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Abstract

We give a brief review of the theory of non-collinear order in itinerant electron systems.
The theory 1s an example of the use of the local density-functional approximation for first-
principles calculations. We emphasize the role of symmetry arguments since they facilitate
the calculations and make the physics of the problem transparent. We choose as examples
spiral structures like those found experimentally in fcc Fe, the canted states of UsP4 and
weak ferromagnetism in a-FesOg and show that these different phenomena are explained by
the theory.

1 Introduction

It was more than forty years ago that non-collinear magnetic structures were first discovered
experimentally [1], yet this physical phenomenon was investigated theoretically almost entirely
in the framework of model Hamiltonians, assuming localized atomic moments [1], in contrast
to collinear magnets which were intensively studied using first-principles calculational schemes
provided by the density functional theory [2, 3]. This is perhaps due to the fact that non-
collinear magnetic order seemed rather exotic and rare. But it attracted renewed interest in
the late seventies and beginning of the eighties when it became clear that Stoner theory, which
explains ground-state properties quite well, fails to describe the temperature behaviour of itin-
erant magnets. The reason for this failure was found in the neglect of transverse fluctuations of
the magnetization density that, if viewed as originating from well-formed atomic moments, is
equivalent to neglecting fluctuations in the directions of atomic moments (see e.g. [4]).

Detailed investigations of particular non-collinear magnetic configurations were started by Heine
and his group using the cluster recursion method applied to a simplified tight-binding Hamilto-
nian [5]. The line of this work was continued with the use of the KKR method for a periodic solid
(see e.g. [6]). A thorough discussion of density functional theory for a non-collinear magnet was
subsequently given in [7] and applied to investigate the ground-state electronic and magnetic
structure of MnsSn. It was the experimental discovery of a spiral magnetic structure in fcc Fe
[8] that made Fe an interesting object for theoretical studies [9, 10]. The last years showed
a boom in investigations of non-collinear magnetism. Thus, for instance, successful studies of
disordered systems [11, 12, 13] as well as multilayers [14, 15] were reported and a noteworthy
and interesting step was made in describing the spin dynamics in itinerant electron systems [16].
In spite of its rather short history the theory of non-collinear magnetism involves quite different
methods and is applied to a multitude of different physical problems. In this brief review we
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are not trying to discuss all aspects of the presently used first-principles studies of non-collinear
magnets, but rather select aspects which possess interesting symmetry properties. In particu-
lar, we will expose the role of spin-orbit coupling. This relativistic interaction sometimes acts
in a destructive, sometimes in a constructive, way in the formation of particular non-collinear
magnetic structures.

2 Kohn-Sham Hamiltonian of a non-collinear magnet

The derivation of the Kohn-Sham Hamiltonian for non-collinear magnets follows the standard
procedure of density functional theory. In this case the total energy is considered as a functional
of the two-dimensional density matrix and all single-particle wave functions are consequently
treated as two-component spinor functions [7]. After variation of the functional with respect
to the components of the spinor function one obtains equations that describe a magnetization
continuously varying in space. For practical calculations it is common to use the atomic sphere
approximation for the magnetization direction, i.e. the direction of the magnetization is sup-
posed to be constant within the atomic sphere of every atom and different for different atoms.
The scalar-relativistic Hamiltonian of a non-collinear magnet then takes the form

- ( H(r,) 0

H,.(a,,e,) = ZU‘F(HU,@) 0 H”}(r ) ) ub,,o,) . (1)

Here a, are atomic positions and e, directions of atomic moments, U(6,, ¢,) is the standard spin-
%—rotation matrix, which describes the transformation between a global and a local coordinate
system of the vth atom, whose spin orientation is given by the polar angles 8, and ¢, with
respect to the z-axis of the global system. The quantities H2I(r,) and H%*(r,) are the standard
atomic scalar-relativistic Hamiltonians (spin up, spin down3 [17] in the local frame of reference
for the atom at site v. They contain the mass-velocity, the Darwin term and the effective one-
particle potential which, as usual, is given by functional derivatives of the total energy and is
spin-diagonal in the local frame of this atom.

Note that the scalar-relativistic Hamiltonian possesses the same symmetry properties as the
non-relativistic Hamiltonian which is obtained from the former by neglecting the mass-velocity
and Darwin terms. Therefore the symmetry aspects discussed in this paper will be equally valid
for both cases. Our calculations were carried out with the scalar-relativistic Hamiltonian.

