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Kawamuras, H. -Y. Kof , A. Kokaljt, E. Küçükbenlij , M. Lazzerid, M. Marsiliu, N. Marzarii, F.

Mauriv, N. L. Nguyenj , H. -V. Nguyenw, A. Otero-de-la-Rozax, L. Paulattod, S. Poncér, D.

Roccay,z, R. Sabatini1, B. Santraf , M. Schlipfr, A. P. Seitsonen2,3, A. Smogunov4, I. Timrovi,

T. Thonhauser5, P. Umariu,6, N. Vast7, X. Wu8, and S. Baronij

aDept. of Mathematical, Physical, and Computer Sciences, University of Udine, via delle Scienze 206,

I-33100 Udine, Italy

bInstitute of Computational Sciences, Università della Svizzera Italiana, Lugano, Svizzera
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Abstract

Quantum ESPRESSO is an integrated suite of open-source computer codes for quan-

tum simulations of materials using state-of-the art electronic-structure techniques, based on

density-functional theory, density-functional perturbation theory, and many-body pertur-

bation theory, within the plane-wave pseudo-potential and projector-augmented-wave ap-

proaches. Quantum ESPRESSOowes its popularity to the wide variety of properties and

processes it allows to simulate, to its performance on an increasingly broad array of hard-

ware architectures, and to a community of researchers that rely on its capabilities as a core

open-source development platform to implement theirs ideas. In this paper we describe re-

cent extensions and improvements, covering new methodologies and property calculators,

improved parallelization, code modularization, and extended interoperability both within

the distribution and with external software.

1 Introduction

Numerical simulations based on density-functional theory (DFT) [1, 2] have become a power-

ful and widely used tool for the study of materials properties. Many of such simulations are

based upon the “plane-wave pseudopotential method”, often using ultrasoft pseudopotentials

[3] or the projector augmented wave method (PAW) [4] (in the following, all of these modern

developments will be referred to under the generic name of “pseudopotentials”). An important

role in the diffusion of DFT-based techniques has been played by the availability of robust and

efficient software implementations [5], as is the case for Quantum ESPRESSO, which is an

open-source software distribution—i.e., an integrated suite of codes—for electronic-structure

calculations based on DFT or many-body perturbation theory, and using plane-wave basis sets



and pseudopotentials [6].

The core philosophy of Quantum ESPRESSO can be summarized in four keywords: open-

ness, modularity, efficiency, and innovation. The distribution is based on two core packages,

PWscf and CP, performing self-consistent and molecular-dynamics calculations respectively, and

on additional packages for more advanced calculations. Among these we quote in particular:

PHonon, for linear-response calculations of vibrational properties; PostProc, for data analysis

and postprocessing; atomic, for pseudopotential generation; XSpectra, for the calculation of

X-ray absorption spectra; GIPAW, for nuclear magnetic resonance and electron paramagnetic

resonance calculations.

In this paper we describe and document novel or improved capabilities of Quantum ESPRESSO

up to and including version 6.2. We do not cover features already present in v.4.1 and described

in Ref. [6], to which we refer for further details. The list of enhancements includes theoretical

and methodological extensions but also performance enhancements for current parallel machines

and modularization and extended interoperability with other software.

Among the theoretical and methodological extensions, we mention in particular:

• Fast implementations of exact (Fock) exchange for hybrid functionals [7–10]; implemen-

tation of non-local van der Waals functionals [11] and of explicit corrections for van der

Waals interactions [12–15]; improvement and extensions of Hubbard-corrected functionals

[16, 17].

• Excited-state calculations within time-dependent density-functional and many-body per-

turbation theories.

• Relativistic extension of the PAW formalism, including spin-orbit interactions in density-

functional theory[18, 19].

• Continuum embedding environments (dielectric solvation models, electronic enthalpy, elec-

tronic surface tension, periodic boundary corrections) via the Environ module [20, 21] and

its time-dependent generalization [22].

Several new packages, implementing the calculation of new properties, have been added to

Quantum ESPRESSO. We quote in particular:

• turboTDDFT [23–26] and turboEELS [27, 28], for excited-state calculations within time-

dependent DFT (TDDFT), without computing virtual orbitals, also interfaced with the

Environ module (see above).

• QE-GIPAW, replacing the old GIPAW package, for nuclear magnetic resonance and electron

paramagnetic resonance calculations.

• EPW, for electron-phonon calculations using Wannier-function interpolation [29].

• GWL and SternheimerGW for quasi-particle and excited-state calculations within many-

body perturbation theory, without computing any virtual orbitals, using the Lanczos bi-

orthogonalization [30, 31] and multi-shift conjugate-gradient methods [32], respectively.



• thermo pw, for computing thermodynamical properties in the quasi-harmonic approxima-

tion, also featuring an advanced master-slave distributed computing scheme, applicable to

generic high-throughput calculations [33].

• d3q and thermal2, for the calculation of anharmonic 3-body interatomic force constants,

phonon-phonon interaction and thermal transport [34, 35].

Improved parallelization is crucial to enhance performance and to fully exploit the power of

modern parallel architectures. A careful removal of memory bottlenecks and of scalar sections

of code is a pre-requisite for better and extending scaling. Significant improvements have been

achieved, in particular for hybrid functionals [36, 37].

Complementary to this, a complete pseudopotential library, pslibrary, including fully-relativistic

pseudopotentials, has been generated [38, 39]. A curation effort [40] on all the pseudopotential

libraries available for Quantum ESPRESSO has led to the identification of optimal pseu-

dopotentials for efficiency or for accuracy in the calculations, the latter delivering an agreement

comparable to any of the best all-electron codes [5]. Finally, a significant effort has been dedi-

cated to modularization and to enhanced interoperability with other software. The structure of

the distribution has been revised, the code base has been re-organized, the format of data files

re-designed in line with modern standards. As notable examples of interoperability with other

software, we mention in particular the interfaces with the LAMMPS molecular dynamics (MD)

code [41] used as molecular-mechanics “engine” in the Quantum ESPRESSO implementation

of the QM-MM methodology [42], and with the i-PI MD driver [43], also featuring path-integral

MD.

All advances and extensions that have not been documented elsewhere are described in the next

sections. For more details on new packages we refer to the respective references.

The paper is organized as follows. Sec. II contains a description of new theoretical and method-

ological developments and of new packages distributed together with Quantum ESPRESSO.

Sec. III contains a description of improvements of parallelization, updated information on the

philosophy and general organization of Quantum ESPRESSO, notably in the field of modular-

ization and interoperability. Sec. IV contains an outlook of future directions and our conclusions.

2 Theoretical, algorithmic, and methodological extensions

In the following, CGS units are used, unless noted otherwise.

2.1 Advanced functionals

2.1.1 Advanced implementation of exact (Fock) exchange and hybrid functionals

Hybrid functionals are already the de facto standard in quantum chemistry and are quickly

gaining popularity in the condensed-matter physics and computational materials science com-

munities. Hybrid functionals reduce the self-interaction error that plagues lower-rung exchange-

correlation functionals, thus achieving more accurate and reliable predictive capabilities. This is



of particular importance in the calculation of orbital energies, which are an essential ingredient

in the treatment of band alignment and charge transfer in heterogeneous systems, as well as the

input for higher-level electronic-structure calculations based on many-body perturbation theory.

However, the widespread use of hybrid functionals is hampered by the often prohibitive compu-

tational requirements of the exact-exchange (Fock) contribution, especially when working with

a plane-wave basis set. The basic ingredient here is the action (V̂xφi)(r) of the Fock operator V̂x

onto a (single-particle) electronic state φi, requiring a sum over all occupied Kohn-Sham (KS)

states {ψj}. For spin-unpolarized systems, one has:

(V̂xφi)(r) = −e2
∑
j

ψj(r)

∫
dr′

ψ∗j (r
′)φi(r

′)

|r− r′|
, (1)

where −e is the charge of the electron. In the original algorithm [6] implemented in PWscf,

self-consistency is achieved via a double loop: in the inner one the ψ’s entering the definition of

the Fock operator in Eq. (1) are kept fixed, while the outer one cycles until the Fock operator

converges to within a given threshold. In the inner loop, the integrals appearing in Eq. (1):

vij(r) =

∫
dr′

ρij(r
′)

|r− r′|
, ρij(r) = ψ∗i (r)φj(r), (2)

are computed by solving the Poisson equation in reciprocal space using fast Fourier transforms

(FFT). This algorithm is straightforward but slow, requiring O
(
(NbNk)

2
)

FFTs, where Nb is

the number of electronic states (“bands” in solid-state parlance) and Nk the number of k points

in the Brillouin zone (BZ). While feasible in relatively small cells, this unfavorable scaling with

the system size makes calculations with hybrid functionals challenging if the unit cell contains

more than a few dozen atoms.

To enable exact-exchange calculations in the condensed phase, various ideas have been conceived

and implemented in recent Quantum ESPRESSO versions. Code improvements aimed at

either optimizing or better parallelizing the standard algorithm are described in Sec. 3.1. In this

section we describe two important algorithmic developments in Quantum ESPRESSO, both

entailing a significant reduction in the computational effort: the adaptively compressed exchange

(ACE) concept [7] and a linear-scaling (O(Nb)) framework for performing hybrid-functional ab

initio molecular dynamics using maximally localized Wannier functions (MLWF) [8–10].

Adaptively compressed exchange The simple formal derivation of ACE allows for a robust

implementation, which applies straightforwardly both to isolated or aperiodic systems (Γ−only

sampling of the BZ, that is, k = 0) and to periodic ones (requiring sums over a grid of k points

in the BZ); to norm conserving and ultrasoft pseudopotentials or PAW; to spin-unpolarized or

polarized cases or to non-collinear magnetization. Furthermore, ACE is compatible with, and

takes advantage of, all available parallelization levels implemented in Quantum ESPRESSO:

over plane waves, over k points, and over bands.

