ARPES, though discrepancies for

some high-symmetry directions are still present. The same level of agreement was obtained by

including both local non-local many-electron effects within a weak-coupling quasiparticle GW

approach [53]. Hence, a combination of non-perturbative treatment of the on-site correlations

with a weak-coupling approach to non-local ones (see, e.g., Refs. [54, 55]) is probably necessary

to fully account for one-electron spectra of ferromagnetic α-Fe.

Correlation effects in iron under moderate and high pressure have been comparatively less stud-

ied with DFT+DMFT until recently. The present highlight focuses on this topic, reviewing, in

particular, new theoretical results obtained during the last 5 years. First, we consider the hcp

ε phase, which puzzling ground-state and transport properties in the moderate pressure range

of 10 to 60 GPa were shortly described above. The subsequent section deals with properties of

the α, γ and ε iron and iron-nickel alloy at the volume of 7.05 Å/atom and at temperatures up

to 6000 K. These density and temperature are expected for the inner core of Earth, hence, the

phase stability and transport properties of iron at such conditions are of a particular relevance to

the geophysics. Though high density is expected to diminish the relative importance of potential

energy, we still find a rather significant impact of the local interaction between 3d electrons on

the electronic structure, phase stability as well as on magnetic and transport properties. In order

to make this highlight self-contained we also succinctly review the DFT+DMFT framework in

Appendix A.

2 ε-Fe under moderate pressure: equation of state, resistivity

and electronic topological transitions

As noted above, DFT successfully captures the magnetic state α-Fe; DFT calculations also

predict the ground-state properties of this phase in good agreement with experiment. In contrast,

the same theory fails to account even for basic ground-state properties of ε-Fe. Within the local

spin-density and generalized gradient approximations for the exchange-correlation potential it

predicts a rather strong antiferromagnetism, with the iron moment of about 1.5 µB at the

volume of 73 (a.u.)3/atom, corresponding to that of the ε-phase at the α → ε transition point

[56]. No antiferromagnetic phase has been observed experimentally in ε-Fe down to 8 K [11, 12]

(though [57] observed a magnetic signal in X-ray emission spectroscopy, which they ascribed to
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Figure 2: a). DFT+DMFT total energy vs. volume per atom for α (ferromagnetic, solid blue

line, and paramagnetic, dot-dashed black line) and ε (dashed red line) Fe. The error bars are

the CT-QMC method stochastic error. The orange long dash-dotted straight line indicates

the common tangent construction for the α − ε transition. b). Equations of states (EOS) for

ferromagnetic α (low pressure) and paramagnetic ε (high pressure) Fe. Theoretical results are

obtained by fitting the DFT+DMFT (thick line) and GGA (thin line) total energies, respectively,

using the Birch-Murnaghan EOS. The experimental EOS of iron shown by green filled squares

is from [60]. Adapted from Ref. [61].

anitferromagnetic fluctuations). If the nonmagnetic ground state is imposed, DFT total energy

calculations predict an equation of state that drastically disagrees with experiment. The bulk

modulus is overestimated by more than 50%, and the equilibrium volume is underestimated by

10% compared to the experimental values [58]. Another puzzling experimental observation is

a large enhancement in the resistivity across the α-ε transition. The room temperature total

resistivity of ε-Fe is twice as large as that of the α phase [13]. The electron-phonon-scattering

contribution to resistivity calculated within GGA is in excellent agreement with the experimental

total resistivity for the α phase [59], however, these calculations predict virtually no change in

the resistivity across the transition to antiferromagnetic hcp-Fe. All these discrepancies between

DFT calculations and experiment point out to a possible important role of dynamic correlations

in ε-Fe.

The evolution of electronic correlations across the α → ε transition as well as its impact on

the equation of state and electrical resistivity were studied by Pourovskii et al. [61] using a

self-consistent DFT+DMFT approach; the quantum impurity problem was solved using the

hybridization-expansion CT-QMC method briefly introduced in Appendix Sec. A.2. In order to

achieve the necessary accuracy with a manageable computational cost the non-density-density

terms in the Coulomb vertex were neglected, see Appendix B. This local Coulomb interaction

vertex between Fe 3d states was parametrized by U = F 0 =4.3 eV and JH=1 eV. These values

of the interaction parameters were chosen on the basis of the previous cRPA calculations for

iron by [19]; their value of U =3.4 eV for α-Fe was increased by about 25% to effectively account

for the high-frequency tails of the Coulomb vertex [62]. The value of JH was fixed at the top of

the accepted range of 0.85 to 1.0 eV to reproduce the value of magnetic moment in α-Fe at the

ambient conditions.
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Figure 3: The ratio of averaged over orbitals inverse quasiparticle lifetime 〈Γ〉 to temperature

(the left axis) and the analogously averaged mass enhancement 〈m∗〉/m0 (the right axis) vs.

volume per atom. The solid lines (filled symbols) and dashed lines (hatched symbols) are 〈Γ〉/T
and 〈m∗〉/m0, respectively. The values for α and ε phases are shown by blue squares and

red circles, respectively. The black stars indicated their corresponding atomic volumes at the

transition point. Adapted from Ref. [61].

Overall, DFT+DMFT total energy calculations of Ref. [61] provide a comprehensive and quan-

titatively correct picture for the ground-state properties of both phases including their ground-

state volumes, bulk moduli as well as the pressure dependence of the c/a ratio in ε-Fe. In

particular, they predict a ferromagnetic α-Fe ground state and a transition α → ε phase at

10 GPa, in agreement with experiment (Fig. 2a). The calculated difference in total energy be-

tween the ferromagnetic and paramagnetic states of α-Fe is of about 10 mRy (1500 K), in a

good correspondence to its experimental Curie temperature of 1043 K. The Birch-Murnaghan

equations of states (EOS) fitted to DFT+DMFT total energies of α and ε-Fe agree well with the

corresponding experimental EOS (Fig. 2b). One observes a particularly significant improvement

for the case of ε-Fe, for which the DFT-GGA framework performs quite poorly. In contrast, the

DFT+DMFT corrections to EOS of ferromagnetic α-Fe are rather small; as noted in Sec. 1, the

DFT in conjunction with GGA already describes the ground-state properties of this phase quite

well.

The fact that many-body corrections to the ground-state properties are much more significant

in the case of ε-Fe as compared to α-Fe hints at stronger dynamic electronic correlations in the

former. Indeed, the mass enhancement m∗a/m0 = Z−1
a and the inverse quasiparticle lifetime

Γa = −Za=Σa(ω = 0), (1)

where a is them and spin quantum numbers labeling Fe 3d orbitals, Za = [1− d=Σa(iω)/dω|ω→0]

is the quasiparticle residue extracted from the zero-frequency value of the DMFT self-energy
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Σa (see Appendix Sec. A.1) for the orbital a, exhibit a large increase at the α → ε transition

(Fig. 3). This enhancement of dynamic correlations is due to the suppression of the static mag-

netic order at this transition. In fact, paramagnetic α-Fe is a strongly-correlated nFL system,

with a particularly large value of Γ for localized eg states [50, 63]. In contrast, only a modest

Fermi-liquid renormalization of Fe 3d DFT band structure is detected by ARPES for the ferro-

magnetic phase [40]; their value for the mass enhancement of about 40-50% agrees reasonably

with the DFT+DMFT prediction of 1.6 for 〈m∗〉 for the ambient conditions (Fig. 3).

A step-wise increase of the inverse quasiparticle lifetime Γ at the α→ ε transition point should

result in a corresponding step-wise increase of the electron-electron-scattering contribution to

the electrical resistivity. Indeed, DFT+DMFT calculations for the transport presented in the

same paper 1 predict such a jump with the electron-electron contribution enhanced by a factor

of 3, from 0.5 µΩ·cm in α-Fe to 1.5 µΩ·cm in the ε phase. The jump in total resistivity ρ at the

transition observed experimentally [13, 14] features an overall qualitative shape of the resistivity

vs. pressure in iron strongly resembling the DFT+DMFT one. However, the experimental jump

in ρ at the α → ε transition for the room temperature is an order of magnitude larger than

1 µΩ·cm predicted by our calculations. The present approach, apparently, misses the main

source of this resistivity enhancement. The fact that the resistivity jump is still well resolved

at T =4 K lends a strong support to its electron-electron-scattering origin. A strongly nFL

behavior of ε-Fe in the temperature range from 2 to (at least) 30 K, in conjunction with a non-

conventional superconducting state at lower T points out at important intersite correlations, e.g.

spin fluctuations, which are neglected by the single-site DFT+DMFT framework. Alternatively,

one may suggest that local non-density-density interaction terms (see Appendix A.2 and B)

neglected in Ref. [61] have a crucial impact on the low-energy behavior of the self-energy Σ(ω)

and, hence, at the transport. This problem is an interesting subject for future works.

No experimental ARPES of ε-Fe has been reported to date due to the obvious difficulty of

performing such measurements at a high pressure of tens GPa. Glazyrin et al. [64] studied the

impact of pressure on the electronic structure of the ε phase by measuring a set of quantities

readily accessible at high pressure conditions, namely, the Debye sound velocity, Mössbauer

central shift and hexagonal cell c/a ratio, in pure Fe and in Fe0.9Ni0.1. All three quantities are

found to exhibit a distinct peculiarity at about 40 GPa. One sees, for example, a clear change of

slope in the evolution of c/a vs. P as well as a peculiarity in the Mössbauer central shift at this

pressure, which is especially pronounced in the case of Fe0.9Ni0.1 (Fig. 4). As discussed by [64]

peculiarities simultaneously appearing in all three quantities can be qualitatively explained by an

electronic topological transition (ETT) due to the appearance of new Fermi-surface hole pockets

at a given pressure [65, 66, 67]. The resulting peculiarities in these quantities are proportional

to the change of DOS at the Fermi level, δN(EF ), due to the ETT.

