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Abstract

We present an efficient methodology to study spin waves in disordered materials. The
approach is based on a Heisenberg model and enables calculations of magnon properties
in spin systems with disorder of arbitrary kind and concentration of impurities. Disorder
effects are taken into account within two complementary approaches. Magnons in systems
with substitutional (uncorrelated) disorder can be efficiently calculated within a single-site
coherent potential approximation for the Heisenberg model. The method is cheap from the
computational point of view and directly applicable to systems like alloys and doped materi-
als. It is shown that it performs exceedingly well across all concentrations and wave vectors.
Another way is the direct numerical simulation of large supercells using a configurational
average over possible samples. This approach is applicable to systems with arbitrary kind of
disorder. The effective interaction between magnetic moments entering the Heisenberg model
can be obtained from first-principles using a self-consistent Green function method within
the density functional theory. Thus, our method can be viewed as an an-initio approach and
can be used for calculations of magnons in real materials.

1 Introduction

Spin waves (or magnons) are low-lying collective excitations (quasiparticles) of the electronic spin
structure in a crystal lattice [1, 2, 3] and each of these excitations corresponds to a reduction in
the total magnetization of the system by 2µB, which is manifested as a deviation of the atomic
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moments from their equilibrium directions [4]. Magnons are bosons, carry a fixed amount of
energy ω and a lattice momentum, and cover a very wide frequency window from gigahertz to
a few hundreds of terahertz. Hence, they contribute to many observed phenomena, e.g., mag-
netic ordering [5], ultrafast magnetization processes [6], electronic specific heat [7], electrical and
thermal conductivity [8], current induced magnetization reversal and electron spin dynamics [9].
Besides these phenomena, various coupling mechanisms with electrons and phonons in magneto-
caloric materials [10] and in high-temperature superconductors [11, 12, 13, 14] can be caused by
spin waves.

Magnons can be probed with various experimental methods like inelastic neutron scattering [15,
16], photons [17, 18], scanning tunneling spectroscopy (STS) [19, 20, 21, 22], spin-wave reso-
nances [23], and spin-polarized electron energy loss spectroscopy (SPEELS) [24, 25, 26, 27, 28,
29, 30, 31, 4, 32, 33]. The most recent development in this research field was achieved for low-
dimensional systems. In particular, the SPEELS and the STS techniques allow to study magnetic
excitations in nanostructures such as thin films, clusters, chains and adatoms. These experiments
enable direct measurements of the magnon dispersion relation, lifetime, and the group and phase
velocities. Several low-dimensional systems have efficiently been studied by these methods in
the last decade, for example, thin Fe, Co, Ni, Mn films on Cu(001), W(110), Pd(001), Rh(001),
Ir(001) and Cu3Au(001) surfaces.

The rapid progress and success of the experiments inspired development of new theoretical ap-
proaches, which are specially designed to study magnetic excitations in complex and extended
materials. One class of these methods is based on mapping of the spin system onto an effective
Heisenberg Hamiltonian. This approach is utilized in many different forms like the magnetic
force theorem [34], static transverse susceptibility [35, 36] and frozen magnon techniques [37].
In combination with the density functional theory, such methods do not involve adjustable pa-
rameters and are applicable to a wide range of material classes. Another way to access magnetic
excitations is the direct calculation of the transverse magnetic susceptibility which poles are as-
sociated with magnons and yield their energies and life times. The magnetic susceptibility can
be obtained within the linear response density functional theory [38, 39], which offers a trans-
parent parameter free approach allowing for studying of both spin waves and Stoner excitations.
This method is implemented within several numerical schemes and successfully applied to study
magnons in complex bulk and low dimensional materials [40, 41, 42, 43, 44, 45, 46, 47, 48].

However, we have also take into account that the most real systems are imperfect. Structural
defects, impurities, alloying can substantially modify the structural, electronic and magnetic
properties of the host materials. One way to model such systems is the use of a large number of
large periodic supercells where disorder is approximated by randomly generated configurations
over the supercells. This method allows direct studies of arbitrary disorder, although it is very
demanding with respect to the computational time. An alternative approach is the coherent
potential approximation (CPA), which is a mean-field theory and designed for studies of sub-
stitutionally disordered alloys [49]. Subsequently, it was suggested to use the Green function
method also to study the electronic structure of impurities and defects in various host materi-
als [50]. In this approach the Green function of an impurity or an ensemble of atoms embedded
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in a particular system can be determined in an elegant way by solving a Dyson equation, which
is associated with the host material via a reference Green function. Both the supercell approach
and the CPA are widely used for first-principles studies of various properties of solids. In this
work, we concentrate on spin waves or magnons in disordered materials. Thereby, two main as-
pects will be taken into account: impact of disorder on (i) the electronic structure and magnetic
interactions and, namely, on (ii) spin waves (magnons) in the disordered systems. The first mat-
ter can be efficiently treated within a standard single-site CPA approach using a self-consistent
Green function method, which provides magnetic moments and exchange interaction of the dis-
ordered system from first-principles. This information can then be further used for calculations
of magnons considering disorder effects either within the supercell approach or the CPA method
formulated for the magnonic Green function or the transversal susceptibility. The later can be
utilized either within the Heisenberg model [51, 52, 53, 54, 55, 56] or computed directly using
time dependent density functional theory combined with the CPA [43].