With ACE, the action of the exchange operator is rewritten as

|V̂xφi〉 '
∑
jm

|ξj〉(M−1)jm〈ξm|φi〉, (3)



where |ξi〉 = V̂x|ψi〉 and Mjm = 〈ψj |ξm〉. At self-consistency, ACE becomes exact for φi’s in

the occupied manifold of KS states. It is straightforward to implement ACE in the double-loop

structure of PWscf. The new algorithm is significantly faster while not introducing any loss of

accuracy at convergence. Benchmark tests on a single processor show a 3× to 4× speedup for

typical calculations in molecules, up to 6× in extended systems [44].

An additional speedup may be achieved by using a reduced FFT cutoff in the solution of Poisson

equations. In Eq. (1), the exact FFT algorithm requires a FFT grid containing G-vectors up to

a modulus Gmax = 2Gc, where Gc is the largest modulus of G-vectors in the plane-wave basis

used to expand ψi and φj , or, in terms of kinetic energy cutoff, up to a cutoff Ex = 4Ec, where

Ec is the plane-wave cutoff. The presence of a 1/G2 factor in the reciprocal space expression

suggests, and experience confirms, that this condition can be relaxed to Ex ∼ 2Ec with little

loss of precision, down to Ex = Ec at the price of increasing somewhat this loss [45]. The

kinetic-energy cutoff for Fock-exchange computations can be tuned by specifying the keyword

ecutfock in input.

Hybrid functionals have also been extended to the case of ultrasoft pseudopotentials and to

PAW, following the method of Ref. [46]. A large number of integrals involving augmentation

charges qlm are needed in this case, thus offsetting the advantage of a smaller plane-wave basis

set. Better performances are obtained by exploiting the localization of the qlm and computing

the related terms in real space, at the price of small aliasing errors.

These improvements allow to significantly speed up a calculation, or to execute it on a larger

number of processors, thus extending the reach of calculations with hybrid functionals. The

bottleneck represented by the sum over bands and by the FFT in Eq. (1) is however still present:

ACE just reduces the number of such expensive calculations, but doesn’t eliminate them. In

order to achieve a real breakthrough, one has to get rid of delocalized bands and FFT’s, moving

to a representation of the electronic structure in terms of localized orbitals. Work along this

line using the selected column density matrix localization scheme [47, 48] is ongoing. In the

next section we describe a different approach, implemented in the CP code, based on maximally

localized Wannier functions (MLWF).

Ab-initio molecular dynamics using maximally localized Wannier functions The

CP code can now perform highly efficient hybrid-functional ab initio MD using MLWFs [49] {ϕi}
to represent the occupied space, instead of the canonical KS orbitals {ψi}, which are typically

delocalized over the entire simulation cell. The MLWF localization procedure can be written as

a unitary transformation, ϕi(r) =
∑

j Uijψj(r), where Uij is computed at each MD time step

by minimizing the total spread of the orbitals via a second-order damped dynamics scheme,

starting with the converged Uij from the previous time step as initial guesses [50].

The natural sparsity of the exchange interaction provided by a localized representation of the

occupied orbitals (at least in systems with a finite band gap) is efficiently exploited during

the evaluation of exact-exchange based applications (e.g., hybrid DFT functionals). This is

accomplished by computing each of the required pair-exchange potentials vij(r) (corresponding

to a given localized pair-density ρij(r)) through the numerical solution of the Poisson equation:

∇2vij(r) = −4πρij(r), ρij(r) = ϕ∗i (r)ϕj(r) (4)



using finite differences on the real-space grid. Discretizing the Laplacian operator (∇2) using

a 19-point central-difference stencil (with an associated O(h6) accuracy in the grid spacing h),

the resulting sparse linear system of equations is solved using the conjugate-gradient technique

subject to the boundary conditions imposed by a multipolar expansion of vij(r):

vij(r) = 4π
∑
lm

Qlm
2l + 1

Ylm(θ, φ)

rl+1
, Qlm =

∫
drY ∗lm(θ, φ)rlρij(r) (5)

in which the Qlm are the multipoles describing ρij(r) [8–10].

Since vij(r) only needs to be evaluated for overlapping pairs of MLWFs, the number of Poisson

equations that need to be solved is substantially decreased from O(N2
b ) to O(Nb). In addition,

vij(r) only needs to be solved on a subset of the real-space grid (that is in general of fixed

size) that encompasses the overlap between a given pair of MLWFs. This further reduces the

overall computational effort required to evaluate exact-exchange related quantities and results

in a linear-scaling (O(Nb)) algorithm. As such, this framework for performing exact-exchange

calculations is most efficient for non-metallic systems (i.e., systems with a finite band gap) in

which the occupied KS orbitals can be efficiently localized.

The MLWF representation not only yields the exact-exchange energy Exx,

Exx = −e2
∑
ij

∫
dr ρij(r)vij(r), (6)

at a significantly reduced computational cost, but it also provides an amenable way of computing

the exact-exchange contributions to the (MLWF) wavefunction forces, D
i
xx(r) = e2

∑
j vij(r)ϕj(r),

which serve as the central quantities in Car-Parrinello MD simulations [51]. Moreover, the exact-

exchange contributions to the stress tensor are readily available, thereby providing a general code

base which enables hybrid DFT based simulations in the NVE, NVT, and NPT ensembles for

simulation cells of any shape [10]. We note in passing that applications of the current imple-

mentation of this MLWF-based exact-exchange algorithm are limited to Γ–point calculations

employing norm-conserving pseudo-potentials.

The MLWF-based exact-exchange algorithm in CP employs a hybrid MPI/OpenMP paralleliza-

tion strategy that has been extensively optimized for use on large-scale massively-parallel (super-

) computer architectures. The required set of Poisson equations—each one treated as an in-

dependent task—are distributed across a large number of MPI ranks/processes using a task

distribution scheme designed to minimize the communication and to balance computational

workload. Performance profiling demonstrates excellent scaling up to 30,720 cores (for the α-

glycine molecular crystal, see Fig. 1) and up to 65,536 cores (for (H2O)256, see Ref. [9]) on

Mira (BG/Q) with extremely promising efficiency. In fact, this algorithm has already been

successfully applied to the study of long-time MD simulations of large-scale condensed-phase

systems such as (H2O)128 [9, 52]. For more details on the performance and implementation of

this exact-exchange algorithm, we refer the reader to Ref. [10].

2.1.2 Dispersion interactions

Dispersion, or van der Waals, interactions arise from dynamical correlations among charge fluctu-

ations occurring in widely separated regions of space. The resulting attraction is a non-local cor-



Figure 1: Strong (left) and weak (right) scaling plots on Mira (BG/Q) for hybrid-DFT sim-

ulations of the α-glycine molecular crystal polymorph using the linear-scaling exact-exchange

algorithm in CP. In these plots, unit cells containing 16-64 glycine molecules (160-640 atoms,

240-960 bands) were considered as a function of z, the number of MPI ranks per band (z =

0.5-2). On Mira, 30,720 cores (1920 MPI ranks × 16 OpenMP threads/rank × 1 core/OpenMP

thread) were utilized for the largest system (gly064, z = 2), retaining over 88% (strong scaling)

and 80% (weak scaling) of the ideal efficiencies (dashed lines). Deviations from ideal scaling are

primarily due to the FFT (which scales non-linearly) required to provide the MLWFs in real

space.

relation effect that cannot be reliably captured by any local (such as local density approximation,

LDA) or semi-local (generalized gradient approximation, GGA) functional of the electron den-

sity [53]. Such interactions can be either accounted for by a truly non-local exchange-correlation

(XC) functional, or modeled by effective interactions amongst atoms, whose parameters are ei-

ther computed from first principles or estimated semi-empirically. In Quantum ESPRESSO

both approaches are implemented. Non-local XC functionals are activated by selecting them

in the input dft variable, while explicit interactions are turned on with the vdw corr option.

From the latter group, DFT-D2 [12], Tkatchenko-Scheffler [13], and exchange-hole dipole mo-

ment models [14, 15] are currently implemented (DFT-D3 [54] and the many-body dispersion

(MBD) [55–57] approaches are already available in a development version).

Non-local van der Waals density functionals A fully non-local correlation functional

able to account for van der Waals interactions for general geometries was first developed in 2004

and named vdW-DF [58]. Its development is firmly rooted in many-body theory, where the

so-called adiabatic connection fluctuation-dissipation theorem (ACFD) [59] provides a formally

exact expression for the XC energy through a coupling constant integration over the response

function—see Sec. 2.1.4. A detailed review of the vdW-DF formalism is provided in Ref. [11].

The overall XC energy given by the ACFD theorem—as a functional of the electron density

n—is then split in vdW-DF into a GGA-type XC part E0
xc[n] and a truly non-local correlation

part Enl
c [n], i.e.

Exc[n] = E0
xc[n] + Enl

c [n] , (7)



where the non-local part is responsible for the van der Waals forces. Through a second-order

expansion in the plasmon-response expression used to approximate the response function, the

non-local part turns into a computationally tractable form involving a universal kernel Φ(r, r′),

Enl
c [n] =

1

2

∫
dr dr′ n(r) Φ(r, r′) n(r′) . (8)

The kernel Φ(r, r′) depends on r and r′ only through q0(r)|r−r′| and q0(r′)|r−r′|, where q0(r) is

a function of n(r) and ∇n(r). As such, the kernel can be pre-calculated, tabulated, and stored in

some external file. To make the scheme self-consistent, the XC potential V nl
c (r) = δEnl

c [n]/δn(r)

also needs to be computed [60]. The evaluation of Enl
c [n] in Eq. (8) is computationally expensive.