In order to precisely identify the ETT at the origin of observed peculiarities Ref. [64] calculated

the DFT+DMFT k-resolved spectral function A(k, ω) = − 1
π=G(k, ω+iδ)) from the analytically-

continued lattice Green’s function (GF), eq. 9 in Appendix A.1, as a function of volume. A(k, ω)

obtained by DFT+DMFT clearly features the emergence of new hole pockets at the Γ and L

high symmetry point (Fig. 5a and 5b). The corresponding critical pressure for the ETT is found

1See Sec. 3.2 for a brief summary of the formalism for transport calculations
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Figure 4: Experimental pressure dependence of (a) hcp phase c/a ratio and (b) the Mössbauer

centre shift based on several experimental datasets for pure iron (red circles) and for Fe0.9Ni0.1

alloy (blue circles). The centre shift values are given relative to pure α iron. Straight grey lines

in (a) are guides for the eye. Adapted from Ref. [64].

to be in the range of 40-80 GPa, depending on the chosen value of U . In contrast, the DFT

band structure features those hole pockets (Fig. 5d) already at 10.4 Å3/at, which is the atomic

volume of ε-Fe at the α→ ε transition. Hence, DFT does not predict any ETT to occur in the

ε phase in its experimental range of existence.

This significant shift of ETT to lower volumes/higher pressures in DFT+DMFT compared to

pure DFT are mainly due to many-electron corrections to the overall position of the valence

d bands with respect to the s ones, leading to a relative shift of states with a significant s

contribution with respect to the rest. A similar significant impact of many-body corrections

was recently predicted even for such weakly correlated system as the osmium metal by Feng et

al. [68]. They found the transition pressures for a series of ETTs to be in a better agreement with

experiment when DMFT corrections were included. One may notice, however, that the relative

shift of ”correlated” d vs. ”uncorrelated” s states is sensitive to the choice of the double-counting

(DC )correction (see Appendix A). Both Refs. [61] and [68] employ the ”around mean-field”

form of DC, which is believed to be appropriate for such relatively itinerant systems.

On the experimental side, Dewaele and Garbarino [69] have very recently reported new mea-

surements of the equation of state and c/a ratio of ε-Fe. The experimental equation of state
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Figure 5: The DFT+DMFT k-resolved spectral function A(k, ω) ( in units of Vat/eV, where

Vat is the volume per atom) of ε-Fe at volumes Vat of 8.9 Å3/atom (a) and 10.4 Å3/atom (b)

corresponding to pressures of 69 and 15.4 GPa, respectively. The energy zero is taken at the

Fermi level. The hole-like bands at the Γ and L points at volume 8.9 Å3/atom (indicated by the

white arrows) are below EF at V=10.4 Å3/atom. The corresponding DFT band structures are

shown in c and d, respectively. The corresponding DFT+DMFT Fermi surfaces for two volumes

are shown in e and f, respectively. Adapted from Ref. [64].

is found to be in good agreement with calculations of Ref. [61]. Though no sign of peculiarity

was observed in the c/a ratio by Ref. [69], one may notice that the scatter of their points is

significantly larger than that of Glazyrin et al. [64].

3 Many-electron effects in iron and iron-nickel alloy at the Earth’s

inner core conditions

The wealth of available data on seismic wave propagation, planetary density and gravitational

field, abundance of elements in the Solar system lends strong support to the hypothesis of iron

being one of principal component of Earth and Earth-like planets [70, 71, 72]. In particular, the

solid inner and liquid outer cores of Earth are believed to consist mainly of iron. The measured

Earth interior density profile as well as data on the meteorite composition favor a picture of

a solid Earth’s inner core (EIC) composed of iron alloyed with about 10% of nickel and non-

negligible quantities of light elements like Si, S, or O. Inside the EIC the matter is subjected

to pressure P in the range of 330 to 360 GPa at temperature T of about 6000 K, though the

relevant range of T for the inner core is still actively debated [73, 74, 75]. The temperature

of solid phase inside EIC is close to its melting point. The phase stability and properties

of solid iron and iron-rich alloys at such extreme conditions are of high importance for the

geophysics as they represent a key input to geophysical models of Earth’s core dynamics and

its evolution. In particular, the interpretation of seismic data is largely based on the assumed

phase diagram for relevant iron-rich alloys at the core’s conditions [76]. The models of core

evolution in time are constrained by the accepted range of values for the thermal and electrical

conductivities [77, 78]. Therefore, significant research efforts, both experimental and theoretical,

are focused on reliably determining the nature of Fe phases stable in the relevant (P ,T ) range
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and their physical properties.

Iron and its alloys at extreme conditions have been studied experimentally using the dynamical

shock-wave compression and, more recently, with the static heated diamond anvil cell method.

As noted in the previous section, these studies have established the stability of ε-Fe up to the

pressure range of EIC at the room temperature [7]. The situation is less clear for the high-T

region, where some recent experiment [79, 80, 81] found the ε-phase to remain stable in the

relevant pressure range up to the EIC temperatures, while other studies [82, 83] observed bcc α-

Fe to emerge at high temperatures approaching the melting point. Tateno et al. [79] claimed to

reach the EIC conditions and observed only the ε phase in the studied range of P from 100 GPa

to the highest pressure of 377 GPa and T from 2000 to 5700 K. However, their interpretation

of the data was subsequently disputed by Dubrovinsky et al. [84], who suggested that the EIC

temperature was not in fact reached by Ref. [79]. Overall, currently there is no experimental

consensus regarding the stable phase of Fe at EIC conditions.

The theory input is particularly valuable in such situation, hence, a number of DFT based sim-

ulations of Fe and its alloy has been published in the last two decades. These studies treated

lattice vibrations in the quasi-harmonic approximation [85, 8] or with the full ab initio molecu-

lar dynamics approach [86, 87, 88]. The results of these calculations are also inconclusive, with

all three known phase of iron predicted to be stable at EIC conditions by different authors. The

difference in DFT free energy between those phases is found to be decreasing with increasing

temperature and pressure. Thus the relative stability becomes sensitive to small differences in

the calculational setup like the size of simulation supercell or the density of k-mesh employed

in the Brillouin zone integration [87, 88]. In particular, the non-magnetic α phase dynami-

cally unstable at low temperature is claimed by Belonoshko et al. [88] to be stabilized by an

unconventional high-T diffusion mechanism; in contrast, Godwal et al. [87] found α-Fe to be

dynamically unstable at the EIC conditions. The free-energy difference between γ and ε-Fe

becomes extremely small close to the melting temperature in accordance with Ref. [85], who

predicted γ-Fe to be stable at the EIC conditions, while Stixrude [8] found the ε-phase to be

more stable. In all these ab initio simulations the standard DFT framework in the conjunction

with LDA or GGA exchange-correlation potential was employed thus neglecting dynamical cor-

relation effects. This approximation is usually justified (see, e. g., Ref. [8]) by the fact that the

local Coulomb repulsion U between iron 3d states is smaller than the effective 3d bandwidth,

especially at high pressure. Though this statement is correct even at the ambient pressure, this

does not mean that correlation effects in iron are negligible. As noted in the previous section,

the strength of local many-electron effects in iron is much more sensitive to the Hund’s rule

coupling JH , which is expected to be quite insensitive to pressure. High temperature stabilizing

high-entropy states may strengthen the tendency towards a nFL behavior or the formation of

local magneitc moments. Hence, the role of many-electron effects needs to be evaluated with

explicit calculations.

This problem was addressed in Ref. [63] by DFT+DMFT calculations for the all three phases,

α, γ and ε, for the volume of 7.05 Å3/atom, corresponding to the density of EIC, and for tem-

peratures up to 5800 K by employing the same self-consistent in the charge density full-potential

DFT+DMFT framework as in the studies of ε-Fe described in the previous section. This work

evaluated the impact of many-electron effects on the electronic structure, magnetic susceptibil-
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ity and relative stability of the three Fe phases. All DFT+DMFT calculations were done for

the corresponding perfect fixed lattices. The lattice vibrations play a paramount role at the

extreme temperatures inside the EIC, but including their effect within a kind of DFT+DMFT-

based molecular dynamics is prohibitively costly at present. The fixed-lattice calculations of

Ref. [63], however, allowed evaluating the structural dependence of correlation effects, assessing

(though quite roughly) their impact on the electronic free energy ”landscape” in the structural

coordinates. Subsequent works [89, 49] carried out similar calculations for Fe-rich FeNi alloys in

order to assess the impact of Ni substitution on many-electron effects. A later study of Ref. [90]

concentrated on the ε-phase evaluating its electronic state as well as electrical and thermal

conductivities. The results obtained in these works for the electronic structure, magnetism,

thermodynamic stability and transport are reviewed below.

3.1 Electronic structure and magnetic susceptibility of iron and iron-nickel

alloys

The ratio Γ/T (see eq. 1) calculated at the EIC atomic volume as a function of T in Ref. [63] is

shown in Fig. 6 for all relevant irreducible representations of the three phases. One may readily

notice a qualitative difference in the behavior of Γ between these phases. The temperature

scaling Γ/T ∝ T expected in the case of a good FL is clearly observed for the ε-phase. In

contrast, Γ/T for the bcc iron eg states features a linear and steep rise for T < 1000 K and

then behaves non-linearly, indicating a non-coherent nature of those states at high temperatures.

The bcc Fe t2g and fcc Fe eg electrons are in an intermediate situation with some noticeable

deviations from the FL behavior.