In the current work, we present our technique to calculate spin waves in disordered materials,
which is realized with both the supercell and the CPA approaches [57]. The starting point
is the adiabatic spin dynamics based on the mapping of the magnetic states onto the states
of the Heisenberg Hamiltonian. From the Heisenberg model, the magnetic susceptibility can
be calculated either in the real space and then subsequently averaged over different disorder
configurations, or it can be obtained within the CPA implemented for complex unit cells with
arbitrary many types of disorder.

The paper is organized as follows. The transverse magnetic susceptibility within the adiabatic ap-
proximation is introduced in Sec. 2. Subsequently, we present our model for describing magnons
in disordered systems within the real space supercell approach and the CPA method in Sec. 3
and 4, respectively. In the Sec. 5, we discuss briefly our method for calculation of the exchange
parameters entering the Heisenberg Hamiltonian. The efficiency of our technique is illustrated
for several examples in Secs. 3 and 4.

2 Transverse magnetic susceptibility

The interaction of the spins will be described in terms of the classical Heisenberg Hamiltonian.
This effective Hamiltonian relates the existing spins with the magnetic exchange coefficients Jij
between the spins at sites i and j:

H = −1

2

∑
ij

Jijei · ej , (1)

where ei and ej are the directions of the magnetic moments at the sites i and j, respectively.
Spin waves (or magnons) are low energy excitations associated with small-amplitude precessions
of moments around the main magnetization direction and can be described by the retarded trans-
verse magnetic susceptibility χij(ω+ i0+) (0+ stands for an infinitesimal positive quantity) [47].
The susceptibility gives the amplitude of the precession of the magnetic moment at the site i
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around its ground state direction upon applying oscillating magnetic field at the site j with
frequency ω and direction transverse to the ground state magnetization.

The susceptibility can be represented as

χ = gGS , (2)

where g is the electron g-factor, which we assume to be equal 2 in this work and G and S are
matrices in the space of atomic sites. S is a diagonal matrix

Sij = Siδij , (3)

where Si is the spin moment at the site i and G is the magnon spin propagator

G(z) = G0(z) +G0(z)gSTG , (4)

G0(z) = 1z−1 , (5)

where z stands for the complex frequency, 1 is the unit matrix, G0 is the free spin propagator
and the torque matrix T is defined as

(ST )ij = S−1
j δij

∑
l

Jil − S−1
j Jij . (6)

Eq. (5) can be formally solved by the matrix inversion

G−1 = G−1
0 − gST , (7)

which allows to compute the susceptibility for any frequency using Eq. (2).

In principle, the formula (2) above would be enough to calculate the loss from the susceptibility
matrix χ [47],

Lχ(ω + i0+) =
1

2i

(
χ(ω + i0+)− χ(ω + i0+)†

)
, (8)

associated with the spectral density of the excitations at the given energy ω and the corresponding
eigenvectors give the spatial form of the excitations. The main target is the calculation of the
average susceptibility and the corresponding loss in a disordered supercell. This can be achieved
by averaging the susceptibility χ(ω+ i0+) over a larger amount of differently occupied supercells
(so called configurations) or by solving corresponding CPA equations.

3 Numerical averaging of magnons in real space

The transverse magnetic susceptibility can be directly calculated in real space for a supercell
Rsc, which is a subdivision of an infinite crystal (see Fig. 1). Each position i of the crystal is
occupied by atoms of types α, β, . . . with some given probabilities cαi , c

β
i , etc. We introduce
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the occupation function pα(ri), which is 1 if the site i is occupied by the atom of the type α
and 0 otherwise. In addition, we assume that the occupation of one site does not influence the
occupation of the other sites, i.e., the disorder is uncorrelated. The atomic occupation in the
supercell Rsc is chosen with respect to the probabilities cAi . The susceptibility of the disordered
system 〈χ〉 is then obtained by averaging over many such configurations (typically between 100
and 1000 created using pseudorandom numbers).

O

R
sc

r p̃

r̃i

1
Figure 1: Definition of coordinates. The simulation domain is a supercell (blue) with its origin
being located at Rsc. It consists of unit cells (green) at rp̃ with respect to the origin of the
supercell and the unit cells may contain several basis atoms (circles) at r̃i.