In addition, the evaluation of the corresponding potential V nl
c (r) requires one spatial integral

for each point r. A significant speedup can be achieved by writing the kernel in terms of splines

[61]

Φ(r, r′) = Φ
(
q0(r), q0(r′), |r− r′|)

≈
∑
αβ

Φ(qα, qβ, |r− r′|) pα
(
q0(r)

)
pβ
(
q0(r′)

)
, (9)

where qα are fixed values and pα are cubic splines. Equation (8) then becomes a convolution

that can be simplified to

Enl
c [n] =

1

2

∑
αβ

∫
dr dr′ θα(r) Φαβ(|r− r′|) θβ(r′)

=
1

2

∑
αβ

∫
dk θ∗α(k) Φαβ(k) θβ(k) . (10)

Here θα(r) = n(r)pα
(
q0(r)

)
and θα(k) is its Fourier transform. Accordingly, Φαβ(k) is the

Fourier transform of the original kernel Φαβ(r) = Φ(qα, qβ, |r− r′|). Thus, two spatial integrals

are replaced by one integral over Fourier transformed quantities, resulting in a considerable

speedup. This approach also provides a convenient evaluation for V nl
c (r).

The vdW-DF functional was implemented in Quantum ESPRESSO version 4.3, following

Eq. (10). As a result, in large systems, compute times in vdW-DF calculations are only in-

significantly longer than for standard GGA functionals. The implementation uses a tabulation

of the Fourier transformed kernel Φαβ(k) from Eq. (10) that is computed by an auxiliary code,

generate vdW kernel table.x, and stored in the external file vdW kernel table. The file then

has to be placed either in the directory where the calculation is run or in the directory where

the corresponding pseudopotentials reside. The formalism for vdW-DF stress was derived and

implemented in Ref. [62]. The proper spin extension of vdW-DF, termed svdW-DF [63], was

implemented in Quantum ESPRESSO version 5.2.1.

Although the ACFD theorem provides guidelines for the total XC functional in Eq. (7), in

practice E0
xc[n] is approximated by simple GGA-type functional forms. This has been used

to improve vdW-DF—and correct the often too large binding separations found in its original

form—by optimizing the exchange contribution to E0
xc[n]. The naming convention for the result-

ing variants is that the extension should describe the exchange functional used. In this context,

the functionals vdW-DF-C09 [64], vdW-DF-obk8 [65], vdW-DF-ob86 [66], and vdW-DF-cx [67]

have been developed and implemented in Quantum ESPRESSO. While all of these variants



use the same kernel to evaluate Enl
c [n], advances have also been made in slightly adjusting the

kernel form, which is referred to and implemented as vdW-DF2 [68]. A corresponding variant,

i.e., vdW-DF2-b86r [69], is also implemented. Note that vdW-DF2 uses the same kernel file as

vdW-DF.

The functional VV10 [70] is related to vdW-DF, but adheres to fewer exact constraints and

follows a very different design philosophy. It is implemented in Quantum ESPRESSO in a

form called rVV10 [71] and uses a different kernel and kernel file that can be generated by

running the auxiliary code generate rVV10 kernel table.x.

Interatomic pairwise dispersion corrections An alternative approach to accounting for

dispersion forces is to add to the XC energy E0
xc a dispersion energy, Edisp, written as a damped

asymptotic pairwise expression:

Exc = E0
xc + Edisp, Edisp = −1

2

∑
n=6,8,10

∑
I 6=J

C
(n)
IJ fn(RIJ)

RnIJ
(11)

where I and J run over atoms, RIJ = |RI −RJ | is the interatomic distance between atoms I

and J , and fn(R) is a suitable damping function. The interatomic dispersion coefficients C
(n)
IJ

can be derived from fits, as in DFT-D2 [12], or calculated non-empirically, as in the Tkatchenko-

Scheffler (TS-vdW) [13] and exchange-hole dipole moment (XDM) models [14, 15].

In XDM, the C
(n)
IJ coefficients are calculated assuming that dispersion interactions arise from

the electrostatic attraction between the electron-plus-exchange-hole distributions on different

atoms [14, 15]. In this way, XDM retains the simplicity of a pairwise dispersion correction,

like in DFT-D2, but derives the C
(n)
IJ coefficients from the electronic properties of the system

under study. The damping functions fn in Eq. (11) suppress the dispersion interaction at short

distances, and serve the purpose of making the link between the short-range correlation (provided

by the XC functional) and the long-range dispersion energy, as well as mitigating erroneous

behavior from the exchange functional in the representation of intermolecular repulsion [15].

The damping functions contain two adjustable parameters, available online [72] for a number

of popular density functionals. Although any functional for which damping parameters are

available can be used, the functionals showing best performance when combined with XDM

appear to be B86bPBE [73, 74] and PW86PBE [74, 75], thanks to their accurate modeling of

Pauli repulsion [15]. Both functionals have been implemented in Quantum ESPRESSO since

version 5.0.

In the canonical XDM implementation, recently included in Quantum ESPRESSO and de-

scribed in detail elsewhere [76], the dispersion coefficients are calculated from the electron den-

sity, its derivatives, and the kinetic energy density, and assigned to the different atoms in the

system using a Hirshfeld atomic partition scheme [77]. This means that XDM is effectively a

meta-GGA functional of the dispersion energy whose evaluation cost is small relative to the rest

of the self-consistent calculation. Despite the conceptual and computational simplicity of XDM,

and because the dispersion coefficients depend upon the atomic environment in a physically

meaningful way, the XDM dispersion correction offers good performance in the calculation of

diverse properties, such as lattice energies, crystal geometries, and surface adsorption energies.



XDM is especially good for modeling organic crystals and organic/inorganic interfaces. For a

recent review, see Ref. 15.

The XDM dispersion calculation is turned on by specifying vdw corr=’xdm’ and optionally

selecting appropriate damping function parameters (with the xdm a1 and xdm a2 keywords).

Because the reconstructed all-electron densities are required during self-consistency, XDM can

be used only in combination with a PAW approach. The XDM contribution to forces and stress

is not entirely consistent with the energies because the current implementation neglects the

change in the dispersion coefficients. Work is ongoing to remove this limitation, as well as to

make XDM available for Car-Parrinello MD, in future Quantum ESPRESSO releases.

In the TS-vdW approach (vdw corr=’ts-vdw’), all vdW parameters (which include the atomic

dipole polarizabilities, αI , vdW radii, R0
I , and interatomic C

(6)
IJ dispersion coefficients) are func-

tionals of the electron density and computed using the Hirshfeld partitioning scheme [77] to

account for the unique chemical environment surrounding each atom. This approach is firmly

based on a fluctuating quantum harmonic oscillator (QHO) model and results in highly accurate

C
(6)
IJ coefficients with an associated error of approximately 5.5% [13]. The TS-vdW approach re-

quires a single empirical range-separation parameter based on the underlying XC functional and

is recommended in conjunction with non-empirical DFT functionals such as PBE and PBE0.

For a recent review of the TS-vdW approach and several other vdW/dispersion corrections,

please see Ref. 78.

The implementation of the density-dependent TS-vdW correction in Quantum ESPRESSO is

fully self-consistent [79] and currently available for use with norm-conserving pseudo-potentials.

An efficient linear-scaling implementation of the TS-vdW contribution to the ionic forces and

stress tensor allows for Born-Oppenheimer and Car-Parrinello MD simulations at the DFT+TS-

vdW level of theory; this approach has already been successfully employed in long-time MD

simulations of large-scale condensed-phase systems such as (H2O)128 [9, 52]. We note in pass-

ing that the Quantum ESPRESSO implementation of the TS-vdW correction also includes

analytical derivatives of the Hirshfeld weights, thereby completely reflecting the change in all

TS-vdW parameters during geometry/cell optimizations and MD simulations.

2.1.3 Hubbard-corrected functionals: DFT+U

Most approximate XC functionals used in modern DFT codes fail quite spectacularly on systems

with atoms whose ground-state electronic structure features partially occupied, strongly localized

orbitals (typically of the d or f kind), that suffer from strong self-interaction effects and a poor

description of electronic correlations. In these circumstances, DFT+U is often, although not

always, an efficient remedy. This method is based on the addition to the DFT energy functional

EDFT of a correction EU , shaped on a Hubbard model Hamiltonian: EDFT+U = EDFT + EU .

The original implementation in Quantum ESPRESSO, extensively described in Refs. [80, 81],

is based on the simplest rotationally invariant formulation of EU , due to Dudarev and coworkers

[82]:

EU =
1

2

∑
I

U I
∑
m,σ

{
nIσmm −

∑
m′

nIσmm′n
Iσ
m′m

}
, (12)



where

nIσmm′ =
∑
k,ν

fσkν〈ψσkν |φIm〉〈φIm′ |ψσkν〉, (13)

|ψσkν〉 is the valence electronic wave function for state kν of spin σ, fσkν the corresponding

occupation number, |φIm〉 is the chosen Hubbard manifold of atomic orbitals, centered on atomic

site I, that may be orthogonalized or not. The presence of the Hubbard functional results in

extra terms in energy derivatives such as forces, stresses, elastic constants, or force-constant

(dynamical) matrices. For instance, the additional term in forces is

FU
Iα = −1

2

∑
I,m,m′,σ

U I
(
δmm′ − 2nIσmm′

) ∂nIσmm′
∂RIα

(14)

where RIα is the α component of position for atom I in the unit cell,

∂nIσmm′

∂RIα
=
∑
k,ν

fσkν

(〈
ψσkν

∣∣∣∣∂φIm∂RIα

〉
〈φIm′ |ψσkν〉+ 〈ψσkν |φIm〉

〈
∂φIm′

∂RIα

∣∣∣∣ψσkν〉) . (15)

Recent extensions of the formulation As a correction to the total energy, the Hubbard

functional naturally contributes an extra term to the total potential that enters the KS equations.

An alternative formulation [16] of the DFT+U method, recently introduced and implemented

in Quantum ESPRESSO for transport calculations, eliminates the need of extra terms in the

potential by incorporating the Hubbard correction directly into the (PAW) pseudopotentials

through a renormalization of the coefficients of their non-local terms.