Figure 6: The ratio of the inverse quasiparticle lifetime Γ to temperature T vs. T . The solid

red, dashed blue and dash-dotted green curves correspond to 3d states in fcc, bcc, and hcp

Fe, respectively. They are split by the crystal field into t2g (diamonds) and eg (circles) rep-

resentations in the cubic (bcc and fcc) phases, and two doubly-degenerate (E′ and E′′, shown

by diamonds and squares, respectively) and one singlet (A′1, circles) representations in the hcp

phase, respectively . A non-linear behavior of Γ/T for bcc Fe eg states is clearly seen. Adapted

from Ref. [63].
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Figure 7: The DFT+DMFT k-resolved spectral function A(k, ω) (in Vatom/eV) for bcc (a), fcc

(b), and hcp (c) Fe at volume Vat =7.05 Å3/atom and temperature 5800 K. A non-quasiparticle

eg band is seen in the vicinity of the Fermy energy along the N − Γ− P path in (a). Adapted

from Ref. [63].

The same conclusions can be drawn from the k-resolved spectral function A(k, ω) plotted in

Fig. 7 for the temperature of 5800 K. The bcc phase features a low-energy eg band along the

N − Γ− P path that is strongly broadened, thus indicating destruction of quasiparticle states.

The nFL behavior of eg states in α-Fe is explained by the narrow peak in its partial density of

states (PDOS) induced by a van Hove singularity in the vicinity of EF . Such narrow peak in

PDOS located at EF leads to suppression of the low-energy hopping and to the corresponding

enhancement of correlations[91]. In hcp Fe the electronic states in the vicinity of EF are sharp

(their red color indicating high value of A(k, ω)), hence ε−Fe exhibits a typical behaviour of a

FL with large quasi-particle life-times in the vicinity of EF . γ-Fe is in an intermediate state,

with some broadening noticeable in the eg bands at EF in the vicinity of the Γ and W points.

The conclusion of Ref. [63] on the FL nature of ε-Fe was subsequently challenged by Zhang et

al. [92], who recalculated ε-Fe at the EIC volume within DFT+DMFT 2 and found a strongly

2Ref. [92] was subsequently retracted by the authors ([93]) due to a numerical mistake in their transport

calculations. However, this retraction does not concern their conclusions on a nFL nature of ε-Fe at the EIC

conditions.
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Figure 8: Fermi-liquid scaling of the DMFT self-energy in ε-Fe. a. The imaginary part of the

DMFT self-energy at the first Matsubara point ω1 = iπkBT vs. temperature for hcp and bcc

Fe. Note that Im[Σ(iπkBT )] being proportional to T is a signature of a Fermi-liquid [94] . The

lines are the linear regression fits to the calculated points for corresponding 3d orbitals of Fe.

b. The rescaled imaginary part of the DMFT self-energy at the real axis Im[Σ(ω)]/(πkBT )2 vs.

ω/(πkBT ). One sees that all self-energies collapse into a single curve described by a parabolic fit

(the dotted line) defined by the quasiparticle weight Z =0.7 and the characteristic Fermi-liquid

temperature scale T0 =12 eV. Adapted from Ref. [90].

nFL linear dependence of Γ vs. T . In contrast to Ref. [63] employing the density-density

approximation to the local Coulomb vertex defined by U =3.4 eV and JH =0.94 eV, Zhang et

al. used the full rotationally-invariant form for the vertex parametrized by a higher value of

U = 5 eV and almost the same JH . Therefore, in order to convincingly establish the nature of

electronic state in ε-Fe Ref. [90] performed new DFT+DMFT calculations for the ε-phase with

the full rotationally-invariant Coulomb interaction and explored the range of U from 4 to 6 eV.

These calculations predicted an almost perfectly quadratic FL temperature scaling of Γ.

A significant problem in the analysis of DFT+DMFT results carried out in Refs. [63, 92] stems

from the fact that the DMFT self-energy is calculated by CT-QMC on imaginary-frequency

Matsubara points. The analytical continuation needed to obtain real-frequency data from this

imaginary-frequency self-energy Σ(iω) is known to be a mathematically ill-defined problem and

quite sensitive to the details of its implementation. Even the extrapolation of Σ(iω) to ω =0
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needed to evaluate Γ, eq. 1, becomes rather less reliable for high temperatures, where the first

Matsubara point ω1 = iπkBT is significantly shifted away from the real axis.

Hence, Ref. [90] also assessed the FL nature of ε-Fe by analyzing the imaginary-frequency self-

energy without resorting to any analytical continuation. This is done by employing the so-

called ”first-Matsubara-frequency” rule. As demonstrated, e. g., by Chubukov and Maslov

[94], in a Fermi liquid the imaginary part of electronic self-energy at the first Matsubara

point within a local approximation like DMFT must be proportional to the temperature, i.e.

Im[Σ(iπkBT )] = λT , where λ is a real constant. In Fig. 8a Im[Σ(iπkBT )] is plotted as a

function of temperature for all inequivalent orbitals in hcp and bcc Fe. One clearly sees that in

the ε phase Im[Σ(iπkBT )] is almost perfectly proportional to T , in contrast to bcc Fe, where

it exhibits significant deviations from the ”first-Matsubara-frequency” rule. This deviation is

especially pronounced for the eg states of the bcc phase, which are indeed of a strongly nFL

nature, as discussed above.

Pourovskii et al. [90] also verified the scaling of the full analytically-continued DMFT self-

energy , which in a FL state exhibits the quadratic frequency dependence at low ω with

Σ(ω) = C · (ω2 + (πkBT )2). The constant of proportionality C can be written as 1/(ZπkBT0)

with the characteristic scale T0 ∼ 10TFL, where TFL is the temperature where resistivity ceases

to follow a strict T 2 temperature dependence [95]. Indeed, one sees in Fig. 8b that the real-

frequency self-energies for different temperatures collapse into a single curve when plotted as

Im[Σ(ω)]/(πkBT )2 vs. ω/(πkBT ). The value of kBT0 = 12 eV extracted from this plot corre-

sponds to a TFL ≈14000 K, which is significantly higher than the range of temperatures expected

inside the EIC. This analysis of both the Matsubara and real-ferquency self energy of ε-Fe has

thus confirmed its FL state. We will see in Sec. 3.2 that this results has a direct bearing on the

transport properties of ε-Fe at the EIC conditions.

The temperature dependence of uniform susceptibility χ(T ) was also calculated by Ref. [63] by

evaluating the response to a small external field. The obtained temperature dependence (see

Fig. 9) is consistent with the results on electronic structure discussed above. A Pauli behavior

found for the FL ε and γ phases, while the nFL bcc α exhibits a Curie-Weiss behavior well

described by the fit χ = 1
3

µ2eff
T+Θ with µeff =2.6 µB and Θ =1396 K (see inset in Fig. 9).

Alternatively, one may try to account for the same dependence with an enhanced Pauli law,

χ = χ0/(1 − I ∗ χ0), where I is the Stoner parameter and χ0 is the bare susceptibility of

Kohn-Sham band structure; the strong temperature dependence of χ is then caused by a narrow

peak at EF in the eg PDOS due to the van Hove singularity. However, the enhanced Pauli-law

fit describes χ(T ) less well than the Curie-Weiss one, the difference is clear for lower T <3

below 2500 K. Hence, from these calculations one may infer the existence of a rather large

local magnetic moment in the bcc phase at the EIC conditions. One may expect a significant

contribution to the α-phase free energy due to the corresponding magnetic entropy.

Ruban et al. [96] also studied the stability of local moments in iron at the EIC atomic volume

using a longitudinal spin-fluctuation model employing first-principles intersite exchange interac-

tions. They predicted a local moment of approximately the same magnitude to be stable in all

three phases at the EIC temperature of 6000 K and also obtained an evolution of χ vs. T that

is qualitatively similar to the one of Ref. [63]. They explained the qualitative difference in χ(T )
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Figure 9: The uniform magnetic susceptibility in paramagnetic state versus temperature. The

error bars are due to the CT-QMC stochastic error. The dashed lines with corresponding filled

symbols are fits to the enhanced Pauli law, see the text. Inset: the inverse uniform magnetic

suscptibility of bcc Fe is shown in red (empty circles), the blue dot-dashed and green (filled

circles) lines are fits to the Curie-Weiss and enhanced Pauli law, respectively. Adapted from

Ref. [63].

between the three phases by an impact of pair interactions. Vekilova et al. [89] has subsequently

studied the DMFT local susceptibility χloc , i. e., the response to a local field applied to a single

iron site, vs. T . They found a Curie-like temperature evolution in the bcc phase and a Pauli-

like quasi temperature independent χloc in hcp-Fe. One may notice that within the single-site

DMFT approximation χloc cannot be affected by intersite interactions. Hence, a qualitatively

different behavior of χloc in the three phases hints at the key role of local correlation effects, in

particular, existence of a local moment in bcc-Fe and its absence in the hcp phase.

The EIC is expected to contain, apart of iron, also non-negligible contributions of other transition

metals, mainly of nickel as evidenced by the composition of metallic meteorites. The contribution

of nickel is evaluated to 5-10% based on geochemical models [97]. The impact of Ni substitution

on many-electron effects in iron at the EIC conditions is hence an important subject and has

been studied by [89, 49]. In particular, Vekilova et al. [89] employed the same computational

framework as Ref. [63] and modeled the random Fe3Ni alloy by the smallest supercells capable to

accommodate 25% of Ni substitution. These supercells comprise two, one, and two conventional

cells in the case of bcc, fcc, and hcp lattices, respectively. In order to model more realistic

lower Ni concentrations one would have to employ larger supercells with the corresponding

heavy increase in the computational effort. In addition, Vekilova et al. made use of different

environment of two inequivalent Fe sites in their bcc and hcp supercells , with only one of those

having Ni nearest neighbors, to evaluate the effect of Ni nearest neighbors on correlations on iron

sites. Many-electron effects on Ni were included in the same way as for Fe with the corresponding

local Coulomb interaction specified by the same values of U = 3.4 eV and JH =0.9 eV.