A general extension to this algorithm is the introduction of an additional subdivision of the
supercell Rsc into basis sites α in a cell p̃ (see Fig. 1) by splitting the vectors as

ri = Rsc + rp̃ + r̃i . (9)

Afterwards, it is possible to fold the supercell back to the original unit cell by application of a
Fourier transformation

〈χij(q)〉 =
∑
p̃

∑
t̃

eiq·rp̃e−iq·rt̃
〈
χ(p̃,i),(t̃,j)(q)

〉
, (10)

where q is the wave vector from the first Brillouin zone and the sums run over all unit cells p̃
and t̃.

3.1 Generation of random structures

The generation of random structures, i.e., different occupations of the simulated supercells, is a
critical part in the calculation of the susceptibility of disordered systems and plays an important
role in the success of the method. The main goal of the following algorithms is to resemble real
physical structures as closely as possible.

Especially for surface structures, it is important to find reasonable methods, because the growth
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process will impact the resulting structures: Fig. 2a shows 7 monolayers of Co deposited on
Cu(001), which yields a rugged surface structure with several different thicknesses and plateaus
with diameters of a few nanometers. To reduce the impact of this disorder, the sample was
annealed at 370K to obtain a much smoother surface (cf. Fig. 2b) [58]. However, since films
with less than 6 monolayers of Co on Cu(100) suffer from diffusion of Cu to the surface, while
annealing [58], the rugged structures are a necessary target for the structure generation algorithm.
For the simulation of smooth annealed surfaces, an algorithm capable of avoiding a surplus
amount of point defects would be favorable.

Figure 2: Surface tunneling microscopy (STM) pictures of (a) as-deposited 7ML Co/Cu(100),
(b) Co/Cu(100) after annealing at 370K. Different colors denote different surface heights [58].

In the following, three major algorithms are presented, which were used for the creation of
random structures. They are focused on performance and tunability of the resulting outputs.
Because of their versatility and good comparison with the shown experimental surfaces, they
were chosen over more complex algorithms, like kinetic Monte Carlo approaches.

3.1.1 Direct random structure generation and Fisher-Yates-Shuffle

The most straightforward approach to create random structures is the use of standard pseudo-
random numbers (PRN). A given setup and equally distributed PRNs in the right-open interval
[0..1) – the output of most standard PRN generators – offer two basic ways to create the desired
random distribution of atoms.

The first method is the direct use of the random numbers by dividing the interval according to
the probabilities of each species at a given site. For example, a probability of 40% for species A
and 60% for species B would result in species A for all random numbers p < 0.4 and species B,
otherwise. An important caveat of this method is the possibility of an unbalanced system, where
the actual final composition does not meet the desired probabilities (if at all possible due to the
limited amount of lattice positions in the supercell). In this case, an additional rebalancing step
might be necessary.

The second method is the use of the Fisher-Yates-Shuffle [59]:
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Algorithm 1 Fisher-Yates-Shuffle
Require: a(1 : n) contains desired composition
for i = n downto 2 do
j ← random integer 1 ≤ j ≤ i
swap a(i)↔ a(j)

end for

For a given site in the original unit cell, a list of all corresponding positions in the supercell is
created and filled with the desired composition of species in an arbitrary order. Applying the
above example to a system with 25 sites would result in a list filled with 10 entries of A and 15

entries of B. Then, the Fisher-Yates-Shuffle will create a completely random permutation of this
composition, which can then be used for further calculations.

Nevertheless, both methods can produce unphysical or undesired results. For example, the
calculation of the system 3ML Co/Cu(001) where 50% of Co atoms from the 3th layer are
moved to the 4th layer will most likely produce floating atoms or holes (see Fig. 3).

1st layer
2nd layer
3rd layer
4th layer

Figure 3: Sideview of a possible random configuration for 3ML Co/Cu(001), where 50% of the
atoms from the 3th layer are moved to the 4th layer. Possibly undesired floating atoms (red)
and holes (green) were created.

3.1.2 Perlin noise method

This method is based on the popular Perlin noise [60, 61], which is commonly used for procedural
creation of textures in computer graphics. The idea of this approach is to model the surface in
terms of a smooth noise function. Some form of downsampling is applied to create a closed hilly
surface which can be used in susceptibility calculations.

In order to create Perlin noise on a grid (in this case, the supercell), a second grid with a lower
resolution is generated and its vertices are populated with random gradient vectors. Then, for
every point in the supercell, i.e., the high-resolution grid, the contributions from the nearest
gradient vectors are weighted to get a smooth noise function. In the 1-dimensional case (see
Fig. 4), the gradients from the vertices to the left and to the right are used and the resulting
linear functions are interpolated. In the 2-dimensional case, the interpolation would be calculated
from the 4 vertices of the circumscribing rectangle.

In Fig. 4, it becomes apparent that this definition of Perlin noise results in the value ”zero” at
each of the low-resolution grid’s vertices. For that reason, an additional contribution of cubically
interpolated regular noise, which is also defined at the vertices of the low-resolution grid, was
added to the Perlin noise. The generation of the final structure from the Perlin noise is then
achieved with the help of a level-set method (see Fig. 5). In this method, one or more thresholds
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0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.2

0.0

0.2

0.4

Figure 4: Example for 1-dimensional Perlin noise (blue line). The low-resolution grid is defined
at the red points and the gradient vectors are represented by arrows.