A simple extension to the Dudarev functional, DFT+U+J0, was proposed in Ref. 17 and used

to capture the insulating ground state of CuO. In CuO the localization of holes on the d states

of Cu and the consequent on-set of a magnetic ground state can only be stabilized against a

competing tendency to hybridize with oxygen p states when on-site exchange interactions are

precisely accounted for. A simplified functional, depending upon the on-site (screened) Coulomb

interaction U and the Hund’s coupling J , can be obtained from the full second-quantization

formulation of the electronic interaction potential by keeping only on-site terms that describe

the interaction between up to two orbitals and by approximating on-site effective interactions

with the (orbital-independent) atomic averages of Coulomb and exchange terms:

EU+J =
∑
I, σ

U I − JI

2
Tr
[
nI σ (1− nI σ)

]
+
∑
I, σ

JI

2
Tr
[
nI σ nI −σ

]
. (16)

The on-site exchange coupling JI not only reduces the effective Coulomb repulsion between

like-spin electrons as in the simpler Dudarev functional (first term of the right-hand side), but

also contributes a second term that acts as an extra penalty for the simultaneous presence of

anti-aligned spins on the same atomic site and further stabilizes ferromagnetic ground states.

The fully rotationally invariant scheme of Liechtenstein et al. [83], generalized to non-collinear

magnetism and two-component spinor wave-functions, is also implemented in the current version

of Quantum ESPRESSO. The corrective energy term for each correlated atom can be quite

generally written as:

EfullU =
1

2

∑
αβγδ

Uαβγδ〈c†αc
†
βcδcγ〉DFT =

1

2

∑
αβγδ

(
Uαβγδ − Uαβδγ

)
nαγnβδ, (17)



where the average is taken over the DFT Slater determinant, Uαβγδ are Coulomb integrals, and

some set of orthonormal spin-space atomic functions, {α}, is used to calculate the occupation

matrix, nαβ, via Eq. (13). These basis functions could be spinor wave functions of total angular

momentum j = l ± 1/2, originated from spherical harmonics of orbital momentum l, which

is a natural choice in the presence of spin-orbit coupling. Another choice, adopted in our

implementation, is to use the standard basis of separable atomic functions, Rl(r)Ylm(θ, φ)χ(σ),

where χ(σ) are spin up/down projectors and the radial function, Rl(r), is an eigenfunction of

the pseudo-atom. In the presence of spin-orbit coupling, the radial function is constructed by

averaging between the two radial functions Rl±1/2. These radial functions are read from the file

containing the pseudopotential, in this case a fully-relativistic one. In this conventional basis,

the corrective functional takes the form:

EfullU =
1

2

∑
ijkl,σσ′

Uijkln
σσ
ik n

σ′σ′
jl −

1

2

∑
ijkl,σσ′

Uijlkn
σσ′
ik nσ

′σ
jl , (18)

where {ijkl} run over azimuthal quantum number m. The second term contains a spin-flip

contribution if σ′ 6= σ. For collinear magnetism, when nσσ
′

ij = δσσ′n
σ
ij , the present formulation

reduces to the scheme [83] of Liechtenstein et al. All Coulomb integrals, Uijkl, can be param-

eterized by few input parameters such as U (s-shell); U and J (p-shell); U, J and B (d-shell);

U, J,E2, and E3 (f -shell), and so on. We note that if all parameters but U are set to zero, the

Dudarev functional is recovered.

Calculation of Hubbard parameters The Hubbard corrective functional EU depends lin-

early upon the effective on-site interactions, U I . Therefore, using a proper value for these

interaction parameters is crucial to obtain quantitatively reliable results from DFT+U calcu-

lations. The Quantum ESPRESSO implementation of DFT+U has also been the basis to

develop a method for the calculation of U [80], based on linear-response theory. This method is

completely ab initio and provides values of the effective interactions that are consistent with the

system and with the ground state that the Hubbard functional aims at correcting. A compar-

ative analysis of this method with other approaches proposed in the literature to compute the

Hubbard interactions has been initiated in Ref. 81 and will be further refined in forthcoming

publications by the same authors.

Within linear-response theory, the Hubbard interactions are the elements of an effective inter-

action matrix, computed as the difference between bare and screened inverse susceptibilities

[80]:

U I =
(
χ−1

0 − χ
−1
)
II
. (19)

In Eq. (19) the susceptibilities χ and χ0 measure the response of atomic occupations to shifts

in the potential acting on the states of single atoms in the system. In particular, χ is defined as

χIJ =
∑

mσ

(
dnIσmm/dα

J
)

and is evaluated at self consistency, while χ0 has a similar definition

but is computed before the self-consistent re-adjustment of the Hartree and XC potentials. In

the current implementation these susceptibilities are computed from a series of self-consistent

total energy calculations (varying the strength α of the perturbing potential over a range of

values) performed on supercells of sufficient size for the perturbations to be isolated from their

periodic replicas. While easy to implement, this approach is quite cumbersome to use, requiring



multiple calculations, expensive convergence tests of the resulting parameters and complex post-

processing tools.

These difficulties can be overcome by using density-functional perturbation theory (DFpT) to

automatize the calculation of the Hubbard parameters. The basic idea is to recast the entries

of the susceptibility matrices into sums over the BZ:

dnIσmm′

dαJ
=

1

Nq

Nq∑
q

eiq·(Rl−Rl′ )∆s′
qn

s σ
mm′ , (20)

where I ≡ (l, s) and J ≡ (l′, s′), l and l′ label unit cells, s and s′ label atoms in the unit cell,

Rl and Rl′ are Bravais lattice vectors, and ∆s′
qn

s σ
mm′ represent the (lattice-periodic) response of

atomic occupations to monochromatic perturbations constructed by modulating the shift to the

potential of all the periodic replica of a given atom by a wave-vector q. This quantity is evaluated

within DFpT (see Sec. 2.2), using linear-response routines contained in LR Modules (see Sec.

3.4.3). This approach eliminates the need for supercell calculations in periodic systems (along

with the cubic scaling of their computational cost) and automatizes complex post-processing

operations needed to extract U from the output of calculations. The use of DFpT also offers the

perspective to directly evaluate inverse susceptibilities, thus avoiding the matrix inversions of

Eq. (19), and to calculate the Hubbard parameters for closed-shell systems, a notorious problem

for schemes based on perturbations to the potential. Full details about this implementation will

be provided in a forthcoming publication [84] and the corresponding code will be made available

in one of the next Quantum ESPRESSO releases.

2.1.4 Adiabatic-connection fluctuation-dissipation theory

In the quest for better approximations for the unknown XC energy functional in KS-DFT, the

approach based on the adiabatic connection fluctuation-dissipation (ACFD) theorem [59] has

received considerable interest in recent years. This is largely due to some attractive features: (i)

a formally exact expression for the XC energy in term of density linear response functions can be

derived providing a promising way for a systematic improvement of the XC functional; (ii) the

method treats the exchange energy exactly, thus canceling out the spurious self-interaction error

present in the Hartree energy; (iii) the correlation energy is fully non local and automatically

includes long-range van der Waals interactions (see Sec. 2.1.2).

Within the ACFD framework a formally exact expression for the XC energy Exc of an electronic

system can be derived:

Exc = − ~
2π

∫ 1

0
dλ

∫
drdr′

e2

|r− r′|
×
[∫ ∞

0
χλ(r, r′, iu)du+ δ(r− r′)n(r)

]
, (21)

where ~ = h/2π and h is the Planck constant, χλ(r, r′; iu) is the density response function at

imaginary frequency iu of a system whose electrons interact via a scaled Coulomb interaction,

i.e., λe2/|r − r′|, and are subject to a local potential such that the electronic density n(r) is

independent of λ, and is thus equal to the ground-state density of the fully interacting system

(λ = 1). The XC energy, Eq. (21), can be further separated into a KS exact-exchange energy

Exx, Eq. (6), and a correlation energy Ec. The former is routinely evaluated as in any hybrid



functional calculation (see Sec. 2.1.1). Using a matrix notation, the latter can be expressed in a

compact form in terms of the Coulomb interaction, vc = e2/|r− r′|, and of the density response

functions:

Ec = − ~
2π

∫ 1

0
dλ

∫ ∞
0

du tr
[
vc[χλ(iu)− χ0(iu)]

]
. (22)

For λ > 0, χλ can be related to the noninteracting density response function χ0 via a Dyson

equation obtained from TDDFT:

χλ(iu) = χ0(iu) + χ0(iu)
[
λvc + fλxc(iu)

]
χλ(iu). (23)

The exact expression of the XC kernel fxc is unknown, and in practical applications one needs

to approximate it. In the ACFDT package, the random phase approximation (RPA), obtained by

setting fλxc = 0, and the RPA plus exact-exchange kernel (RPAx), obtained by setting fλxc =

λfx, are implemented. The evaluation of the RPA and RPAx correlation energies is based

on an eigenvalue decomposition of the non-interacting response functions and of its first-order

correction in the limit of vanishing electron-electron interaction [85–87]. Since only a small

number of these eigenvalues are relevant for the calculation of the correlation energy, an efficient

iterative scheme can be used to compute the low-lying modes of the RPA/RPAx density response

functions.

The basic operation required for the eigenvalue decomposition is a number of loosely coupled

DFpT calculations for different imaginary frequencies and trial potentials. Although the global

scaling of the iterative approach is the same as for implementations based on the evaluation of the

full response matrices (N4), the number of operation involved is 100 to 1000 times smaller [86],

thus largely reducing the global scaling pre-factor. Moreover, the calculation can be parallelized

very efficiently by distributing different trial potentials on different processors or groups of

processors.

In addition, the local EXX and RPA-correlation potentials can be computed through an op-

timized effective potential (OEP) scheme fully compatible with the eigenvalue decomposition

strategy adopted for the evaluation of the EXX/RPA energy. Iterating the energy and the OEP

calculations and using an effective mixing scheme to update the KS potential, a self-consistent

minimization of the EXX/RPA functional can be achieved [88].

2.2 Linear response and excited states without virtual orbitals

One of the key features of modern DFT implementations is that they do not require the calcu-

lation of virtual (unoccupied) orbitals. This idea, first pioneered by Car and Parrinello in their

landmark 1985 paper [51] and later adopted by many groups world-wide, found its way in the

computation of excited-state properties with the advent of density-functional perturbation the-

ory (DFpT) [89–92]. DFpT is designed to deal with static perturbations and its use is therefore

restricted to those excitations that can be described in the Born-Oppenheimer approximation,

such as lattice vibrations. The main idea underlying DFpT is to represent the linear response of

KS orbitals to an external perturbation as generic orbitals satisfying an orthogonality constraint

with respect to the occupied-state manifold and a self-consistent Sternheimer equation [93, 94],

rather than as linear combinations of virtual orbitals (which would require the computation of

all, or a large number, of them).