The effect of Ni nearest neighbors (NN) on electronic correlations on Fe sites was found to be
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Figure 10: The inverse quasiparticle lifetime Γ as a function of T for three inequivalent sites,

Fe1 (six Ni and six Fe nearest neighbors) , Fe2 (all nearest neighbors are Fe) and Ni, in the hcp

Fe3Ni supercell.

structure-dependent. In the bcc phase it results in significant deviations from the Curie-Weiss

behavior for the uniform susceptibility χ and reduced Γ for the eg states. Overall the presence of

Ni NNs reduced the degree of ”non-Fermi-liquidness” for the bcc eg states. The opposite effect

was found for the hcp phase, where the presence of Ni NNs enhanced the uniform susceptibility

and Γ (Fig. 10). These effects can be related to modifications of corresponding Fe PDOS due to

the presence of Ni NNs. Namely, in the case of bcc one observes a smearing of the eg peak at

EF , conversely, in the case of ε-Fe a characteristic dip in PDOS in the vicinity of EF becomes

more shallow.

Vekilova et al. found rather weak correlation effects on Ni sites at the EIC conditions. As shown

in Fig. 10, Γ for Ni features a nFL behavior with a rather slow increase in the studied range of

T .

Many-electron effects in Ni and FeNi alloys under extreme conditions were subsequently studied

in a recent work by Hausoel et al. [49]. The authors employed a DFT+DMFT technique that is

similar to the one used in Refs. [63, 89] and mainly focused on nFL properties of Ni t2g states,

this question was not addressed by the previous works. They modeled random Fe1−xNix alloys

(x =0.05, 0.20) at the EIC density within the coherent-potential approximation (CPA). The

advantage of CPA is that one can treat any concentration x with the same computational cost,

however, the local environment effects, which seems to be quite important as one sees in Fig. 10,

are neglected. Hausoel et al. predicted a strong enhancement of Γ due to the Ni substitution

as compared to pure ε-Fe for the studied range of temperatures up to 2000 K. This result is in

agreement with Fig. 10, if one compares the magnitude of Γ for the iron site Fe2 without Ni

NNs with that for Ni at T <2000 K. However, one also sees that Γ of Ni exhibits a slow almost

linear-in-T scaling, while Γ of Fe2 scales quadratically with T , hence at the EIC temperature of
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about 6000 K the scattering due to the iron sites dominates and the Ni contribution is relatively

weaker.

3.2 Electron-electron scattering and transport in ε-Fe

Transport properties of iron at the extreme conditions are of significant importance for geo-

physics. In particular, the thermal conductivity of the iron-rich matter inside the liquid outer

core of Earth is a key parameter determining the stability of the geodynamo generating the

Earth’s magnetic field. This geodynamo runs on heat from the growing solid inner core and on

chemical convection provided by light elements issued from the liquid outer core on solidifica-

tion [78]. The power supplied to drive the geodynamo is proportional to the rate of inner core

growth, which in turn is controlled by heat flow at the core-mantle boundary [98]. This heat

flow critically depends on the thermal conductivity of liquid iron under the extreme pressure

and temperature conditions in the Earth’s core. For a long time there has been agreement

that convection in the liquid outer core provides most of the energy for the geodynamo since

at least 3.4 billion years [99, 100]. Recently, such a view has been challenged by first-principles

calculations [101, 78], suggesting a much higher capacity for the liquid core to transport heat by

conduction and therefore less ability to transport heat by convection [99]. The calculated con-

ductivities have been found to be two to three times higher than the earlier generally accepted

estimates.

Convection also plays a crucial role in the current theory of the EIC dynamics, as a radial

motion of the inner core matter is invoked to explain the observed seismic anisotropies of the

inner core [102, 103, 104]. However, ab initio calculations of Ref. [105] similarly predict a too

high thermal conductivity for hexagonal close-packed (hcp) ε-iron to sustain this convection.

These first-principles calculations for liquid and solid iron [101, 78, 105] employed the standard

density-functional-theory (DFT) framework in which electron-electron repulsion is not properly

accounted for as dynamical many-body effects are neglected. Hence, the contribution to re-

sistivity from the electron-electron scattering (EES) of d-electrons due to correlations was not

taken into account in those calculations. In order to elucidate how large the EES contribu-

tion to the electrical and thermal resistivity at Earth’s core conditions Ref. [90] extended their

DFT+DMFT approach to calculations of the electrical and thermal conductivities of pure ε-Fe

at the EIC density. Using the analytically-continued DMFT self-energy (see Fig. 8b) they eval-

uated the conductivity from the corresponding DFT+DMFT spectral function using the Kubo

linear-response formalism[106, 107]. Namely, the electrical and thermal conductivity read

σαα′ =
e2

kBT
K0
αα′ , (2)

καα′ = kB

[
K2
αα′ −

(K1
αα′)2

K0
αα′

]
, (3)

where α is the direction (x, y, or z), kB is the Boltzmann constant. The kinetic coefficients

Kn
αα′ can be calculated from the real-energy DFT+DMFT spectral function A(k, ω) and the

velocities of Kohn-Sham states, vα(k), the later is evaluated by DFT band structure methods

as described, e. g., Ambrosch-Draxl et al. [108] for the case of LAPW method.
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Figure 11: Calculated electron-electron-scattering contribution to the electrical and thermal re-

sistivity of hcp iron at Earth’s core density. a. Electrical resistivity. Blue filled circles and hashed

squares are DFT+DMFT results for ρxx and ρzz , respectively. Green empty and hashed dia-

monds are the corresponding resistivities calculated by the Boltzmann-transport code BoltzTrap

[109] assuming a Fermi-liquid with the scattering rate Γ/Z =0.09 eV. b. Thermal conductiv-

ity. Blue filled circles and hashed squares are DFT+DMFT results for κxx and κzz, respec-

tively. Green lines/symbols are the corresponding conductivities obtained from the calculated

electrical conductivity using the Wiedemann-Franz law with the standard Lorenz number of

2.44·10−8 WΩK−2. Adapted from Ref. [90].
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The contributions of electron-electron scattering into the electrical resistivity and thermal con-

ductivity of ε-Fe obtained by Ref. [90] are displayed as a function of T in Figs. 11a and 11b,

respectively. First, one sees that the electrical resistivity ρ features a clear T 2 FL dependence,

as expected on the basis of the analysis of its DMFT self-energy as discussed in Sec. 3.1. Sec-

ond, its magnitude of 1.6· 10−5 Ω·cm at T =5800 K is rather insignificant compared to the

electron-phonon-scattering contribution of about 5.3·10−5 Ω·cm predicted by DFT calculations

of Pozzo et al. [105]. This indicates that the electron-electron scattering should not strongly

influence the electrical resistivity in hcp-Fe at EIC conditions. Third, the electron-electron-

scattering thermal conductivity κe−e of 540 Wm−1K−1 T =5800 K is not high and comparable

to the corresponding value due to the electron-phonon scattering κe−ph ≈300 Wm−1K−1 ob-

tained by Ref. [105]. Hence, in contrast to ρ the electron-electron scattering contribution to the

thermal conductivity is quite important. By including both the electron-electron and electron-

phonon scattering effects the total conductivity is reduced to about 190 Wm−1K−1, hence, the

corresponding resistivity is enhanced by about 60%.

An important observation of Ref. [90] is that the DFT+DMFT electron-electron-scattering ther-

mal conductivity of ε-Fe is significantly lower than the one calculated from the corresponding

contribution to ρ = 1/σ in accordance with the Wiedemann-Franz law, κ/(σT ) = π2

3

(
kB
e

)2
= L0

(where the standard Lorenz number L0 is 2.44·10−8WΩK−2), see Fig. 11b. By employing simple

analytical calculations in the Boltzmann formalism Herring [110] showed that the quadratic FL

frequency dependence of the imaginary part of the self-energy and, hence, of the quasiparticle

life-time

1/τ(ε) = 1/τ(ε = 0) ·
(
1 + ε2/(πkBT )2

)
,

leads to a substantial reduction of the Lorenz number

κ/(σT ) = L0/1.54 = LFL.

The stronger effect of the frequency-dependence of τ(ω) on the thermal conductivity as compared

to σ is due to the additional power ε2 in the numerator of the transport integrals for κ, see, for

example, Ref. [111]. Hence, the enhancement of the electron-electron-scattering contribution to

the thermal resistivity obtained within DFT+DMFT stems directly from the Fermi-liquid state

of the ε-Fe phase at the EIC conditions. A similar reduction of the Lorenz number has been

very recently obtained by another DFT+DMFT study [112]; the electron-electron contribution

to the thermal conductivity of ε-Fe at the EIC conditions reported in this works is close to that

of Ref. [90].

The reduction of the thermal conductivity due to the electron-electron scattering predicted by

Ref. [90] is still insufficient to explain the stability of convection by itself. On the other hand,

the extremely low values of κtot ∼50 Wm−1K−1 may not be required to reconcile theoretical

calculations of the thermal conductivity with geophysical observations [113, 114].

Moreover, the impact of alloying and lattice vibrations have not been to date taken into account

in the DFT+DMFT transport calculations. For example, the DFT+DMFT calculations for

Fe-Ni alloy at the inner core conditions discussed in the previous section point out an important

local environment effects that may affect the electron-electron scattering in real material of the

EIC. The impact of all those effects on transport properties of the EIC matter remains to be

evaluated.
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3.3 Many-electron effects and structural stability

The stable phase of pure iron at the EIC conditions has not been clearly identified experimen-

tally; neither have ab initio DFT calculations resulted in an unambiguous prediction due to a

small energy difference between the three phases, as described in the introduction of Sec. 3.

Hence, corrections due to the many-electron effects neglected by DFT can have a qualitative

impact on the nature of stable iron phase at the EIC conditions.

A quantitative estimation for the contribution of correlations to the electronic free energy of

the three phases was obtained by Ref. [63] together with their other magnetic and electronic

properties (see Sec. 3.1). Their fixed-lattice calculations neglected the contribution of lattice

vibrations to the phase stability, which are expected to be very significant at such extreme

temperatures. However, such calculations are still able to assess the structural dependence of

this contribution.