1st level

2nd level

0.0 0.2 0.4 0.6 0.8 1.0

−0.5

0.0

0.5

Figure 5: Level-set method with 2 levels at 0.5 and −0.5 applied to 1-dimensional Perlin noise.
The blue area is below the 1th level, the green areas between both levels and the red area is
above the 2th level.

are defined and compared to the noise function at every position in the grid. The example in the
figure can be interpreted as a 1-dimensional surface. Positions, where the noise function is less
than the 1th level, would get assigned no atoms, positions with a value between the two levels
get assigned one atom and positions with a value above the 2th level get assigned two atoms.

This method has the same problems concerning stoichiometry as the purely random distribution
of atoms. To get closer to the desired composition, the thresholds of the level set method can be
adapted to fit the needs of the calculation. Another problem is the fact that this method can only
be defined on a rectangular grid. As a result, the application of Perlin noise to a non-rectangular
supercell, which is needed for calculations of, e.g., a hexagonal surface represented by rhombic
unit cells, would result in a distorted grid with a strong anisotropy. In particular, one diagonal
of the unit cell is longer than the other resulting in a structure, which is stretched along the
longer diagonal. A possible solution is provided by simplex noise [62], a later invention of [62],
which is defined on a triangular grid.
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3.1.3 Random structures from Voronoi tessellation

The third possible method is based on a Voronoi tessellation of the supercell.

Figure 6: Example of 2-dimensional Voronoi tesselation with 2 different species (red and blue).
The dots represent the initial points Pk. The corresponding Voronoi regions Rk (separated by
black lines) get the same lighter color (same species) as the Pk inside that region.

To create the desired distribution of atoms in the supercell, some points Pk (which get marked
with a species label) are put into the supercell and the Voronoi tessellation (with cyclical bound-
ary conditions) is computed. The Voronoi regions Rk get the same species label as the cor-
responding points (see Fig. 6).In the next step, the atoms in the supercell get assigned the
appropriate species, determined by the species label of the Voronoi region at the corresponding
position (see Fig. 7).

Figure 7: Resulting distribution of atom species from Voronoi tesselation in Fig. 6. All other
points (basis sites of the supercell) are now assigned with the respective color of their region
(reddish or bluish).
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Similar to the other methods, additional steps are needed to get the desired stoichiometry. This
can be achieved using a weighted Voronoi tessellation and optimizing the weights wk towards
the desired composition:

Rk =
{
x ∈ Rn | d(x, k) ≤ d(x, j), ∀ j 6= k

}
, (11)

d(x, k) = wk ·
∥∥x− Pk

∥∥
2
. (12)

Due to the fact that the Voronoi regions are defined by the points in the supercell, there are no
limitations to the shape of the supercell. Additionally, the size of the generated structures (i.e.,
clusters of similar atoms) can be tuned by the composition and amount of the initial points Pk.

3.1.4 Application of generators

From the properties of the three methods, it is straightforward to determine which method
should be used for a given system: The 2-dimensional systems, i.e., such as 7ML Co/Cu(001)
or similar, could be created with the Perlin method. Depending on the size of the surface’s
features, a varying resolution of the coarse grid can be used. While the annealed system can
be obtained from the algorithm as described, the unannealed system could be generated with a
high-resolution ”coarse” grid to effectively switch of its smoothing capability. On the other hand,
a purely random composition might produce acceptable results for the unannealed structure, but
this was not used in actual calculations.

Figure 8: Magnons in the ordered 3ML Co/Cu(001) calculated using the Heisenberg model (lines)
and compared with the results of the SPEELS measurements (dots).

As a reference, we calculated spin waves obtained for an ordered 3ML Co film on the Cu(001)
surface (assuming ideal growth conditions) and compared with SPEELS measurements performed
by Kh. Zakeri et al. (Fig. 8). Indeed, the theory can not reproduce correctly the acoustic mode
in higher wave vectors, although for lower energies and small wave vectors the agreement is
rather well. The first optical branches are substantially overestimated by the theory for all
wave vectors, especially for the lowest optical mode. Hence, we applied the Perlin method to
create more realistic supercells and calculated again the spin waves in 3ML Co/Cu(001) for
atomic configurations like those shown in Fig. 3. This structure was elucidated from the recent
STM measurements by Balashov et al. [58]. The calculated magnetic susceptibility within this
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Figure 9: Calculated magnons in 3ML Co/Cu(001) shown as contour plot together with the
results of the SPEELS measurements (dots). Direct numerical averaging and supercells created
with the Perlin method and the structural model shown in Fig. 3 were used.

Figure 10: Spin-wave spectra of 1ML Fe on Pd with an actual composition of (Fe0.7Pd0.3 |
Fe0.3Pd0.7) for the surface and first subsurface layer, respectively. The left panel shows the
purely random structure, the right panel shows a structure with islands. Continuous red lines
represent the VCA calculations for this alloy.

structural model is in very good agreement with experimental results (see Fig. 9).