A substantial part of the discussion will be devoted to the role of spin-orbit coupling which we
will write in the form

I:Iso - E U+ (01/7 ¢u) {ZMGUOJ&} U(guy ¢u) (2)

Here o, and [, are the Cartesian components of the Pauli spin matrices and the angular mo-
mentum, respectively, in the local system and the coefficients M can be found in Ref. [18].

The purpose of our work is the first-principles determination of the magnetic structure of a
crystal. The basic steps to achieve this can be summarized as follows [7]: in each iteration step

1 (r)
ba(r) /,

the relativistic case are calculated which enables us to determine the two-dimensional density

matrix of the system:
P P1(r)" Y (r) ¢1(r)*'¢z(r))
=2 ( Pa(e) n(r) alr) ea(r) ] ®)

where the sum runs over all occupied states. The density matrix contains information on the
charge density, the directions of the atomic magnetic moments and the magnetization, all of
which are necessary to redetermine the Hamiltonian for the next iteration step. The iterations
are repeated until full self-consistency is achieved. The new degrees of freedom connected with
the variation of the direction of the magnetic moments make the problem numerically more
involved than in the case of a collinear magnetic state.

the eigenstates ( ) of the Hamiltonian I:ISC in the scalar-relativistic or I:ISC + I:ISO in

7 oce
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3 Generalization of the symmetry basis

Traditionally the symmetry properties of non-relativistic Hamiltonians are described in terms of
ordinary irreducible representations of the relevant space group whereas for the relativistic prob-
lem the so-called double-valued irreducible representations are used. However, this difference in
the type of representation merely reflects the difference in the choice of the functions subjected
to the transformation. In the relativistic case the transformed function is always a spinor func-
tion whereas it is a scalar wave function in the non-relativistic case for which, correspondingly,
only the transformation properties in real space need be considered.

It is the spinor form of the wave function that is of prime importance for the case of non-collinear
magnetism. Hence, as in the relativistic case, one must use the double-valued irreducible repre-
sentation. Still there is a subtle difference in the symmetry properties of the problem depending
on whether or not the spin-orbit coupling is retained in the Hamiltonian. To describe this prop-
erly one introduces a generalized set of operators which allows an independent transformation of
the spin and space variables [19]. For the group of such operators we will use the term spin-space

group (SSG).

We define the action of an operator of the SSG on a two-component spinor function as follows

{as|arlt} ¢(r) = U(as) ¢({arlt) 'r) (4)

where % is a two-component spinor function, U is the spin—%—rotation matrix, ag and apg are,
respectively, spin and space rotations, and t is a space translation. Operators of the usual space
group are those with ag = ap.

One easily proves that a transformation of the scalar-relativistic Hamiltonian ( i.e. not including
spin-orbit coupling) of a non-collinear magnet with the operations (4) leaves the form of the
Hamiltonian invariant, i.e.

H,.(a),e)) = {os|or|t}Hsc(a,, e,) {as|ar|t} (5)

where a, are atomic positions and e, directions of atomic moments corresponding to the un-
transformed Hamiltonian. From (5) it follows that two magnetic crystals with atomic positions
connected by the relation a/, = ara, + t, and directions of magnetic moment connected by

!/

e/, = age,, are equivalent in the scalar-relativistic case.

However, a transformation of the spin-orbit coupling term with an SSG operator does not
reproduce the form of this term. Only when as=apr do we restore the form-invariance of the
Hamiltonian and find equivalent magnetic crystals:

{ar|ar]|t} I:Iso(al,, el,) {O‘Pnla‘th}_l = I:Iso(a;, e;) (6)

In many cases we are interested in the symmetry properties of one particular magnetic con-
figuration and not in establishing the equivalence of different magnetic configurations. In this
case the atomic positions and corresponding atomic moments must be the same before and after
the transformation and the equations (5,6) reduce to commutating Hamiltonian and symmetry
operators.

In what follows we will show how symmetry arguments help us to make calculations and facilitate
to analyze the calculational results for a number of different physical problems.

4 Incommensurate spiral structure

A spiral magnetic structure is defined by
m, = m (cos(q-R,)sin?,sin(q-R,) sin 9, cos ) (7)

where m,, is the magnetic moment of the n-th atom and m, (q-R,), ¥ are polar coordinates.

An apparent difficulty for first-principles calculation of a spiral structure is the loss of periodicity
with respect to lattice translations non-orthogonal to q. One should notice, however, that in
formula (7) all atoms of the spiral structure are equivalent, in particular, because of the equal
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length of all atomic moments. But atoms can be equivalent only if they are connected by a
symmetry transformation. A solution of the problem is suggested by using the operators of the

SSG.