In spite of the simplifying fixed-lattice approximation evaluating the electronic free energy

within the DFT+DMFT framework remains a highly non-trivial task. The total-energy cal-

culations in this framework have nowadays become quite standard as described in Sec. A.3.

Such DFT+DMFT calculations evaluating the total energy using eq. 18 have been applied, for

example, by Leonov el al. [41] to study the α-γ phase transition in iron.

In contrast, the partition function and, correspondingly, the DFT+DMFT grand potential (17)

cannot be generally directly sampled by the usual Metropolis algorithm. In the context of DMFT

quantum impurity problem solved by CT-QMC or other numerical technique, it is the contribu-

tion of DMFT functional Φimp[Gloc(R)] into (17), which is the sum of all local skeleton diagrams

constructed with the local GF Gloc(iωn) and the on-site vertex, that cannot be computed di-

rectly. Different types of the numerical thermodynamic integration are employed instead, in

particular, the one from an analytical high-temperature limit [115]. Such integration remains

non-trivial in the present case of Fe at the EIC conditions, as the temperature T ≈6000 K is

still low compared to other energy scales like the bandwidth or U . Ref. [63] employed instead

the numerical thermodynamic integration over the coupling strength λ ∈ [0 : 1], where the cor-

responding free energy is defined Fλ = − 1
β ln Tr

(
exp[−β(Ĥ0 + λĤint)]

)
, H0 is the one-electron

part of the DFT+U Hamiltionian (5), Ĥint = ĤU − EDC is the interacting part. The coupling

constant integration results in the following expression for the many-body correction:

∆F = F − FDFT =

∫ 1

0

〈λĤint〉λ
λ

dλ, (4)

where FDFT is the electronic free energy in DFT. In derivation of Eq. 4 one neglects the λ

dependence of the one-electron part, and, hence, the charge density renormalization due to

many-body effects. In practice, the integrand in (4) was evaluated numerically with 〈λĤint〉λ
λ

computed for a discrete mesh in λ ∈ [0 : 1] by performing DFT+DMFT simulations with the

Coulomb interaction scaled accordingly. This method was subsequently applied in DFT+DMFT

calculations of Bieder et al. [116] to evaluate the free energy of the cerium metal.

The resulting DMFT correction to the free energy for the three iron phases is plotted in Fig. 12

togehter with the correction to the total energy calculated given by the difference of (18) and

EDFT . Within rather significant error bars the magnitude of ∆F is the same for bcc and hcp Fe,
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Figure 12: Many-body correction to the total (black dashed line) and free (red solid line) energy

for the three phases of Fe at the volume of 7.05 Å/atom at T=5800 K (upper panel) and 2900 K

(lower panel). The error bars are due to the CT-QMC stochastic error. Adapted from Ref. [63].

which are suggested as stable phases of iron [86] and iron-based alloys [117, 82] at the Earth’s

inner core conditions. Though the correlation strength (as measured, for example, by the inverse

quasiparticle lifetime Γ, Fig. 6), is higher for α-Fe, this is apparently compensated by a higher

value of U predicted for the ε-phase by cRPA calculations of the same work [63]. The magnitude

of ∆F is, however, at least several mRy smaller in the case of fcc Fe, showing that the many-body

correction may significantly affect relative energy differences among iron phases at the Earth

core conditions. One may also notice that the entropic contribution T∆S = ∆E−∆F becomes

much more significant at the higher temperature, and its contribution is almost twice larger in

the case of the bcc phase compared with two others. This is in agreement with the local-moment

behavior of this phase predicted by DFT+DMFT calculations, as described in Sec. 3.

4 Conclusions and perspectives

In this highlight we have reviewed recent ab initio studies of the role of many-electron effects

in various phases of iron at extreme conditions. In particular, a significant enhancement of

dynamical correlations at the pressure-induced α → ε phase transition is predicted by these

22



calculations. This enhancement is explained by the fact that dynamical correlations are strongly

suppressed by the static spin polarization in ferromagnetic α-Fe; this polarization is absent in

paramagnetic hcp ε-Fe. In result, DFT+DMFT calculations predict large many-body corrections

to the equation of state of the ε-phase and a significant electron-electron scattering contribution

to its electrical resistivity. The same theoretical framework predicts an electronic topological

transition to occur in this intermediate pressure range thus explaining the observed peculiarities

in the evolution of its hexagonal cell parameters, Debye velocity and Mössbauer central shift.

Applying the same framework to the geophysically-important regime of the Earth’s inner core

(EIC) conditions one finds a strong structural dependence for many-electron effects. Namely,

bcc α-Fe exhibits a clearly non-Fermi liquid behavior as evidenced by a sub-linear temperature

dependence of the quasiparticle scattering rate Γ and a Curie-Weiss-like behavior of the magnetic

susceptibility. In contrast, an almost perfectly Fermi-liquid state is predicted for ε-Fe at the same

EIC conditions, with sharp quasiparticle bands at low-energy and the T 2 scaling of Γ. The fcc

γ phase is found to be in an intermediate regime between bcc and hcp with some noticeable

deviations from Fermi-liquid state. The contribution of correlation effects to the electronic total

and free energies is consequently also strongly structurally-dependent. The strength of many-

electron effects on iron is found to be sensitive to the local environment and quite significantly

affected by the presence of Ni nearest neighbors; our calculations also show comparatively weaker

correlations on Ni sites themselves at the EIC conditions. Finally and quite unexpectedly,

the predicted ”dull” Fermi-liquid state of ε-Fe leads to a significant suppression of the Lorenz

number with the corresponding enhanced contribution of the electron-electron scattering to the

thermal resistivity. This enhancement of the thermal resistivity as compared to electrical one

is directly related to a strong (quadratic) frequency dependence of the Fermi-liquid electron-

electron scattering rate.

All these results have been obtained by the DFT+DMFT in conjunction with the numerically-

exact continuous-time quantum Monte Carlo method, which is equally reliable for all consid-

ered regimes of correlations (e. g., Fermi-liquid/non-Fermi-liquid, paramagnetic/ferromagnetic

states). However, this technique, as well as overall DFT+DMFT framework, is numerically

heavy and some approximations had to be employed to make these calculations feasible:

• The calculation of Ref. [61] employed the single-site DMFT in conjunction with a density-

density local vertex. Though these calculations successfully accounted for the ground-state

properties of the ε phase, the electron-electron scattering contribution into the resistivity

was apparently strongly underestimated. The non-density-density spin-flip terms of the

local vertex were also found in this work to be essential to account for the collapse of static

antiferromagnetism in this phase. The effect of rotationally-invariant interaction in ε-Fe

thus needs to be fully investigated. A very significant contribution of the electron-electron

scattering to the electrical resistivity of ε-Fe and its non-Fermi-liquid behavior at low

temperatures, as well as the non-conventional (spin-fluctuation-pairing) superconductivity

experimentally observed in this phase, hint at important inter-site correlations, which can

be included only by approaches beyond the single-site approximation.

• The density-density approximation for the local vertex is most probably less severe in

the case of EIC conditions. In particular, the inclusion of rotationally-invariant local
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interaction the study of ε-Fe by Ref. [90] led only to some quantitative changes compared

to the previous study within the density-density approximation. The non-local correlations

are also expected to be less important away from magnetic instabilities and with a lower

strength of correlations at the high-density of the EIC matter. In contrast, the fixed-lattice

approximations is quite severe when one considers temperatures just below the melting.

Correspondingly, future studies of the impact of lattice vibrations on electronic correlations

and vice versa are in this case of high importance.

Hopefully, the recent progress in development of extended-DMFT frameworks, see Rohringer

et al. [118] for a recent review, will eventually make accessible the most important two-particle

quantities (e.g., the full k and ω-dependent susceptibility or the vertex correction to the trans-

port) for realistic multi-band systems with possibly significant intersite correlation, like ε-Fe in

the moderate pressure range.

Regarding the second point: though fully consistent DFT+DMFT ab initio molecular dynamics

will remain prohibitively computationally expensive for some time, one may still make use

of the usual approximation of evaluating the electronic structure at fixed ionic coordinates.

Hence, in order to assess the effect of lattice distortions on many-electron effects one may

employ a set of supercells representing characteristic deviations from the perfect atomic positions

expected at the relevant temperature for a given phase. Conversely, the impact of electronic

correlations on lattice vibrations, at least in the harmonic approximation, can be studied using

the recently formulated DFT+DMFT schemes for calculation of forces and phonon dispersions

[31, 119, 120]. Eventually, the impact of light elements inclusions needs to be also included in

realistic simulations of the EIC matter.
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Appendix

A Ab initio dynamical mean-field theory approach: an overview

The standard DFT framework is well known to be deficient in the case of partially-filled narrow

bands; the effect of a local Coulomb repulsion on the physics of such states cannot be captured by

local or semi-local exchange-correlation functionals like the local-density or generalized-gradient

approximations. As discussed in the introduction section, the 3d band of iron, while having

a bandwidth larger than the relevant local Coulomb interaction, still cannot be satisfactory

captured within pure DFT.

The approach employed for ab initio studies discussed in this highlight is thus based on supple-

menting the quadratic Kohn-Sham (KS) Hamiltonian H0 with explicit local Coulomb interaction

between Fe 3d states, the resulting ”DFT+U” Hamiltonian [15, 121] reads

ĤDFT+U = Ĥ0 + ĤU − EDC =
∑
kν

εkνc
†
kνckν +

∑
i,

1,2,3,4

〈12|U |34〉d†i1d
†
i2di4di3 − EDC , (5)

where c†kν(ckν) is the creation(annihilation) operator for the Kohn-Sham state ψkν at k-point k

and the band index ν, d†iα(diα) is the operator creating (annihilating) localized states wiα on the

correlated (3d) shell3 in the unit cell i, α ≡ 1, 2, ... is a compound index for relevant quantum

numbers labeling one-electron orbitals within that shell (for example, α ≡ {mσ}, where m is

the orbital quantum number and σ is the spin). The last term, EDC , is the double-counting

correction, which will be discussed below.