However, the spin wave energies can be also significantly modified by the presence of islands,
which could arise during growth processes. We studied magnons in the disordered system of
1ML of Fe on the Pd(001) surface. The growth of Fe on a Pd substate depends strongly on
the deposition temperature [63]. Varying the deposition temperature one obtains various alloy
configurations in the surface and the first subsurface layers. At certain conditions Fe and Pd
atoms are not mixed randomly but forming small islands within the surface double layer. Such
clustering increases magnon energies for larger wave vectors (see Fig. 10). For comparison,
we calculated also spin waves using a so called virtual crystal approximation (VCA), which
reproduces rather well results for the purely random structure (red lines in Fig. 10).

For 3-dimensional systems, the most important property is the short-range order of the system.
If the atoms of the different species are randomly distributed, a purely random generation is
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preferred, and if a clustering of similar atoms is observable, the Voronoi tessellation is the method
of choice. In the latter case, a 3-dimensional variant of the Perlin method would also be possible,
but this was not implemented because of the limitations apparent from the 2-dimensional version.

4 CPA for Heisenberg model

Now we consider our implementation of the CPA Heisenberg model. Therein, we have followed
the formalism suggested by Matsubara [51] and Yonezawa [64]. This approach does not take into
account off-diagonal disorder, which can be incorporated within the local Blackman, Esterling,
and Berk (BEB) method [65]. Several realizations of the Heisenberg model within the BEB
approach were suggested over the last fifty years [52, 53, 56]. Although the implementations of
the method by different authors differ in details, the foundation of all works on the Heisenberg-
CPA are similar. Our implementation based on the derivation by Matsubara und Yonezawa is
generalized for the case of complex unit cells, arbitrary number of atomic species forming the
disordered system, and arbitrary dimensionality.

The coherent potential approximation for the transverse magnetic susceptibility of the Heisenberg
Hamiltonian is constructed as follows. We define the species resolved Fourier transformation of
the susceptibility

χαβij
(
q, q′

)
=
∑
RR′

pαi(R)e−iq·Rχ
(
R + r̃i,R

′ + r̃j
)
pβj(R′)eiq′·R′ , (13)

where the notation of vectors is similar as in Fig. 1 but in contrast to Eq. (10) we consider only
unit cells R. The occupation function defined in Sec. 3 is written as pαi(R) := pα(R + r̃i).
Eq. (13) allows to compute the Fourier transform of the full susceptibility as

χij
(
q, q′

)
=
∑
αβ

χαβij
(
q, q′

)
. (14)

The susceptibility χ(z, q, q′) corresponds to a single random configuration of the atoms consti-
tuting the alloy.

Following Eq. (5), the susceptibility in the real space can be developed in a formal series

χ(z) = G0gS +G0gSTG0gS

+G0gSTG0gSTG0gS + . . . , (15)

where the ST product is given by Eq. (6).

+ + + . . .

Figure 11: Expansion of the χαβij (z, q, q′) susceptibility.

The Fourier transformation χαβij (z, q, q′) can be computed term-by-term upon a series of tedious
algebraic manipulations and has the diagrammatic representation depicted in Fig. 11. The
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diagram consists of three elements listed below. Each of the elements is a matrix in a space
of composite indices involving basis sites and atomic species. The following notation is used
(i) ≡ iα, (j) ≡ jβ, (l) ≡ lγ, (m) ≡ mµ, etc. Furthermore, in this index space the Einstein
summation convention is used. The elements are

1. T -matrix denoted with filled circle (•)

T αβij
(
q, q′

)
= ρ(l)

(
q − q′

)
τ

(l)
(i)(j)

(
q, q′

)
, (16)

where

τ
(l)
(i)(j)

(
q, q′

)
≡ gS−1

β

(
Jβγjl

(
q − q′

)
δ(i)(j) − J

γβ
lj

(
q′
)
δ(i)(l)

)
, (17)

ραi(q) ≡
∑
R

pαi(R)e−iq·R , (18)

Jαβij (q) ≡
∑
R

Jαβij (R)e−iq·R . (19)

The two latter quantities are lattice Fourier transformations of the occupation function and
the exchange parameters, respectively.

2. S-matrix denoted with open circle (◦)

S(i)(j)

(
q, q′

)
= ρ(l)

(
q − q′

)
σ

(l)
(i)(j) , (20)

σ
(l)
(i)(j) ≡ gδ(i)(j)δ(i)(l)S(l) . (21)

3. Propagator of uncoupled magnetic moments ( )

Γ(i)(j)(z) = z−1δ(i)(j) . (22)

This matrix does not depend on the momentum but introduces the frequency dependence into
the equations.