Substantial progress has been made over the past decade, allowing one to extend DFpT to the

dynamical regime, and thus simulate sizable portions of the optical and loss spectra of complex

molecular and extended systems, without making any explicit reference to their virtual states.

Although the Sternheimer approach can be easily extended to time-dependent perturbations

[95–97], its use is hampered in practice by the fact that a different Sternheimer equation has to

be solved for each different value of the frequency of the perturbation. When the perturbation

acting on the system vanishes, the frequency-dependent Sternheimer equation becomes a non-

Hermitian eigenvalue equation, whose eigenvalues are the excitation energies of the system.

In the TDDFT community, this equation is known as the Casida equation [98, 99], which is

the immediate translation to the DFT parlance of the time-dependent Hartree-Fock equation

[100]. This approach to excited states is optimal in those cases where one is interested in a

few excitations only, but can hardly be extended to continuous spectra, such as those arising

in extended systems or above the ionization threshold of even finite ones. In those cases where

extended portions of a continuous spectrum is required, a new method has been developed, based

on the Lanczos (bi-) orthogonalization algorithm, and dubbed the Liouville-Lanczos approach to

time-dependent density-functional perturbation theory (TDDFpT). This method allows one to

reuse intermediate products of an iterative process, essentially identical to that used for static

perturbations, to build dynamical response functions from which spectral properties can be

computed for a whole wide spectral range at once [23, 24]. A similar approach to linear optical

spectroscopy was proposed later, based on the multi-shift conjugate gradient algorithm [101],

instead of Lanczos. This powerful idea has been generalized to the solution of the Bethe-Salpeter

equation, which is formally very similar to the eigenvalue equations arising in TDDFpT [102–

104], and to the computation of the polarization propagator and self-energy operator appearing

in the GW equations [30, 31, 105]. It is presently exploited in several components of the

Quantum ESPRESSO distribution, as well as in other advanced implementations of many-

body perturbation theory [105].

2.2.1 Static perturbations and vibrational spectroscopy

The computation of vibrational properties in extended systems is one of the traditional fields of

application of DFpT, as thoroughly described, e.g., in Ref. [92]. The latest releases of Quantum

ESPRESSO feature the linear-response implementation of several new functionals in the van der

Waals and DFT+U families. Explicit expressions of the XC kernel, implementation details, and

a thorough benchmark are reported in Ref. [106] for the first case. As for the latter, DFpT+U

has been implemented for both the Dudarev [82] and DFT+U+J0 functionals [17], allowing

one to account for electronic localization effects acting selectively on specific phonon modes at

arbitrary wave-vectors, thus substantially improving the description of the vibrational properties

of strongly correlated systems with respect to “standard” LDA/GGA functionals. The current

implementation allows for both norm-conserving and ultrasoft pseudopotentials, insulators and

metals alike, also including the spin-polarized case. The implementation of DFpT+U requires

two main additional ingredients with respect to standard DFpT [107]. First, the dynamical

matrix contains an additional term coming from the second derivative of the Hubbard term EU



with respect to the atomic positions (denoted λ or µ), namely:

∆µ(∂λEU ) =
∑

Iσmm′

U I
[
δmm′

2
− nIσmm′

]
∆µ
(
∂λnIσmm′

)
−
∑

Iσmm′

U I∆µnIσmm′∂
λnIσmm′ , (24)

where the notations are the same as in Eq. (12). The symbols ∂ and ∆ indicate, respectively,

a bare derivative (leaving the KS wavefunctions unperturbed) and a total derivative (including

also linear-response contributions). Second, in order to obtain a consistent electronic density

response to the atomic displacements from the DFT+U ground state, the perturbed KS potential

∆VSCF in the Sternheimer equation is augmented with the Hubbard perturbed potential ∆λVU :

∆λVU =
∑

Iσmm′

U I
[
δmm′

2
− nIσmm′

]
×
[
|∆λφIm′〉〈φIm|+ |φIm′〉〈∆λφIm|

]
−
∑

Iσmm′

U I∆λnIσmm′ |φIm′〉〈φIm|, (25)

where the notations are the same as in Eq. (13). The unperturbed Hamiltonian in the Stern-

heimer equation is the DFT+U Hamiltonian (including the Hubbard potential VU ). More im-

plementation details will be given in a forthcoming publication [108].

Applications of DFpT+U include the calculation of the vibrational spectra of transition-metal

monoxides like MnO and NiO [107], investigations of properties of materials of geophysical in-

terest like goethite [109, 110], iron-bearing [111, 112] and aluminum-bearing bridgmanite [113].

These results feature a significantly better agreement with experiment of the predictions of vari-

ous lattice-dynamical properties, including the LO-TO and magnetically-induced TO splittings,

as compared with standard LDA/GGA calculations.

2.2.2 Dynamic perturbations: optical, electron energy loss, and magnetic spectro-

scopies

Electronic excitations can be described in terms of the dynamical charge- and spin-density

susceptibilities, which are accessible to TDDFT [114, 115]. In the linear regime the TDDFT

equations can be solved using first-order perturbation theory. The time Fourier transform of

the charge-density response, ñ′(r, ω), is determined by the projection over the unoccupied-state

manifold of the Fourier transforms of the first-order corrections to the one-electron orbitals,

ψ̃′kν(r, ω), [23–26, 116]. For each band index (kν), two response orbitals xkν and ykν can be

defined as

xkν(r) =
1

2
Q̂
(
ψ̃′kν(r, ω) + ψ̃′∗−kν(r,−ω)

)
(26)

ykν(r) =
1

2
Q̂
(
ψ̃kν(r, ω)− ψ̃′∗−kν(r,−ω)

)
, (27)

where Q̂ is the projector on the unoccupied-state manifold. The response orbitals xkν and ykν

can be collected in so-called batches X = {xkν} and Y = {ykν}, which uniquely determine the

response density matrix. In a similar way, the perturbing potential V̂ ′ can be represented by

the batch Z = {zkν} = {Q̂V̂ ′ψkν}. Using these definitions, the linear-response equations of

TDDFpT take the simple form:(
~ω − L̂

)
·

(
X

Y

)
=

(
0

Z

)
, L̂ =

(
0 D̂

D̂ + K̂ 0

)
, (28)



where the super-operators D̂ and K̂, which enter the definition of the Liouvillian super-operator,

L̂, are defined in terms of the unperturbed Hamiltonian and of the perturbed Hartree-plus-XC

potential [23–26, 116]. This implies that a Liouvillian build costs roughly twice as much as a

single iteration in time-independent DFpT. It is important to note that D̂ and K̂, and therefore

L̂, do not depend on the frequency ω. For this reason, when in Eq. (28) the vector on the right-

hand side, (0, Z)>, is set to zero, a linear eigenvalue equation is obtained (Casida’s equation).

The quantum Liouville equation (28) can be seen as the equation for the response density

matrix operator ρ̂′(ω), namely (~ω − L̂) · ρ̂′(ω) = [V̂ ′, ρ̂◦], where [·, ·] is the commutator and

ρ̂◦ is the ground-state density matrix operator. With this at hand, we can define a generalized

susceptibility χAV (ω), which characterizes the response of an arbitrary one-electron Hermitian

operator Â to the external perturbation V̂ ′ as

χAV (ω) = Tr
[
Âρ̂′(ω)

]
=
〈
Â
∣∣∣ (~ω − L̂)−1 · [V̂ ′, ρ̂◦]

〉
, (29)

where 〈·|·〉 denotes a scalar product in operator space. For instance, when both Â and V̂ ′ are

one of the three Cartesian components of the dipole (position) operator, Eq. (29) gives the

dipole polarizability of the system, describing optical absorption spectroscopy [23, 24]; setting

Â and V̂ ′ to one of the space Fourier components of the electron charge-density operator would

correspond to the simulation of electron energy loss or inelastic X-ray scattering spectroscopies,

giving access to plasmon and exciton excitations in extended systems [27, 28]; two different

Cartesian components of the Fourier transform of the spin polarization would give access to

spectroscopies probing magnetic excitations (e.g. inelastic neutron scattering or spin-polarized

electron energy loss) [117], and so on. When dealing with macroscopic electric fields, the dipole

operator in periodic boundary conditions is treated using the standard DFpT prescription, as

explained in Refs. [118, 119].

The Quantum ESPRESSO distribution contains several codes to solve the Casida’s equation

or to directly compute generalized susceptibilities according to Eq. (29) and by solving Eq. (28)

using different approaches for different pairs of Â/V̂ ′, corresponding to different spectroscopies.

In particular, Eq. (28) can be solved iteratively using the Lanczos recursion algorithm, which

allows one to avoid computationally expensive inversion of the Liouvillian. The basic principle of

how matrix elements of the resolvent of an operator can be calculated using a Lanczos recursion

chain has been worked out by Haydock, Heine, and Kelly [120, 121] for the case of Hermitian

operators and diagonal matrix elements. The quantity of interst can be written as

gv(ω) =
〈
v
∣∣∣(~ω − L̂)−1 v

〉
. (30)

A chain of vectors is defined by

|q0〉 = 0 (31)

|q1〉 = |v〉 (32)

αn = 〈qn|L̂qn〉 (33)

βn+1 |qn+1〉 = (L̂− αn) |qn〉 − βn |qn−1〉 , (34)

where βn+1 is given by the condition 〈qn+1|qn+1〉 = 1. The vectors |qn〉 created by this recursive

chain are orthonormal. Furthermore, the operator L̂, written in the basis of these vectors, is



tridiagonal. If one limits the chain to the M first vectors |q0〉, |q1〉, · · · , |qM 〉, then the resulting

representation of L̂ is a M ×M square matrix TM which reads

TM =



α1 β2 0 · · · 0

β2 α2 β3
. . .