The interacting term in the DFT+U Hamiltonian is naturally defined in the real space, as the

interaction is assumed to act between orbitals localized on the same atomic site. A sufficient

localization of the orbitals wiα at the correlated site is thus necessary for the DFT+U Hamil-

tonain to be physically sensible. For extended orbitals the intersite interactions are comparable

to U ; neglecting them in (5) thus becomes a poor approximation [122, 123]. However, in solids

one cannot define d or f orbital as in an isolated atom, as such definition makes sense near the

nucleus, where the crystalline potential is approximately spherical, but not in the interstitial.

There exists a number of approaches for constructing such bases representing localized correlated

states in solids. For example, one may employ a basis-independent framework [124, 125, 126,

127, 128] defining the localized orbitals wiα as Wannier functions constructed from a subset W
of Kohn-Sham bands:

wiα(r) =
∑

k∈BZ
wkα(r + Ri)e

−ikRi =
∑
k∈BZ
v∈W

e−ikRiψkν(r + Ri)Pνα(k), (6)

where the subset W comprises KS bands with a substantial contribution due to correlated or-

bitals, Ri is the lattice vector of the unit cell i, P̂ (k) is a complex matrix such that the resulting

orbitals form an orthonormalized basis, 〈wiα|wjβ〉 = δijδαβ. In fact, matrices P̂ (k) possessing

such properties are well-known to be not uniquely defined, the resulting gauge freedom in P̂ (k)

3For simplicity here and below we consider the case of a single correlated site per unit cell
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can be exploited to obtain a well-localized basis of Wannier functions. Direct minimization

of the spread of wiα in the real space is employed to construct the maximally-localized Wan-

niers basis [124]. Another, a projective construction of localized Wannier functions, avoiding

the explicit spread minimization, was proposed by Amadon et al. [128] and implemented in

conjunction with the linearized augmented planewave (LAPW) band structure method by Aich-

horn et al. [129]. One may also mention a hybrid method of Refs. [130, 131], in which Wannier

functions are constructed from outward solutions of the radial Schrödinger equation and their

energy derivatives on a chosen grid of energies. Another approach [47] makes use of the fact

that some DFT band structure techniques expand Kohn-Sham states ψkν in a basis containing,

among others, suitable ”atomic-like” functions for a given correlated shell; such functions are

then employed as a correlated-subspace basis. The somewhat older method of Ref. [132] writes

the whole Hamiltonian (5) using atomic-like basis functions instead of ψkν and employs a subset

of them to represent correlated orbitals; this approach is applicable only for few band-structure

techniques employing such suitable basis functions.

Once the basis of correlated orbitals wiα is chosen one needs to determine the on-site Coulomb

repulsion between them. In principle, one may easily evaluate matrix elements of the bare

Coulomb interactions u(r) = 1/r between such orbitals. The bare Coulomb repulsion is, how-

ever, known to be a very poor approximation for the local interaction in solids in eq. 5. For

example, the average over its matrix elements between Ni 3d orbitals in NiO evaluates to about

20−25 eV [133]. Experimentally, though, one finds that the splitting between occupied and

empty 3d localized features seen in the PES/inverse-PES spectra, which is, to a first approxi-

mation, the average 〈U〉, amounts only to about 9 eV [134]4. This discrepancy is, of course, due

to the fact that the on-site interaction between localized orbitals in solids is strongly screened

by itinerant states. Hence, one should view the Hamiltonian (5) as a low-energy description of

the correlated system, where the interactions between localized states wiα and itinerant bands,

which are not explicitly included, have been integrated out. In result, the effective Coulomb

repulsion u(r, r′, ω) acquires a frequency dependence, which is then passed to matrix elements

in the correlated-orbitals basis:

〈12|U |34〉(ω) =

∫
drdr′w∗i1(r)w∗i2(r′)u(r, r′, ω)wi3(r)wi4(r′), (7)

with the low-frequency limit of 〈12|U |34〉(ω) giving a value of on-site repulsion that is strongly

reduced by screening; it is relevant for the low-energy physics described by (5). The high-

frequency limit of 〈12|U |34〉(ω) approaches the bare Coulomb value; this high-frequency tail of

〈12|U |34〉(ω) may affect the low-energy physics producing an additional enhancement of quasi-

particle renormalization [62]; it also induces high-energy plasmonic spectral features [135].

Due to this complex effect of screening the local Coulomb repulsion is rather difficult to eval-

uate from first principles and often treated as a parameter. A more consistent and truly ab

initio approach is based on evaluating the screening of local repulsion between a given set of

local orbitals wiα from the Kohn-Sham band structure. One popular approach of this kind,

the constrained random-phase approximation (cRPA) [136], separates the polarization function

Π(ω) = Πc(ω) + Πr(ω) evaluated within RPA into the contribution Πc(ω) due to transitions

4The optical gap of about 4 eV in this compounds is of the charge-transfer (O 2p→ Ni 3d) type.
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within the subset of correlated bands W and Πr(ω) due to all other transitions. Then the rel-

evant interaction is obtained by screening the bare Coulomb repulsion v(r) with Πr and then

projecting u(r, r′, ω) into the subspace of wiα using (7). The cRPA method is a powerful tech-

nique that is able to obtain all matrix elements of 〈12|U |34〉(ω) with their frequency dependence.

However, cRPA is not particularly well suited for the case of a significant entanglement between

the correlated W and itinerant band subspaces, which is precisely the case in 3d transition

metals, where the dispersive 4s band crosses and mixes with the narrow 3d one. It is difficult

to define a consistent separation of the polarization into Πc(ω) and Πr(ω) in this case, though

some versions of cRPA to handle this entanglement have been formulated [19, 137].

An alternative approach to first-principles evaluation of the local interaction is based on the

assumption that a quantitatively correct static screening of the on-site interaction is already

included at the DFT level through the local XC potential. This approach named constrained

LDA (cLDA) [138, 139, 16] constrains the charge on the localized shell of interest on a single

site within a supercell with other states unconstrained, hence, allowed to screen the on-site

interaction. The band energy of corresponding ”constrained” KS states is then evaluated as a

function of its orbital occupancy allowing to extract the direct Coulomb repulsion parameter U

and Hund’s rule coupling JH . The method was shown to provide reasonable values of the static

interaction for pure iron [16, 17], though it is not free from uncertainties.

The Kohn-Sham band structure, which is the quadratic part of the DFT+U Hamiltonian (5),

is that of non-interacting electrons moving in an effective potential. However, this potential

contains, among other terms, the Hartree and XC potentials corresponding to the electron

density of the Kohn-Sham states. Hence, the Kohn-Sham bands are not truly those of a non-

interacting system. In particular, the effect of the screened Coulomb interaction u(r, r′, ω) acting

between correlated orbitals is included in a static mean-field way by LDA; this fact is used by the

cLDA method described above to extract the value of this interaction. As the same interaction

explicitly enters into (5), it is necessary to remove this static mean-field contribution from

the same Hamiltonain to avoid counting it twice. Hence, the corresponding double-counting

correction (DC) is included as the last term into (5).

Though the local screened interaction is certainly included in some form by XC potentials

determining its exact contribution is a highly nontrivial problem. Local and semi-local XC

potentials are functions of the full charge density and also non-linear; they cannot be represented

as a superposition of contribution due to different orbitals. Hence, the problem of formulating a

theoretically sound expression for the DC term has not been fully solved to date. There exist a

number of different DC formulae [15, 140, 45, 141, 142]. The most widely used ones are derived by

assuming that XC potentials include the local Coulomb interaction in an orbitally-independent

form. That form is given by the Hartree-Fock potential due to the on-site interaction term in

(5) for a particular limit of the correlated-shell occupancy matrix. It is assumed to be uniform

within the ”around-mean-field” (AMF) approach [15], which is usually employed for weakly and

moderately-correlated metals, e. g., in the case of iron. The alternative ”fully-localized-limit’

(FLL) form [140] assumes the most non-uniform occupancy matrix for a given shell filling and is

generally employed for strongly-correlated systems like Mott insulators. The contribution due
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to this term into the one-electron potential for a given orbital α is given by

Σα
DC =

∂EDC
∂ρα

|ρ̂DC , (8)

where the derivative over the orbital occupancy ρα is taken at the shell’s occupancy matrix ρ̂DC

corresponding to a given limit (AMF, FLL, etc.).

A.1 Dynamical mean-field theory

Once all terms in the Hamiltonian (5) are determined the next step is, obviously, solving it

to obtain the ground-state and excited properties of a given real system. This represents a

formidable problem, as one may notice that this Hamiltonian can be viewed as a multi-band

generalization of the famous one-band Hubbard model (HM) for which no exact solution is

known for the relevant 2d and 3d cases. A breakthrough in the study of HM was achieved in

the beginning of 90th in the framework of dynamical mean-field theory (DMFT) [143, 144, 145].

Though initially the DMFT formalism was written for the one-band HM, here we present its

formulation for the Hamiltonian (5) in view of applications to realistic materials. The DMFT

framework focuses on the one-electron Green’s function (GF) defined in the Kohn-Sham space

and imaginary-time domain5 as Gνν′(k, τ − τ ′) = −〈T[ckν(τ)c†kν′(τ
′)]〉, where T is the time-

ordering operator. Its Fourier transform G(k, iωn) is the GF in the imaginary-frequency domain,

where iωn = iπ(2n − 1)T is the fermionic Matsubara grid for the temperature T . Correlation

effects arising due to the interaction U term of (5) are encoded in the Kohn-Sham space by the

electronic self-energy ΣKS(k, iωn) = P̂ †(k)Σ(k, iωn)P̂ (k) , where P̂ (k) are projector matrices

(6) to the correlated subspace, Σ(k, iωn) is the self energy in that subspace spanned by the

localized orbitals (6). The interacting lattice GF is thus obtained by inserting Σ(k, iωn) through

the Dyson equation:

G−1(k, iωn) = G−1
0 (k, iωn)− P̂ †(k) (Σ(k, iωn)− ΣDC) P̂ (k), (9)

into the non-interacting lattice GF G0 given by the first term of (5), with the DC for the

self-energy defined by (8).