The rules for evaluating the diagrams are as follows:

1. The matrices in the (i)(j) space brought together in a diagram undergo the matrix multipli-
cation in this space.

2. Every internal free propagator line is associated with an integration over a Brillouin zone,
denoted as

1

ΩBZ

∫
q∈ΩBZ

f(q) dq ≡
∫
q
f(q) , (23)

in order to simplify the notation.

For instance, the second term, i.e. including the product of two random variables ρ(i)(q), in the
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expansion presented in Fig. 11 is explicitly written as

χαβij
(
z, q, q′

)
= z−2

∫
q1

T(i)(m1)(q, q1)S(m1)(j)

(
q1, q

′) ,
(2nd order) (24)

= z−2ρ(l1)(q − q1)τ
(l1)
(i)(m)(q, q1)ρ(l2)

(
q1 − q′

)
σ

(l2)
(m)(j) . (25)

(Note the Einstein convention for the indices (l1), (l2), and (m).)

In the next step, our goal is to compute the averaged susceptibility. Upon the averaging, the
translational symmetry of the system is restored and the susceptibility depends only on one
wave-vector variable 〈

χαβij
(
z, q, q′

)〉
≡
〈
χαβij (z, q)

〉
ΩBZδ

(
q − q′

)
. (26)

In what follows, we will construct the coherent potential approximation for
〈
χαβij (z, q)

〉
. We

attempt to average every term of the expansion presented in Fig. 11 separately and following
Yonezawa [64], we resort to the so called cumulant expansion. As example, let us consider again
the 2nd order term given in Eq. (25)〈

χαβij
(
z, q, q′

)〉
= z−2τ

(l1)
(i)(m)(q, q1)σ

(l2)
(m)(j)

〈
ρ(l1)(q − q1)ρ(l2)

(
q1 − q′

)〉
. (27)

We note that only the ρ functions contain random variables p and require averaging. The
cumulant expansion of the product reads〈

ρ(l1)(k1)ρ(l2)(k2)
〉

= C2
(l1)(l2)(k1,k2) + C1

(l1)(k1)C1
(l2)(k2) , (28)

where Cn stands for the multivariate cumulant of order n. In the case of the uncorrelated disorder

Cn(l1)(l2)...(ln)(k1,k2, . . .,kn) = Pn(l1)(l2)...(ln)(c)ΩBZδ(k1 + k2 + . . .+ kn) , (29)

where c is the concentration matrix ciα. The weight functions P in the uncorrelated case are non-
zero only if all indices correspond to the same basis site. They do not have any straightforward
analytic representation but the first two read

P1
iα(c) = ciα , (30)

P2
iαjβ(c) = δij(δαβciα − ciαciβ) . (31)

From the momentum dependence of the cumulants follows, as expected from Eq. (26), that
the averaged susceptibility is diagonal in the momentum arguments and, thus, proportional to
ΩBZδ(q − q′).

Examples of the cumulant expansion for the second and fourth order terms are presented in
Fig. 12. The coherent potential approximation neglects the terms involving multiple “crossed”
cumulants. The lowest order term of this type appears in the 4th order average and is marked
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=〈 〉 +

+ + + + + +

+ + +

(†)

+ + + +

(a)

(b)

Figure 12: Expansion of the second (a) and fourth (b) order term average. The bundles of
dashed lines denote cumulants Cn. Crossed terms, like those denoted with (†), are omitted in the
coherent potential approximation. The remaining symbols are identical to those used in Fig. 11.

with (†) in Fig. 12.

In the CPA, the final expression for the averaged diagonal part
〈
χαβij (z, q)

〉
of the susceptibility,

cf. Eq. (26), is constructed by summing the terms of all order by means of a Dyson-like self-
consistent equation. Because our diagrams feature two types of vertices, namely T and S, two
quantities appear, namely the CPA effective medium propagator G(z, q) and the magnetic weight
correction W(z, q) .

The propagator

G(z, q) = Γ(z) + Γ(z)E(z, q)G(z, q) . (32)

is expressed in terms of the self-energy E

E(z, q) =
∑
s∈S1

P1
s τ

(l1)(q, q)+

∞∑
n=2

∑
s∈Sn

Pns
∫
q1

∫
q2

· · ·
∫
qn−1

(
τ (l1)(q, q1)G(z, q1)τ (l2)(q1, q2)G(z, q2) · · ·

· · · τ (ln−1)(qn−2, qn−1)G(z, qn−1)τ (ln)(qn−1, q)
)
, (33)

where Sns = {(l1), (l2), . . . , (ln)} is a particular length n sequence of composite indices. Similarly,
the weight correction W amounts to

W(z, q) =
∑
s∈S1

P1
sσ

(l1)+
∞∑
n=2

∑
s∈Sn

Pns
∫
q1

∫
q2

· · ·
∫
qn−1

(
τ (l1)(q, q1)G(z, q1)τ (l2)(q1, q2)G(z, q2) · · ·

· · · G(z, qn−1)σ(ln)
)
. (34)
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=W(b)
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+ + + + . . .