Indeed, transformations combining a lattice translation R,, and a spin rotation about the z axis
by an angle qR,, leave the spiral structure invariant. The corresponding operators {qR,, |¢|R,,}
commute with the Hamiltonian of the spiral structure and therefore supply a symmetry transfor-
mation of the Hamiltonian. Here ¢ denotes the identity operation. These generalized translations
form an Abelian group isomorphic to the group of ordinary space translations by vectors R,,.
Therefore the irreducible representations of both groups coincide and for the eigenfunctions of
the Hamiltonian (1) there exists a generalized Bloch theorem [20]

{aR,|e|Rn} ¢ (r) = exp(—ikRy,) P (r) (8)

where the vectors k lie in the first Brillouin zone which is defined in the usual way by the vectors
qR,,. These properties permit to restrict our considerations of real space to a chemical unit cell,
not a supercell.

Generalizations of modern methods employing density functional theory to the case of spiral
structures were done in Refs. [21] (for KKR, APW and tight binding methods), [9] (for the
LMTO method), [10] (for the ASW method). This approach was successfully applied to the
description of the ground state of fce-Fe [9, 10] which was experimentally observed to have a
spiral magnetic structure [8].
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Figure 1: The total energy as a function of ¢ for the (001) direction. < - fce-Fe; 4 - bee-Fe; O
- fee-Co; x - hep-Co; A - Ni.

In Fig. 1 we show the results of calculations for the g-dependence of the total energy for a
number of transition metals [22]. In full agreement with experiment for all metals, excluding
the case of fcc-Fe, the ground state was found to be ferromagnetic which is the case of q=0. In
fcc-Fe the minimum of the total energy occurs at a finite value of q, i.e. the ground state is
spiral.

We complete this section with a discussion of the role of spin-orbit coupling in a spiral structure.
The symmetry analysis of the previous section shows that spin-orbit coupling does not allow a
separate transformation of the spin and space variables. This means the generalized translations
do not apply here and we must conclude that spin-orbit coupling is destructive for the spiral
structure. Indeed, experimental evidence seems to be in favour of our point of view since spiral
structures are not observed in cases where the spin-orbit coupling is strong in the valence states.
In particular, no spiral structures are observed in the U compounds where the U 5f electrons are
itinerant and where the spin-orbit coupling is of the same order of magnitude as the exchange
splitting. In contrast to this is the strong spin-orbit coupling for the core states which does not
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lead to an increase of the magnetic anisotropy and therefore seems not to be an obstacle for the
use of the generalized symmetry. Thus, in our opinion, the observation of spiral structures in 4f
elements [1] is an argument in favour of treating the 4f states as core states.

5 Non-collinear magnetic structures in U3zP4

Although no spiral structure was observed in U compounds there were many very different non-
collinear magnetic configurations reported. To keep the length of this review acceptable we
restrict the discussion to the first-principles study [23] of one interesting case namely to that of
UsP4 [24]. The magnetic moments of the individual atoms in U3P,4 do not compensate but rather
possess a ferromagnetic component along the (111)-axis and the angles between the magnetic
moments and the (111) axis seem to assume some accidental value. When calculations were
started aligning all magnetic moments along the easy (111) axis then the scalar-relativistic and
the relativistic Hamiltonians lead to drastically different results. Free to rotate, the magnetic
moments deviate from the initial parallel directions in the relativistic case but stay parallel in the
scalar-relativistic case. To appreciate the difference between these two cases we formulate the
following nearly self-evident statement: “The symmetry of the initial Kohn-Sham Hamiltonian
must be preserved during calculations”. This means on the one hand that if the combined
symmetry of the crystal and magnetic structure is so high that a deviation of magnetic moments
from the initial directions leads to perturbing the invariance of the Hamiltonian with respect to at
least one symmetry operator this deviation cannot take place. On the other hand, if a deviation
of the magnetic moments from the initial directions is allowed by all symmetry operations
present, then there are no symmetry reasons for keeping the initial magnetic configuration and
the magnetic moments will start to rotate tending to assume the state of lowest total energy.
This simulated annealing of magnetic moments will continue until the ”accidental” - from a
symmetry point of view - ground state magnetic structure will be found by the system.