...

0 β3
. . .

. . . 0
...

. . .
. . . αM−1 βM

0 · · · 0 βM αM


. (35)

Using such a truncated representation of L̂, the resolvent in Eq. (30) can be approximated as

gv(ω) ≈
〈
v
∣∣∣(~ω − TM )−1 v

〉
. (36)

Thanks to the tridiagonal form of TM , the approximate resolvent can finally be written as a

continued fraction

gv(ω) ≈ 1

~ω − α1 +
β2

2
~ω − α2 + ...

. (37)

Note that performing the recursion (31) – (34) is the computational bottleneck of this algorithm,

while evaluating the continued fraction in Eq. (37) is very fast. The recursion being independent

of the frequency ω, a single recursion chain yields information about any desired number of

frequencies, at negligible additional computational cost. It is also important to note that at

any stage of the recursion chain, only three vectors need to be kept in memory, namely |qn−1〉,
|qn〉, and |qn−1〉. This is a considerable advantage with respect to the direct calculation of N

eigenvectors of L̂ where all N vectors need to be kept in memory in order to enforce orthogonality.

The Liouvillian L̂ in Eq. (28) is not a Hermitian operator. For this reason, the Lanczos al-

gorithm presented above cannot be directly applied to the calculation of the generalized sus-

ceptibility (29). There are two distinct algorithms that can be applied in the non-Hermitian

case. The non-Hermitian Lanczos biorthogonalization algorithm [24, 25] amounts to recursively

applying the operator L̂ and it Hermitian conjugate L̂† to two previous Lanczos vectors |vn〉
and |wn〉. In this way, a pair of bi-orthogonal basis sets is created. The operator L̂ can then

be represented in this basis as a tridiagonal matrix, similarly to the Hermitian case, Eq. (35).

The Liouvillian L̂ of TDDFT belongs to a special class of non-Hermitian operators which are

called pseudo-Hermitian [26, 122]. For such operators, there exists a second recursive algorithm

to compute the resolvent – pseudo-Hermitian Lanczos algorithm – which is numerically more

stable and requires only half the numbers of operations per Lanczos step [26, 122]. Both algo-

rithms have been implemented in Quantum ESPRESSO. Because of its speed and numerical

stability, the use of the pseudo-Hermitian method is recommended.

This methodology has also been extended—presently only in the case of absorption spectroscopy—

to employ hybrid functionals [26, 102, 103] (see Sec. 2.1.1). In this case the calculation requires

the evaluation of the linear response of the non-local Fock potential, which is readily available

from the response density matrix, represented by the batches of response orbitals. The corre-

sponding hybrid-functional Liouvillian features additional terms with respect to the definition

in Eq. (28), but presents a similar structure and similar mathematical properties. Accordingly,

semi-local and hybrid-functional TDDFpT employ the same numerical algorithms in practical

calculations.



Optical absorption spectroscopy The turbo lanczos.x [25, 26] and turbo davidson.x

[26] codes are designed to simulate the optical response of molecules and clusters. turbo lanczos.x

computes the dynamical dipole polarizability [see Eq. (29)] of finite systems over extended fre-

quency ranges without ever computing any eigenpairs of the Casida equation. This goal is

achieved by applying a recursive non-Hermitian or pseudo-Hermitian Lanczos algorithm. The

two flavours of the Lanczos algorithm implemented in turbo lanczos.x are particularly suited

in those cases where one is interested in the spectrum over a wide frequency range comprising a

large number of individual excitations. In turbo davidson.x a Davidson-like algorithm [123] is

used to selectively compute a few eigenvalues and eigenvectors of L̂. This is useful when very few

low-lying excited states are needed and/or when the excitation eigenvector is explicitly needed,

e.g., to compute ionic forces on excited potential energy surfaces, a feature that will be im-

plemented in one of the forthcoming releases. Both turbo lanczos.x and turbo davidson.x

are interfaced with the Environ module [20], to simulate the absorption spectra of complex

molecules in solution using the self-consistent continuum solvation model [22] (see Sec. 2.5.1).

Electron energy loss spectroscopy The turbo eels.x code [28] computes the response

of extended systems to an incoming beam of electrons or X rays, aimed at simulating elec-

tron energy loss (EEL) or inelastic X-ray scattering (IXS) spectroscopies, sensitive to collective

charge-fluctuation excitations, such as plasmons. Similarly to the description of vibrational

modes in a lattice by the PHonon package, here the perturbation can be represented as a sum of

monochromatic components corresponding to different momenta, q, and energy transferred from

the incoming electrons to electrons of the sample. The quantum Liouville equation (28) in the

batch representation can be formulated for individual q components of the perturbation, which

can be solved independently [27]. The recursive Lanczos algorithm is used to solve iteratively

the quantum Liouville equation, much like in the case of absorption spectroscopy. The entire

EEL/IXS spectrum is obtained in an arbitrarily wide energy range (up to the core-loss region)

with only one Lanczos chain. Such a numerical algorithm allows one to compute directly the

diagonal element of the charge-density susceptibility, see Eq. (29), by avoiding computationally

expensive matrix inversions and multiplications characteristic of standard methods based on the

solution of the Dyson equation [124]. The current version of turbo eels.x allows to explicitly

account for spin-orbit coupling effects [125].

Magnetic spectroscopy The response of the system to a magnetic perturbation is described

by a spin-density susceptibility matrix, see Eq. (29), labeled by the Cartesian components of

the perturbing magnetic field and magnetization response, whose poles characterize spin-wave

(magnon) and Stoner excitations. The methodology implemented in turbo eels.x to deal with

charge-density fluctuations has been generalized to spin-density fluctuations so as to deal with

magnetic (spin-polarized neutron and electron) spectroscopies in extended systems. In the spin-

polarized formulation of TDDFpT the time-dependent KS wave functions are two-component

spinors {ψσkν(r, t)} (σ is the spin index), which satisfy a time-dependent Pauli-type KS equations

and describe a time-dependent spin-charge-density, nσσ′(r, t) =
∑

kν ψ
σ∗
kν(r, t)ψσ

′
kν(r, t). Instead

of using the latter quantity it is convenient to change variables and use the charge density

n(r, t) =
∑

σ nσσ(r, t) and the spin density m(r, t) = µB
∑

σσ′ σσσ′ nσ′σ(r, t), where µB is the



Bohr magneton and σ is the vector of Pauli matrices. In the linear-response regime, the charge-

and spin-density response n′(r, t) and m′(r, t) are coupled via the scalar and magnetic XC

response potentials V ′xc(r, t) and B′xc(r, t), which are treated on a par with the Hartree response

potential V ′H(r, t), depending only on n′(r, t), and which all enter the linear-response time-

dependent Pauli-type KS equations. The lack of time-reversal symmetry in the ground state

means that the TDDFpT equations have to be generalized to treat KS spinors at k and −k

and various combinations with the q vector. Moreover, this also implies that no rotation of

batches is possible, as in Eqs. (26) and (27), and a generalization of the Lanczos algorithm to

complex arithmetics is required. At variance with the cumbersome Dyson’s equation approach,

which requires the separate calculation and coupling of charge-charge, spin-spin, and charge-

spin independent-electron polarizabilities, in our approach the coupling between spin and charge

fluctuations is naturally accounted for via Lanczos chains for the spinor KS response orbitals.

The current implementation supports general non-collinear spin-density distributions, which

allows us to account for spin-orbit interaction and magnetic anisotropy. All the details about

the present formalism will be given in a forthcoming publication [117] and the corresponding

code will be made available in one of the next Quantum ESPRESSO releases.

2.2.3 Many-body perturbation theory

Many-body perturbation theory refers to a set of computational methods, based on quantum

field theory, that are designed to calculate electronic and optical excitations beyond standard

DFT [124]. The most popular among such methods are the GW approximation and the Bethe-

Salpeter equation (BSE) approach. The former is intended to calculate accurate quasiparticle

excitations, e.g., ionization energies and electron affinities in molecules, band structures in solids,

and accurate band gaps in semiconductor and insulators. The latter is employed to study optical

excitations by including electron-hole interactions.

In the GW method the XC potential of DFT is corrected using a many-body self-energy con-

sisting of the product of the electron Green’s function G and the screened Coulomb interaction

W [126, 127], which represents the lowest-order term in the diagrammatic expansion of the

exact electron self-energy. In the vast majority of GW implementations, the evaluation of G

and W requires the calculation of both occupied and unoccupied KS eigenstates. The conver-

gence of the resulting self-energy correction with respect to the number of unoccupied states is

rather slow, and in many cases it constitutes the main bottleneck in the calculations. During

the past decade there has been a growing interest in alternative techniques which only require

the calculation of occupied electronic states, and several computational strategies have been

developed [31, 128–130]. The common denominator to all these strategies is that they rely on

linear-response DFpT and the Sternheimer equation, as in the PHonon package.

In Quantum ESPRESSO the GW approximation is realized based on a DFpT representa-

tion of response and self-energy operators, thus avoiding any explicit reference to unoccupied

states. There are two different implementations: the GWL (GW -Lanczos) package [30, 31] and

the SternheimerGW package [32]. The former focuses on efficient GW calculations for large

systems (including disordered solids, liquids, and interfaces), and also supports the calculations

of optical spectra via the Bethe-Salpeter approach [104]. The latter focuses on high-accuracy



calculations of band structures, frequency-dependent self-energies, and quasi-particle spectral

functions for crystalline solids. In addition to these, the WEST code [105], not part of the

Quantum ESPRESSO distribution, relies on Quantum ESPRESSO as an external library

to perform similar tasks and to achieve similar goals.

GWL The GWL package consists of four different codes. The pw4gww.x code reads the KS wave-

functions and charge density previously calculated by PWscf and prepares a set of data which are

used by code gww.x to perform the actual GW calculation. While pw4gww.x uses the plane-wave

representation of orbitals and charges and the same Quantum ESPRESSO environment as all

other linear response codes, gww.x does not rely on any specific representation of the orbitals.