=
G(c) Γ

+ EΓ G

=〈χ〉(d) WG

Figure 13: The diagrammatic representation of the Dyson equation for the CPA susceptibility:
expansions of the CPA self-energy (a) and the magnetic weight (b) given by Eqs. (33) and
(34) respectively, (c) the Dyson equation (32), and (d) the final expression for the averaged
susceptibility corresponding to Eq. (35). Restricting the series in (a) and (b) to the first terms
only yields the virtual crystal approximation.

The final expression for the averaged susceptibility involves the matrix product of the effective
propagator and the weight correction

〈χ(z, q)〉 = G(z, q)W(z, q) . (35)

The expansion presented above is depicted in terms of diagrams in Fig. 13. The calculation
process involves self-consistency, as the effective medium propagator G is found using the self-
energy E , which in turn involves the propagator.

The series given by Eqs. (33) and (34) do not converge term-by-term. Furthermore, it is com-
putationally unfeasible to work directly in the reciprocal space. Below, we transform the corre-
sponding quantities to the real space representation, where we sum over the series. For simplicity
the frequency arguments are suppressed

E(q) = E(q, q) ≡
∑
RR′

e−q·(R−R
′)E
(
R,R′

)
, (36)

W(q) ≡
∑
R

e−q·RW(R) , (37)

E
(
R,R′

)
=
∑
iα

ciα
∑
R1

Ê iα(R,R1)τ iα
(
R1,R

′) , (38)

W(R) =
∑
iα

ciαÊ iα(R,0)σαi . (39)

The partial self-energies Ē are determined as follows

Ē i
(
R,R′

)
=
∑
α∈Ii

∑
R1

ciαÊ iα(R,R1)Miα
(
R1,R

′) , (40)

where Ii denotes the set of impurity types present on site i. The terms off-diagonal in the sites’
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space are zero in the case of uncorrelated disorder. In what follows, we will work with matrices
in a space of extended composite indices including both the composite index (i) as well as the
lattice vector R, i.e. (αiR). It is sufficient to consider only finite clusters of lattice vectors
corresponding to the range of the exchange parameters J(R). Using the concept of the effective
interaction of Yonezawa, the summation of the cumulant series yields

ciαÊ iα = P1
iα1+ P2

iβ,iαMiβ + P3
iγ,iβ,iαMiγMiβ + . . . , (41)

Ê iα =
(
1−

(
Miα − Ē i

))−1
, (42)

where theM matrices are defined in the reciprocal space by

M(l)
(i)(j)(q, q

′) = τ
(l)
(i)(m)(q, q

′)G(m)(j)(q
′) , (43)

and in the real space consist of two parts

M(l)
(i)(j)

(
R,R′

)
= gS−1

α Jαγil (R)G(i)(j)(R−R′)

−
∑
R1

[
gS−1

µ Jγµlm (R1)G(m)(j)(R1 −R′)δ(i)(l)δR0

]
. (44)

The equations above can be directly implemented on a computer in order to find 〈χ〉 and we
conclude this section with several remarks concerning our numerical scheme. The convergence
of the CPA self-consistency loop requires a suitable mixing of quantities from previous iterations
and we resorted to the Broyden method in order to achieve it. Furthermore, the self-consistent
loop does not converge for complex energies with small imaginary parts. To remedy the latter
difficulty, we resorted to the nearly real axis method [47]. The self-consistent quantities were
converged in a suitable distance away from the real axis and subsequently the self-energy Ê(z)

was analytically continued towards the real energies in order to recover the real time dynamics
of the system.

5 Evaluation of exchange parameters in disordered systems

The exchange parameters entering the Heisenberg model (1) can be estimated from first-principles
using the magnetic force theorem as it is implemented within the multiple-scattering theory. For
an ordered system the J ’s can be determined as shown in [34]

Jij =
1

4π

εF∫
dε Im TrL

[
∆i(ε)G

ij
↓ (ε)∆j(ε)G

ji
↑ (ε)

]
, (45)

where TrL denotes the trace over the angular momentum, and it is integrated up to the Fermi
energy εF. Gijσ (ε) is the back scattering operator of a spin σ between the sites i and j, and
∆i(ε) = ti↑(ε) − ti↓(ε) is defined via the single scattering t matrices tiσ(ε) and closely related to
the exchange splitting corresponding to the magnetic atom i. The Green function entering the
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Eq. (45) can be calculated self-consistently using any implementation of the multiple scattering
Green function method within the density functional theory [66, 67, 68, 69].

The magnetic force theorem (45) can be generalized for disordered systems using the coherent-
potential approximation [70, 71]

Jαβij =
1

4π

εF∫
dε Im TrL

[
∆α
i (ε)

(
Dα
i (ε)

)†
Gij↓ (ε)Dβ

j (ε)∆β
j (ε)

(
Dβ
j (ε)

)†
Gji↑(ε)Dα

i (ε)
]
, (46)

where Greek letters denote atomic types andDα
i (ε) is the so-called impurity matrix corresponding

to an impurity atom α on the site j [68]. The Green function in (46) is calculated self-consistently
in a coherent medium tc(ε) and Fourier transformed into the real space.