The DMFT is based on the key observation of Ref. [143] that one may define a (non-trivial)

infinite-dimensional limit of (5), and that the electronic self-energy becomes purely local in this

limit, i. e., k-independent6, Σ(k, iωn)
d→∞−−−→ Σ(iωn). Such single-site self-energy is given by the

summation over irreducible (skeleton) Feynman diagrams involving only the single-site GF and

the local vertex Û . The coupling between a representative correlated shell o and an effective

electronic ”bath” representing the rest of system is then given by the bath Green’s function:

G−1
0 (iωn) =

[∑
k

P̂ (k)G(k, iωn)P̂ †(k)

]−1

+ Σ(iωn) = iωn − ε̂−∆(iωn), (10)

where ε̂ are bare (non-interacting) single-site level positions, ∆(iωn) is the hybridization function

due to hopping between the site and electronic bath. The single-site problem in the correlated

5The imaginary time/frequency domain is often used in DMFT calculations for the technical reasons outlined

in Sec. A.2, though it is not necessary.
6In the case of DFT+U Hamiltonian (5) this approximation is applied to the self-energy Σ(k, iωn) in the

correlated subspace, while ΣKS can still be k dependent due to the projectors P̂ (k).

28



subspace is completely defined by (10) and on-site Coulomb replusion

Ĥ
(o)
U =

∑
1,2,3,4

〈12|U |34〉d†1d
†
2d4d3

(omitting the irrelevant site index o in d and d†). The lattice problem is thus mapped into

an auxilary quantum impurity problem (QIP) [144] for a single correlated shell, which is fully

analogous to the standard Anderson impurity model (AIM). However, in contrast to the usual

AIM, ∆(iωn) is not given by the hybridization of non-interacting bands; it should be rather

viewed as a dynamical mean-field implicitly depended on the single-site self-energy through eqs.

(9-10). By solving the QIP, i. e., by summing (all or subset of) local Feynman diagrams one

obtains the impurity GF and self-energy:{
G(iωn), Ĥ

(o)
U

}
→ {Gimp(iωn),Σimp(iωn)} . (11)

One then employs the standard recipe to close the mean-field cycle as shown in Fig. 13: the

obtained impurity self-energy is inserted for all correlated shells, Σ(k, iωn) ≡ Σimp(iωn) allowing

to update the chemical potential µ and to recalculate the mean field G0 by eqs. (9-10). This

cycle is iterated until the self-consistency is reached: the QIP solved for the mean-field G0 results

in the same self-energy Σ that was used to obtain this mean-field through (9-10). Alternatively,

the same self-consistency condition is represented by Gimp(iωn) = Gloc(iωn), where

Gloc(iωn) =
∑
k

P̂ (k)G(k, iωn)P̂ †(k) (12)

is the local GF of lattice problem. The problem defined by the Hamiltonian (5) is thus exactly

solved in the limit of infinite lattice connectivity, as can be also shown explicitly, see [145]. As

for any mean-field approach the usefulness of DMFT method is based on its ability to describe

the realistic 3d lattices, for which the single-site approximation Σ(k, iωn)→ Σ(iωn) appears to

be rather reasonable, though it is not quantitatively exact. At the same time the single-site

dynamics due to electronic correlations is fully included in DMFT; this explains its success in

reproducing such non-perturbative phenomena as the Mott transition. The method captures not

only the insulating U/W →∞ and non-interacting U/W → 0 limits (where W is the bandwidth

of non-interacting bands εvk in (5)) but also all intermediate regimes given by finite U/W .

For 2d and quasi-2d systems the single-site DMFT is generally not an adequate approximation.

The k dependence of the self-energy is key to describe, for example, the physics of layered

cuprate superconductors, in particular, their PES [146]. This problem was addressed by cluster

extensions of the single-site DMFT, which were formulated in both the real and reciprocal

spaces [147, 148, 149]. The single-site QIP (11) is thus generalized to the corresponding cluster

problem. Such generalization increases dramatically the computational cost of solving the QIP,

hence, the cluster methods are not generally applicable to full d and f shells; they have been

extensively applied to quasi-1band systems like layered cuprates. Another more recent effort in

development of extended-DMFT frameworks [150, 151, 152] is based on applying the single-site

approximation to two-electron correlation functions (like the vertex function) while keeping the

k-dependence of the one-electron self-energy. These approaches are promising for applications

to multiband systems, though they are still currently too heavy for applications in the cases

considered in this highlight, when many-electron effects for the full d shell need to be taken into

account.
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Figure 13: Schematic diagram of the DFT+DMFT method. The initial input from the DFT

part is the quadratic KS Hamiltonain Ĥ0 and projectors P̂ between the KS space and correlated

subspace. The right-hand side represents the DMFT cycle with the lattice problem mapped

into the quantum-impurity one using eq. 10; the calculated impurity self-energy subsequently

is inserted back to the lattice, eq. 9. The updated DMFT density matrix can be inserted back

to the DFT part (dashed arrow) to take into account modifications of the charge density and,

therefore, Ĥ0, due to correlations; this results in a DFT+DMFT framework that is self-consistent

in the charge density.

A.2 The quantum impurity problem

The QIP problem schematically given by eq. 11 is a true many-electron problem, though a single-

site one, and represents, in fact, a numerical ”bottleneck” of the DFT+DMFT framework. In

the imaginary-time path integral formalism (see e.g. [153]) it reads

Gαα′(τ0 − τ1) =
1

Z

∫
D[d, d†]dα(τ0)d†α′(τ1) exp[−S], (13)

where D[d, d†] is the path integration over all impurity degrees of freedom and

Z =

∫
D[d, d†] exp[−S] (14)

is the impurity partition function, S is the impurity action:

S =
∑
α1α2

∫
dτ

∫
dτ ′f †α1

(τ)
[
G−1

0 (τ − τ ′)
]
α1α2

fα2(τ ′) +

∫
dτĤ

(o)
U (τ). (15)

Many-body methods to evaluate (13) represent a large research field initiated by early studies of

AIM and very actively developed at present, in particular, to provide efficient quantum-impurity

”solvers” for the DMFT framework. They will not be reviewed here in any details; we will only

briefly outline main strategies for solving the QIP and provide some useful references.

The methods dealing with QIP can be divided into numerically-exact and approximate analytical

kinds. Among the former one may especially mention stochastic quantum Monte Carlo (QMC)

methods; a breakthrough in this domain has been achieved by so-called ”continuous-time” (CT)

QMC methods [154] (see review [52] on its applications to the fermionic QIP). The most popular

CT-QMC approaches are based on an expansion of the partition function (14) in powers of
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Ĥ
(o)
U [155] or, alternatively, in powers of the hybridization function ∆(τ) [156], see eq. 10. One

subsequently sums up various diagrammatic contributions into GF (13) and other correlation

function in accordance with their relative weight in Z by employing a Monte Carlo importance

sampling. In contrast to the older QMC approach of Hirch and Fye [157] based on discretization

of the integrals over τ in (15) the CT-QMC approach is free from the discretization error and

can treat more complex interaction vertices Ĥ
(o)
U . All these QMC methods generally work in the

imaginary-time/imaginary-frequency domain, hence, the resulting GF needs to be analytically

continued to the real-energy axis to obtain an experimentally-observable real-frequency spectra.

The hybridization-expansion CT-QMC technique employed as a quantum-impurity solver in the

DFT+DMFT calculations presented in this review. This approach is sufficiently computation-

ally efficient to solve the QIP for the whole Fe 3d shell. Particularly, the case of simplified,

”density-density” Coulomb vertex Ĥ
(o)
U reducible to the form

∑
αα′ Uαα′ n̂αn̂α′ allows to em-

ploy the fast ”segment-picture” algorithm [156, 52], reducing the computational effort very

significantly. The density-density approximation neglects some potentially important matrix

elements of the Coulomb vertex7 and thus introduces a system-dependent error. In the case of

moderately-correlated metal like iron it does not affect the qualitative picture, but is still quanti-

tatively important (see Appendix B); for strongly-correlated systems as, for example, FeSe [158]

this approximation may lead to qualitatively wrong results. Calculation with the full 4-index

vertex are much more computationally demanding, but still nowdays possible thanks to a recent

development of fast algorithms [159, 160].

Another popular numerically-exact approach, the exact diagonalization technique [161], see

also [162, 163] for more recent developments. It is based on representing the hybridization

function by a set of auxiliary discrete levels {εb} of the bath mixing with the impurity states,

∆αα′(ω) ∼
∑

b

VbαV
†
bα′

ω−εb . The resulting large Hamiltonian including both impurity and bath

states is subsequently diagonalized by Lanczos or similar techniques allowing to compute the

impurity GF from obtained eigenvalues and eigenstates. Among the exact methods one should

also mention the numerical renormalization-group and density-matrix renormalization-group

methods [164, 165].

Analytical approaches are generally applicable only in certain regimes (strong or weak coupling).

Weak-coupling methods are suitable for metallic phases; they are based on the standard Wick

theorem and subsequent summation of a certain subset of Feynmann diagrams, like, for example,

the fluctuation-exchange approximation [44, 166, 167], which has been extensively applied to

spectral properties of iron and nickel [168, 47, 48, 169]. Among numerous other analytical

methods one may also mention the ”slave” particle approach [170, 171, 172, 118] providing an

economical and numerically efficient treatment of the quasiparticle renormalization in multiband

systems. The obvious advantage of these analytical techniques is their computational efficiency.