Its parallelization strategy is based on the distribution of frequencies. Only a few basic routines,

such as the MPI drivers, are common with the rest of Quantum ESPRESSO.

GWL supports three different basis sets for representing polarisability operators: i) plane wave-

basis set, defined by an energy cutoff; ii) the basis set formed by the most important eigenvectors

(i.e., corresponding to the highest eigenvalues) of the actual irreducible polarisability operator

at zero frequency calculated through linear response; iii) the basis set formed by the most

important eigenvectors of an approximated polarisability operator. The last choice permits the

control of the balance between accuracy and dimension of the basis. The GW scheme requires

the calculation of products in real space of KS orbitals with vectors of the polarisability basis.

These are represented in GWL through dedicated additional basis sets of reduced dimensions.

GWL supports only the Γ−point sampling of the BZ and considers only real wave-functions.

However, ordinary k-point sampling of the BZ can be used for the long-range part of the (sym-

metrized) dielectric matrix. These terms are calculated by the head.x code. In this way reliable

calculations for extended materials can be performed using quite small simulation cells (with

cell edges of the order of 20 Bohr). Self-consistency is implemented in GWL, although limited to

the quasi-particle energies; the so-called vertex term, arising in the diagrammatic expansion of

the self-energy, is not yet implemented.

Usually ordinary GW calculations for transition elements require the explicit inclusion of semi-

core orbitals in the valence manifold, resulting in a significantly higher computational cost. To

cope with this issue, an approximate treatment of semicore orbitals has been introduced in GWL

as described in Ref. [131]. In addition to collinear spin polarization, GWL provides a fully rela-

tivistic non collinear implementation relying on the scalar relativistic calculation of the screened

Coulomb interactions [132].

The bse.x code of the GWL package performs BSE calculations and permits to evaluate either

the entire frequency-dependent complex dielectric function through the Lanczos algorithm or

a discrete set of excited states and their energies through a conjugate gradient minimization.

In contrast to ordinary implementations, bse.x scales as N3 instead of N4 with respect to the

system size N (e.g., the number of atoms) thanks to the use of maximally localized Wannier

functions for representing the valence manifold [104]. The bse.x code, apart from reading the

screened Coulomb interaction at zero frequency from a gww.x calculation, works as a sepa-

rate code and uses the Quantum ESPRESSO environment. Therefore it could be easily be

interfaced with other GW codes.



SternheimerGW The SternheimerGW package calculates the frequency-dependent GW self-

energy and the corresponding quasiparticle corrections at arbitrary k-points in the BZ. This

feature enables accurate calculations of band structures and effective masses without resorting

to interpolation. The availability of the complete GW self-energy (as opposed to the quasi-

particle shifts) makes it possible to calculate spectral functions, for example including plasmon

satellites [133]. The spectral function can be directly compared to angle-resolved photoelectron

spectroscopy (ARPES) experiments. In SternheimerGW the screened Coulomb interaction W is

evaluated for wave-vectors in the irreducible BZ by exploiting crystal symmetries. Calculations

of G and W for multiple frequencies ω rely on the use of multishift linear system solvers that

construct solutions for all frequencies from the solution of a single linear system [130, 134]. This

method is closely related to the Lanczos approach. The convolution in the frequency domain

required to obtain the self energy from G and W can be performed either on the real axis or

the imaginary axis. Padé functions are employed to perform approximate analytic continua-

tions from the imaginary to the real frequency axis; the standard Godby-Needs plasmon pole

model is also available to compare with literature results. The stability and portability of the

SternheimerGW package are verified via a test-suite and a Buildbot test-farm (see Sec. 3.6).

2.3 Other spectroscopies

2.3.1 QE-GIPAW: Nuclear magnetic and electron paramagnetic resonance

The QE-GIPAW package allows for the calculation of various physical parameters measured in

nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies.

These encompass (i) NMR chemical shift tensors and magnetic susceptibility, (ii) electric field

gradient (EFG) tensors, (iii) EPR g-tensor, and (iv) hyperfine coupling tensor.

In QE-GIPAW, the NMR and EPR parameters are obtained from the orbital linear response to

an external uniform magnetic field. The response depends critically upon the exact shape of the

electronic wavefunctions near the nuclei. Thus, all-electron wavefunctions are reconstructed from

the pseudo-wavefunctions in a gauge- and translationally invariant way using the gauge-including

projector augmented-wave (GIPAW) method [135]. The description of a uniform magnetic field

within periodic boundary conditions is achieved by the long-wavelength limit (q � 1) of a

sinusoidally modulated field in real space. In practice, for each k point, we calculate the first

order change of the wavefunctions at k + q, where q runs over a star of 6 points. The magnetic

susceptibility and the induced orbital currents are then evaluated by finite differences, in the

limit of small q. The induced magnetic field at the nucleus, which is the central quantity in

NMR, is obtained from the induced current via the Biot-Savart law. In QE-GIPAW, the NMR

orbital chemical shifts and magnetic susceptibility can be calculated both for insulators [36]

and for metals [136] (the additional contribution for metals coming from the spin-polarization

of valence electrons, namely the Knight shift, can also be computed but it is not yet ready for

production at the time of writing). Similarly to the NMR chemical shift, the EPR g-tensor is

calculated as the cross product of the induced current with the spin-orbit operator [137].

For the quantities defined in zero magnetic field, namely the EFG, Mössbauer and relativistic

hyperfine tensors, the usual PAW reconstruction of the wavefunctions is sufficient and these are



computed as described in Refs. [138, 139]. The hyperfine Fermi contact term, proportional to

the spin density evaluated at the nuclear coordinates, however requires the relaxation of the

core electrons in response to the magnetization of valence electrons. We implemented the core

relaxation in perturbation theory, according to Ref. [140]. Basically we compute the spherically

averaged PAW spin density around each atom. Then we compute the change of the XC potential,

∆VXC, on a radial grid, and compute in perturbation theory the core radial wavefunction, both

for spin up and spin down. This provides an extra contribution to the Fermi contact, in most

cases opposite in sign to and as large as that of valence electrons.

By combining the quadrupole coupling constants derived from EFG tensors and hyperfine split-

tings, electron nuclear double resonance (ENDOR) frequencies can be calculated. Applications

highlighting all these features of the QE-GIPAW package can be found in Ref. [141]. These

quantities are also needed to compute NMR shifts in paramagnetic systems, like novel cathode

materials for Li batteries [142]. Previously restricted to norm-conserving pseudopotentials only,

all features are now applicable using any kind of pseudization scheme and to PAW, following

the theory described in [143]. The use of smooth pseudopotentials allows for the calculation of

chemical shifts in systems with several hundreds of atoms [144].

The starting point of all QE-GIPAW calculations is a previous calculation of KS orbitals via PWscf.

Hence, much like other linear response routines, the QE-GIPAW code uses many subroutines of

PWscf and of the linear response module. As usually done in linear response methods, the

response of the unoccupied states is calculated using the completeness relation between occupied

and unoccupied manifolds [145]. As a result, for insulating as well as metallic systems, the linear

response of the system is efficiently obtained without the need to include virtual orbitals.

As an alternative to linear response method, the theory of orbital magnetization via Berry cur-

vature [146, 147] can be used to calculate the NMR [148] and EPR parameters [149]. Specifically,

it can be shown that the variation of the orbital magnetization Morb with respect to spin flip is

directly related to the g-tensor: gµν = ge − 2
αSeµ ·Morb(eν), where ge = 2.002319, α is the fine

structure constant, S is the total spin, e are Cartesian unit vectors, provided that the spin-orbit

interaction is explicitly considered in the Hamiltonian. This converse method of calculating the

g-tensor has been implemented in an older version of QE-GIPAW. It is especially useful in critical

cases where linear response is not appropriate, e.g., systems with quasi-degenerate HOMO-

LUMO levels. A demonstration of this method applied to delocalized conduction band electrons

can be found in Ref. 150.

The converse method will be shortly ported into the current QE-GIPAW and we will explore the

possibility of computing in a converse way the Knight shift as the response to a small nuclear

magnetic dipole. The present version of the code allows for parameter-free calculations of g-

tensors, hyperfine splittings, and ENDOR frequencies also for systems with total spin S > 1/2.

Such triplet or even higher-spin states give rise to additional spin-spin interactions, that can

be calculated within the magnetic dipole-dipole interaction approximation. This interaction

results in a fine structure which can be measured in zero magnetic field. This so-called zero-field

splitting is being implemented following the methodology described in Ref. [151].



2.3.2 XSpectra: L2,3 X-ray absorption edges

The XSpectra code [152, 153] has been extended to the calculation of X-ray absorption spectra

at the L2,3-edges [154]. The XSpectra code uses the self-consistent charge density produced by

PWscf and acts as a post processing tool [152, 153, 155]. The spectra are calculated for the L2

edge, while the L3 edge is obtained by multiplying by two (single-particle statistical branching

ratio) the L2 edge spectrum and by shifting it by the value of the spin-orbit splitting of the

2p1/2 core levels of the absorbing atom. The latter can be taken either from a DFT relativistic

all-electron calculation on the isolated atom, or from experiments.

In practice, the L3 edge is obtained from the L2 with the spectra correction.x tool. Such tool

contains a table of experimental 2p spin-orbit splittings for all the elements. In addition to com-

puting L3 edges, spectra correction.x allows one to remove states from the spectrum below

a certain energy, and to convolute the calculated spectrum with more elaborate broadenings.

These operations can be applied to any edge.

To evaluate the X-ray absorption spectrum for a system containing various atoms of the same

species but in different chemical environments, one has to sum the contribution by each atom.

This could be the case, for example of an organic molecule containing various C atoms in

inequivalent sites. Such individual contributions can be computed separately by XSpectra, and

the tool molecularnexafs.x allows one to perform their weighted sum taking into account the

proper energy reference (initial and final state effects) [156, 157]. One should in fact notice that

the reference for initial state effects will depend upon the environment (e.g., the vacuum level

for gas phase molecules, or the Fermi level for molecules adsorbed on a metal).