These general statements will help us to explain the behaviour of magnetic moments in U3Py.
We start with the scalar-relativistic case. As was shown in Sect. 3 the symmetry basis of a scalar-
relativistic problem is formed by the spin-space group, i.e. separate transformations of the spin
and space variables are allowed. We can formulate the result in a very general way: starting the
scalar-relativistic calculation with a collinear configuration we will never obtain a deviation of
magnetic moments from the initial direction. Indeed, independent of the crystal structure any
spin rotation by an arbitrary angle ¢ about the direction of the magnetic moments {Cy|c|0} is a
symmetry operation. This group of symmetry operations gives the symmetry basis for treating
the spin projection of an electron state as a good quantum number [19]. Deviations of any
magnetic moment from this direction would destroy the symmetry with respect to operations

{C4le|0} and are therefore forbidden.
G b

o ol

FIG. 2. Projection of the atomic positions and magnetic moments of the U atoms in UsP,4 onto
the (111) plane.
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The situation changes drastically in the presence of SOC because of the reduction of the sym-
metry basis from the SSG to the usual space groups which transforms spin and space variables
in an identical way i.e. ag=ap in Sec.3. This means that the question of stability of a magnetic
structure cannot be answered without analysis of the particular crystal structure. Therefore we
note that UsP4 has a bce lattice with a basis formed by two formula units, i.e. the unit cell
consists of six U and eight P atoms. The crystal structure is rather complicated and need not
be discussed here in detail. Instead, to illustrate the important symmetry properties it is suffi-
cient to consider the simple picture of Fig. 2 where the projections onto the (111) plane of the
positions of the six U atoms are shown. Let us assume that initially all magnetic moments are
parallel to the (111) axis which is perpendicular to the plane of the paper. Then the following
operations leave the magnetic and crystal structures invariant: the rotations by 120° and 240°
about the (111) axis and the reflections in the planes containing the (111) axis accompanied by
time reversal. Of importance is the observation that none of these operations leaves the position
of any particular atom unchanged. Because of this, symmetry imposes no restrictions on the
direction of the magnetic moment of a particular atom but only on the orientation of the atomic
moments relative to each other and to the crystal lattice. The deviation of the moments from
the (111) axis resulting in a non-collinear magnetic configuration does not change the symmetry
of the crystal. Therefore, the ferromagnetic ( #=0 ) structure, from a point of view of symmetry,
is not isolated from structures possessing a non-zero 6. In Fig. 2 we show the projections of
the magnetic moments on the (111) plane which are obtained in the self-consistent calculation;
these calculated deviations from the (111) axis evidently do not destroy the symmetry of the
atomic configuration.
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FIG. 3 Total energy of UsP4 as a function of angle . Circles show the points calculated with
and squares without SOC.

More understanding of the system’s behaviour can be gained with the help of Fig. 3 which shows
the result for total energies when the directions of the magnetic moments are constrained to
some values of angle # near equilibrium (# is the deviation of magnetic moments from the (111)
direction). (During the variation of the magnetic structure we keep each moment in the plane
containing the ground state direction of this moment and the (111) axis.) Fig. 3 shows that
scalar-relativistic calculations give a total-energy curve symmetric with respect to a change of
the sign of . This means an extremum of the total energy for the ferromagnetic configuration,
=0, is predetermined by symmetry. In the relativistic case, however, the total energy as a
function of # is not symmetric about #=0. In fact, for reasons of symmetry no extremum of the
total energy at =0 is expected. As a result, the position of the extremum of the the total energy
curve as a function of 4 is "accidental” i.e. not determined by the symmetry of the problem.

The deviation of the magnetic moments from parallel directions in the case of UszP4 which
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are caused by symmetry properties of the crystal and magnetic structures reminds us of the
effect of weak ferromagnetism in FeyOs, connected with the names Dzialoshinski and Moriya.
We therefore show in the next Sect. that our symmetry analysis together with the method of
calculation also explains this interesting case.

6 First principles study of weak ferromagnetism in Fe;O3

The phenomenon of weak ferromagnetism has been known for more than forty years (see e.g.
[25]). It is characterized by a small net magnetic moment resulting from a collection of atomic
magnetic moments that nearly cancel each other, one of the best known examples being a-Fe;Os.
It has traditionally been discussed in terms of a model Hamiltonian of localized atomic moments
of the form

H = 1;;S;S; + d;j[S; x S;] + K, 52 4+ K, S, + K.S? (9)

This Hamiltonian was suggested by Dzialoshinski [26] on the basis of phenomenological argu-
ments. Moriya [27] showed that Dzialoshinski’s explanation can be given a microscopic footing
by means of Anderson’s perturbation approach to magnetic superexchange. The first term of the
Hamiltonian (9), the symmetric exchange, is supposed to lead to a compensated magnetic con-
figuration. The next two terms, the anisotropic exchange and the magneto-crystalline anisotropy
terms,respectively, can lead to a small ferromagnetic moment in an otherwise antiferromagnetic
crystal. a-FeyOg3 is a classical example of a weak ferromagnet where the antisymmetrical ex-
change plays a key role.