6 The performance of the CPA scheme on the example of FeCo
alloy

It is reasonable to inquire how an essentially mean-field-like CPA (Sec. 4) performs compared
to the supercell simulations (Sec. 3), i.e., a numerically exact scheme. The question has been
already answered for dilute magnets, i.e., uncorrelated mixtures of magnetic and non-magnetic
atoms, in [57]. In short, the CPA provides an excellent account of the spin wave spectra in the
high-dimensional structures above the percolation threshold.

Here, we ask the same question for mixtures of only magnetic atoms and answer it based on
the example of bulk FexCo1−x alloys. We assume the uncorrelated disorder, i.e., an Fe atom
is replaced with a probability 1 − x on a parent bcc lattice by a Co atom, irrespective of the
occupation of other sites around. The electronic ground state of the system, including the
magnetic moments and the exchange constants J ’s, is determined from the density functional
theory. The details concerning the calulations of the exchange constants are given in Sec. 5.

The spin-wave spectrum of pure bcc-Fe has been thoroughly studied, cf. [47] and references
therein. The dispersing spin waves form a single band. The energy of the least energetic magnon
is zero, it is a Goldstone mode.

An introduction of Co to the parent lattice changes the magnetic system profoundly. The ex-
change interaction generally increase, become shorter-ranged, and loose their tendency to anti-
ferromagnetic coupling between further shells. In general, this results in a broader magnonic
bandwidth and less non-monotonic dispersion relation compared to the pure bcc-Fe. Another
important feature is the appearance of a new class of weakly dispersive magnonic states. For
weakly Co-doped alloys (x = 0.9), these states appear above the continuum of acoustic magnons
at around 700meV (see Fig. 14). They are clearly discernible for large wave-vectors. The analysis
of the corresponding magnonic modes in the real space clearly shows that these new states are
strongly localized on the Co impurities while the modes in the acoustic continuum are generally
delocalized and supported on the host Fe atoms. It should be remarked that such analysis is
straightforward in the case of supercell calculations.
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1Figure 14: Magnonic spectrum of the Fe0.9Co0.1 alloy for different wave vectors along (100)
direction. The spectra obtained both using the CPA (red lines) and supercell (SC) schemes
(black spheres) are presented.

The energy of these weakly dispersive magnon states gradually decreases with the increasing
Co concentration. Around x = 0.8 the states appear within the dispersing acoustic band, close
to its top (not shown). Around x = 0.5 they are located in the middle of the band at around
450meV (see Fig. 15). We can clearly observe how for q = (1/2, 0, 0)2π/a the more intense
dispersing magnon state hybridizes with the weakly dispersing mode (see Fig. 15(b)). Because
of this hybridization the magnonic state associated with the weakly dispersing mode is far less
localized for large Co concentrations than its counterpart above the acoustic band for small Co
concentrations.

Another interesting observation is the non-monotonous dependence of the acoustic spin wave
peak’s width on the state’s energy. Low energy magnons with small momenta and the states
close to the top of the dispersing band are associated with relatively narrow spectral peaks, i.e.
they are long living. On the contrary, the magnons with the intermediate momenta, appearing
in the middle of the band, correspond to wider peaks signifying stronger damping.

It is gratifying to observe that the CPA performs surprisingly well despite its mean field character.
It is able to capture not only the emergence of the dispersing acoustic spin wave modes but also
the weakly dispersive magnonic features both above (for low impurity concentration) and within
(for high impurity concentration) the acoustic band. Furthermore, the CPA predicts correctly
the energies and widths of all these magnon modes across the whole concentration range of Co
impurities.
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1Figure 15: Magnonic spectrum of the Fe0.5Co0.5 alloy for different wave vectors along (100)
direction. The spectra obtained both using the CPA (red lines) and supercell (SC) schemes
(black spheres) are presented.

7 Summary

In this Highlight, we presented our approach to determine the magnon properties in complex
disordered magnetic systems. Our approach is based on the adiabatic mapping of a spin system
on the Heisenberg Hamiltonian whereas the exchange integrals are computed from the ab initio
density functional ground state. The disorder is treated with two complementary strategies. In
the case of uncorrelated disorder one can resort to the CPA which we systematically derived
here for the Heisenberg model. It is shown that the approximation performs surprisingly well
despite its mean field character. The other strategy is the direct numerical simulation of large
supercells using configurational average over possible samples. This approach is computationally
much more demanding (contrary to the semi-analytic CPA calculations) but allows to study
systems featuring correlated disorder effects, including clustering and formation of islands in two-
dimensional systems, two effects very common in real magnets. It is shown that the inclusion of
these effects is indispensable to the reliable theoretical interpretation of experimental results.
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