They can also easily evaluate the GF and, hence, the measurable one-electron spectra, at the

real-frequency axis.

Finally, the simplest approach to solving the QIP consists in employing the static Hartree-Fock

approximation; in this case DFT+DMFT is reduced to the popular LDA+U method [15, 121].

7For example, the ”spin-flip” contributions to Ĥ
(o)
U of the form d†m↑d

†
m′↓dm′↑dm↓ cannot be reduced to a

density-density form.
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A.3 Charge density and total energy

As a result of the DMFT cycle (Fig. 13) one obtains the converged interacting lattice GF (9) in

the KS space. The corresponding density matrix

Nk
νν′ =

∑
n

Gνν′(k, iωn)eiωn0+ (16)

gives the contribution of KS bands in W to the charge density. Therefore, the charge density

n(r) is affected by many-electron effects through the DMFT self-energy Σ(iωn) entering into

G(k, iωn); the KS one-electron potential being a functional of n(r) is thus modified as well.

Hence, the one-electron part H0 of the DFT+U Hamiltonain (5) comes out to be implicitly

dependent on Σ(iωn).

This observation led to formulation of the charge self-consistent DFT+DMFT framework, in

which n(r) and H0 are consistently updated to take into account the impact of correlations as

shown in the left-hand side of Fig. 13. In practice, N̂k in the KS basis is submitted back to the

DFT part; the corresponding contribution to n(r) is then calculated through the expansion of

ψkν in the basis of a given band-structure method. Several such self-consistent DFT+DMFT

frameworks have been implemented recently [132, 46, 173, 174, 175, 176, 177].

In this self-consistent framework the DMFT self-consistency condition, Gloc ≡ Gimp, as well as

the relation between the KS potential and electronic density are derived by extremization of the

following DFT+DMFT grand potential [106] :

Ω [n(r), Gloc,∆Σ, ε̂] =− Tr ln [iωn + µ−H0 −∆Σ]− Tr [Gloc∆Σ] (17)

+
∑
R

[Φimp[Gloc(R)]− ΦDC [Gloc(R)]] + Ωr[n(r)]

≡ ∆Ω [Gloc,∆Σ, VKS ] + Ωr[n(r)],

where ∆Σ is the difference between the impurity self-energy Σimp and the double counting cor-

rection (8), Φimp[Gloc(R)] is the DMFT interaction energy functional for the site R, ΦDC [GlocR ]

is the corresponding functional for the double-counting correction. The last term Ωr[n(r)] de-

pends only on the electronic charge density n(r) and comprises the electron-nuclei, Hartree and

exchange-correlation contribution, while all other terms collected in ∆Ω [Gloc,∆Σ, VKS ] do not

have an explicit dependence on n(r). From the zero-temperature limit of (17) one derives [178]

the following expression for the total energy:

EDFT+DMFT =
∑
kν

εkνN
k
νν + 〈HU 〉 − EDC + Een[n(r)] + EH [n(r)] + Exc[n(r)], (18)

where Een, EH , Exc are the standard DFT electron-nuclei, Hartree and exchange-correlation

contributions evaluated from the charge density n(r) that includes the DMFT correction. The

interaction energy 〈HU 〉 can be evaluated from the self-energy using the Migdal formula 〈HU 〉 =
1
2 Tr [ΣimpGimp], alternatively, the expectation value 〈d†1d

†
2d3d4〉 can be directly measured, e. g.,

by using QMC quantum-impurity solvers.

Instead of the self-consistent charge density n(r) one may employ in (18) the DFT one, nDFT (r)

resulting in the so-called ”one-shot DMFT” scheme. The impact of the self-consistency in
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charge density on the DFT+DMFT total-energy and spectra has been studied in a number of

works [173, 175, 179, 180, 181], though a consistent assessment for the full range of correlation

strength is still lacking. However, the charge-density self-consistency seems to important for

localized systems as γ-Ce and Ce oxides [173] and VO2 [180]. The possible reason pointed

out by Ref. [181] is that the occupancy of ψkν states is very different in the localized limit as

compared to a metallic band structure predicted by DFT. In the former case the KS states kν

of correlated bands will be all roughly half-filed due to the contribution of corresponding lower

Hubbard band. In DFT the KS states kν are occupied below EF and empty above, hence,

the occupancy varies strongly in the k space. Another important effect of the charge-density

self-consistency is an overall lower sensitivity of the result to the choice of DC; changes in DC

seem to be compensated by the corresponding modifications in VKS [175].
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B The impact of density-density approximation: a benchmark

In this appendix we illustrate the impact of density-density approximation for the local Coulomb

interaction by performing DFT+DMFT calculations with and without this approximation for

the bcc α and hcp ε iron phases at the Earth’s core condition. Self-consistent in the charge

density DFT+DMFT calculations (Sec. A.3) were thus carried out for the perfect bcc and

hcp lattices at the atomic volume of 7.05 Å3/atom expected for the inner core of Earth and

the temperature of 5800 K. The on-site Coulomb interaction was defined by the parameters

U =5.0 eV, JH =0.93 eV previously used in the study of ε-Fe by Ref. [90]; the same choice

for the energy window ( [-10.8 eV, 4.0 eV] around the Fermi level) was also employed for the

Kohn-Sham states used to construct Wannier orbitals representing Fe 3d states. The DMFT

impurity problem was solved by the hybridization-expansion quantum Monte Carlo impurity

solver using its segment-picture version [156, 52] in the case of density-density (Ising) vertex

and the implementation of Seth et al. [182] in the case of full rotationally-invariant one.

The resulting DMFT self-energies for both phases are compared in Fig. 14. For both bcc and

hcp-Fe the use of density-density approximation results in a systematic underestimation of the

magnitude of scattering |ImΣ(iωn)|, which is, however, more pronounced in the case of more

correlated bcc. Qualitative features, like the eg orbitals markedly more correlated than the

t2g ones in bcc-Fe as well as a uniform Fermi-liquid behavior of all orbitals in hcp, are well

captured within the density-density approximation. We have also calculated the transport using

the approach outlined in Sec. 3.2 and these self-energies analytically continued to the real-energy

axis. The electrical and thermal conductivities for bcc are found to be overestimated by 40%

and 29%, respectively, due to the density-density approximation. As expected, the impact of

this approximation for the less-correlated hcp phase is smaller and amounts to 33% and 23%,

respectively. Hence, though the use of full vertex does not lead to qualitative changes it is still

found to be important for quantitative results.

Figure 14: Left panel: The imaginary part of DMFT self-energy on the Matusbara grid for the

non-degenerate orbitals of the Fe 3d shell in the bcc structure calculated with the rotationally-

invariant (filled symbols) and density-density (empty symbols) local Coulomb interaction, re-

spectively. Right panel: the same for the hcp structure.
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[139] M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Calculation of Coulomb-interaction

parameters for La2CuO4 using a constrained-density-functional approach, Phys. Rev. B

39, 9028 (1989).

[140] M. T. Czyżyk and G. A. Sawatzky, Local-density functional and on-site correlations: The

electronic structure of La2CuO4 and LaCuO3, Phys. Rev. B 49, 14211 (1994).

[141] H. Park, A. J. Millis, and C. A. Marianetti, Total energy calculations using DFT+DMFT:

Computing the pressure phase diagram of the rare earth nickelates, Phys. Rev. B 89,

245133 (2014).

[142] K. Haule, Exact Double Counting in Combining the Dynamical Mean Field Theory and

the Density Functional Theory, Phys. Rev. Lett. 115, 196403 (2015).

43



[143] W. Metzner and D. Vollhardt, Correlated Lattice Fermions in d = ∞ Dimensions, Phys.

Rev. Lett. 62, 324 (1989).

[144] A. Georges and G. Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B 45, 6479

(1992).

[145] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field theory of

strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys.

68, 13 (1996).

[146] A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved photoemission studies of the

cuprate superconductors, Rev. Mod. Phys. 75, 473 (2003).

[147] M. Potthoff, M. Aichhorn, and C. Dahnken, Variational Cluster Approach to Correlated

Electron Systems in Low Dimensions, Phys. Rev. Lett. 91, 206402 (2003).

[148] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Quantum cluster theories, Rev.

Mod. Phys. 77, 1027 (2005).

[149] M. Ferrero et al., Pseudogap opening and formation of Fermi arcs as an orbital-selective

Mott transition in momentum space, Phys. Rev. B 80, 064501 (2009).

[150] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Dual fermion approach to nonlocal

correlations in the Hubbard model, Phys. Rev. B 77, 033101 (2008).

[151] K. Held, A. A. Katanin, and A. Toschi, Dynamical Vertex ApproximationAn Introduction,

Progress of Theoretical Physics Supplement 176, 117 (2008).

[152] T. Ayral and O. Parcollet, Mott physics and spin fluctuations: A unified framework, Phys.

Rev. B 92, 115109 (2015).

[153] J. Negele and H. Orland, Quantum many-particle systems, Frontiers in physics, Addison-

Wesley Pub. Co., 1988.

[154] N. V. Prokof’ev and B. V. Svistunov, Polaron Problem by Diagrammatic Quantum Monte

Carlo, Phys. Rev. Lett. 81, 2514 (1998).

[155] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Continuous-time quantum Monte

Carlo method for fermions, Phys. Rev. B 72, 035122 (2005).

[156] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Continuous-Time

Solver for Quantum Impurity Models, Phys. Rev. Lett. 97, 076405 (2006).

[157] J. E. Hirsch and R. M. Fye, Monte Carlo Method for Magnetic Impurities in Metals, Phys.

Rev. Lett. 56, 2521 (1986).

[158] M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M. Imada, Theoretical evidence

for strong correlations and incoherent metallic state in FeSe, Phys. Rev. B 82, 064504

(2010).

44
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