The unit cell of the a-FesO3 is shown in Fig. 4. We start our calculation with the magnetic
moments of the Fe atoms directed along the y axis which corresponds to the experimental
situation at temperatures below that where weak ferromagnetism occurs. As was discussed
above, in the scalar-relativistic case any collinear structure will be stable during calculations.
However with the spin-orbit coupling taken into account the magnetic moments start to move
until that magnetic configuration is reached where the total energy is lowest. The directions of
the moments thus calculated are shown in Fig. 4. by solid arrows. Canting of magnetic moments
produces a small ferromagnetic component of about 0.002 pp per Fe atom. This estimate is
in a quite good agreement with the experimental value. Qur symmetry analysis easily explains
this canting as follows. With the spin-orbit coupling taken into account only four symmetry
operations are left in the group of the

FIG. 4 The unit cell of Fe;O3. Cross on the diagonal of the rombohedron shows the point of
inversion. The solid line passing through the first oxygen atom indicates a twofold symmetry
axis. The collinear (dashed arrow) and canted (solid arrow) directions of the Fe atoms are
shown. The canting of the Fe moments in the xy plane is demonstrated differently in the lower
right corner of the Figure.

Kohn-Sham Hamiltonian: the identity transformation,the 180°rotation about the x-axis and
these operations multiplied by the inversion. Inversion transforms the atoms of the upper Fe;O3
molecule into the atoms of the lower molecule, see Fig. 4 and, since the magnetic moments are
axial vectors, they do not change under this transformation. Hence, the corresponding atoms
of the two molecules must keep parallel moments and we may restrict our consideration to the
lower molecule in Fig. 4 . The only condition imposed on the moments of the Fe atoms by
symmetry is the transformation of the moment of atom 1 into that of atom 2 by a rotation
through 180° about the x-axis (see Fig. 4). However to fulfill this condition it is not necessary
for the atomic moments to be parallel to the y-axis nor to remain collinear. Correspondingly,
in the simulated annealing process, the magnetic moments deviate from their collinear initial
directions toward the direction of the x-axis (see Ilig. 4) until an “accidental” self-consistent
magnetic structure preserved during iterations will be achieved.

An essentially different type of weak ferromagnetism was observed in Mn3Sn [28]. Its magnetic
structure is triangular and almost antiferromagnetic. A small canting of the magnetic moments
leading to a weak ferromagnetic component cannot be caused in this case by the antisymmet-
ric exchange because the contributions from different atoms cancel perfectly. Here the effect is
supposed to be caused by the magneto-crystalline anisotropy. We carried out first-principles cal-
culations [30] and obtained also in this case a very good description of the weak ferromagnetism.
Again, in the scalar-relativistic calculation the ground state appears to be antiferromagnetic.
But with spin-orbit coupling taken into account some magnetic moments deviate destroying the
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complete magnetic compensation. Thus our method is universal and describes both types of
weak ferromagnetism in the same calculational scheme.

7 Conclusion

In this short review we have shown that the local density approximation to density functional
theory supplies a reliable basis for first-principles studies of non-collinear magnetic configurations
in crystals. We restricted our discussion to ordered non-collinear structures which allowed us
to use symmetry arguments to both, make accurate calculations possible and to render the
physics transparent. We have shown that a consequent development of the density functional
theory allows to explain within the itinerant electron picture the physical phenomena which
were traditionally discussed in terms of the model Hamiltonian of localized moments.

The shortage of space did not allow us to discuss even briefly our work on an essentially different
role of the spin-orbit coupling in non-collinear magnetism in various other U compounds [23].
Furthermore, we did not discuss calculations of the q-dependent magnetic susceptibility [22] ,
nor the use of the methods of non-collinear magnetism to study effects of non-zero temperatures
[6, 29] as well as the work of other groups like that of [4, 5, 11, 12, 13, 15, 16, 31] on different
aspects of non-collinear magnetism. Neither could we give a reasonably complete list of references
to the work of others. Still we hope to have succeeded in giving an impression of the present
state of the local density functional theory of non-collinear magnetism and supply at least a
few first references for those who will want to gain a deeper insight into this rapidly developing
branch of the physics of itinerant magnetism.
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