2.4 Other lattice-dynamical and thermal properties

2.4.1 thermo pw: Thermal properties from the quasi-harmonic approximation

thermo pw [33] is a collection of codes aimed at computing various thermodynamical quantities

in the quasi-harmonic approximation. The key ingredient is the vibrational contribution, Fph,

to the Helmholtz free energy at temperature T :

Fph = kBT
∑
q,ν

ln

[
2 sinh

(
~ωqν

2kBT

)]
, (38)

where ωq,ν are phonon frequencies at wave-vector q, kB is the Boltzmann constant. thermo pw

works by calling Quantum ESPRESSO routines from PWscf and PHonon, that perform one

of the following tasks: i) compute the DFT total energy and possibly the stress for a given

crystal structure; ii) compute for the same system the electronic band structure along a specified

path; iii) compute for the same system phonon frequencies at specified wave-vectors. Using

such quantities, thermo pw can calculate numerically the derivatives of the free energy with

respect to the external parameters (e.g., different volumes). Several calls to such routines, with

slightly different geometries, are typically needed in a run. All such tasks can be independently

performed on different groups of processors (called images).

When the tasks carried out by different images require approximately the same time, or when

the amount of numerical work needed to accomplish each task is easy to estimate a priori,



it would be possible to statically assign tasks to images at the beginning of the run so that

images do not need to communicate during the run. However, such conditions are seldom met in

thermo pw and therefore it would be impossible to obtain a good load balancing between images.

thermo pw takes advantage of an engine that controls these different tasks in an asynchronous

way, dynamically assigning tasks to the images at run time.

At the core of thermo pw there is a module mp asyn, based on MPI routines, that allows for

asynchronous communication between different images. One of the images is the “master” and

assigns tasks to the other images (the “slaves”) as soon as they communicate that they have

accomplished the previously assigned task. The master image also accomplishes some tasks but

once in a while, with negligible overhead, it checks if there is an image available to do some

work; if so, it assigns to it the next task to do. The code stops when the master recognizes that

all the tasks have been done and communicates this information to the slaves. The routines of

this communication module are quite independent of the thermo pw variables and in principle

can be used in conjunction with other codes to set up complex workflows to be executed in a

massively parallel environment. It is assumed that each processor of each image reads the same

input and that the only information that the image needs to synchronize with the other images

is which tasks to do. The design of thermo pw makes it easily extensible to the calculation of

new properties in an incremental way.

2.4.2 thermal2: phonon-phonon interaction and thermal transport

Phonon-phonon interaction (ph-ph) plays a role in different physical phenomena: phonon life-

time (and its inverse, the linewidth), phonon-driven thermal transport in insulators or semi-

metals, thermal expansion of materials. Ph-ph is possible because the harmonic Hamiltonian

of ionic motion, of which phonons are stationary states, is only approximate. At first order

in perturbation theory we have the third derivative of the total energy with respect to three

phonon perturbations, which we compute ab-initio. This calculation is performed by the d3q

code via the 2n + 1 theorem [34, 158]. The d3q code is an extension of the old D3 code,

which only allowed the calculation of zone-centered phonon lifetimes and of thermal expansion.

The current version can compute the three-phonon matrix element of arbitrary wave-vectors

D(3)(q1,q2,q3) = ∂3E/∂uq1∂uq2∂uq3 , where u are the phonon displacement patterns, the mo-

mentum conservation rule imposes q1 + q2 + q3 = 0. The current version of the code can treat

any kind of crystal geometry, metals and insulators, both local density and gradient-corrected

functionals, and multi-projector norm-conserving pseudopotentials. Ultrasoft pseudopotentials,

PAW, spin polarization and non-collinear magnetization are not implemented. Higher order

derivative of effective charges[159] are not implemented.

The ph-ph matrix elements, computed from linear response, can be transformed, via a general-

ized Fourier transform, to the real-space three-body force constants which could be computed

in a supercell by finite difference derivation:

D(3)(q1,q2,q3) =
∑

R′,R′′

e−2iπ(R′·q2+R′′·q3)F (3)(0,R′,R′′), (39)

where F 3(0,R′,R′′) = ∂3E/∂τ∂(τ ′ + R′)∂(τ ′′ + R′′) is the derivative of the total energy w.r.t.

nuclear positions of ions with basis τ , τ ′, τ ′′ from the unit cells identified by direct lattice vectors



0 (the origin), R′ and R′′. The sum over R′ and R′′ runs, in principle, over all unit cells, however

the terms of the sum quickly decay as the size of the triangle 0−R′−R′′ increases. The real-space

finite-difference calculation, performed by some external softwares[160], has some advantages:

it is easier to implement and it can readily include all the capabilities of the self-consistent

code; on the other hand it is much more computationally expensive than the linear-response

method we use, its cost scaling with the cube of the supercell volume, or the 9th power of the

number of side units of an isotropic system. We use the real-space formalism to apply the sum

rule corresponding to translational invariance to the matrix elements. This is done with an

iterative method that alternatively enforces the sum rule on the first matrix index and restores

the invariance on the order of the derivations. We also use the real-space force constants to

Fourier-interpolate the ph-ph matrices on a finer grid, assuming that the contribution from

triangles 0 − R′ − R′′ which we have not computed is zero; it is important in this stage to

consider the periodicity of the system.

From many-body theory we get the first-order phonon linewidth[161] (γν) of mode ν at q, which

is a sum over all the possible Nq’s final and initial states (q′,ν ′,ν ′′) with conservation of energy

(~ω) and momentum (q′′ = −q− q′), Bose-Einstein occupations (n(q, ν) = (exp(~ωq,ν/kBT )−
1)−1) and an amplitude V (3), proportional to the D(3) matrix element but renormalized with

phonon energies and ion masses:

γq,ν =
π

~2Nq

∑
q′,ν′,ν′′

∣∣∣V (3)(qν,q′ν ′,q′′ν ′′)
∣∣∣× (40)

[
(1 + nq′,ν′ + nq′′,ν′′)δ(ωq,ν − ωq′,ν′ − ωq′′,ν′′) + 2(nq′,ν′ − nq′′,ν′′)δ(ωq,ν + ωq′,ν′ − ωq′′,ν′′)

]
.

This sum is computed in the thermal2 suite, which is bundled with d3q. A similar expression

can be written for the phonon scattering probability which appears in the Boltzmann transport

equation. In order to properly converge the integral of the Dirac delta function, we express it

as finite-width Gaussian function and use an interpolation grid. This equation can be solved

either exactly or in the single mode approximation (SMA) [162]. The SMA is a good tool

at temperatures comparable to or larger than the Debye temperature, but is known to be

inadequate at low temperatures [163, 164] or in the case of 2D materials [165–167]. The exact

solution is computed using a variational form, minimized via a preconditioned conjugate gradient

algorithm, which is guaranteed to converge, usually in less than 10 iterations [35].

On top of intrinsic ph-ph events, the thermal2 codes can also treat isotopic disorder and substi-

tution effects and finite transverse dimension using the Casimir formalism. In addition to using

our force constants from DFpT, the code supports importing 3-body force constants computed

via finite differences with the thirdorder.py code [160]. Parallelization is implemented with

both MPI (with great scalability up to thousand of CPUs) and OpenMP (optimal for memory

reduction).

2.4.3 EPW: Electron-phonon coefficients from Wannier interpolation

The electron-phonon-Wannier (EPW) package is designed to calculate electron-phonon coupling

using an ultra-fine sampling of the BZ by means of Wannier interpolation. EPW employs the

relation between the electron-phonon matrix elements in the Bloch representation gmnν(k,q),



and in the Wannier representation, gijκα(R,R′) [168],

gmn(k,q) =
∑
R,R′

ei(k·R+q·R′)
∑
ijκα

Umik+q gijκα(R,R′)U †jnk uκα,qν , (41)

in order to interpolate from coarse k-point and q-point grids into dense meshes. In the above

expression k and q represent the electron and phonon wave-vector, respectively, the indices m,n

and i, j refer to Bloch states and Wannier states, respectively, and R,R′ are direct lattice vectors.

The matrices Umik are unitary transformations and the vector uκα,qν is the displacements of

the atom κ along the Cartesian direction α for the phonon of wavevector q and branch ν. The

interpolation is performed with ab initio accuracy by relying on the localization of maximally-

localized Wannier functions [169]. During its execution EPW invokes the Wannier90 software [170]

in library mode in order to determine the matrices Umik on the coarse k-point grid.

EPW can be used to compute the following physical properties: the electron and phonon linewidths

arising from electron-phonon interactions; the scattering rates of electrons by phonons; the total,

averaged electron-phonon coupling strength; the electrical resistivity of metals, see Fig. 2(b); the

critical temperature of electron-phonon superconductors; the anisotropic superconducting gap

within the Eliashberg theory, see Fig. 2(c); the Eliashberg spectral function, transport spectral

function, see Fig. 2(d) and the nesting function. The calculation of carrier mobilities using the

Boltzmann transport equation in semiconductors is under development.

The epw.x code exploits crystal symmetry operations (including time reversal) in order to limit

the number of phonon calculations to be performed using PHonon to the irreducible wedge of the

BZ. The code supports calculations of electron-phonon couplings in the presence of spin-orbit

coupling. The current version does not support spin-polarized calculations, ultrasoft pseudopo-

tentials nor the PAW method. As shown in Fig. 2(a), epw.x scales reasonably up to 2,000

cores using MPI. A test farm (see Sec. 3.6) was set up to ensure portability of the code on

many architecture and compilers. Detailed information about the EPW package can be found in

Ref. [29].

2.4.4 Non-perturbative approaches to vibrational spectroscopies

Although DFpT is in many ways the state of the art in the simulation of vibrational spectro-

scopies in extended systems, and in fact one of defining features of Quantum ESPRESSO, it

is sometimes convenient to compute lattice-dynamical properties, the response to macroscopic

electric fields, or combinations thereof (such as e.g., the infrared or Raman activities), using

non-perturbative methods. This is so because DFpT requires the design of dedicated codes,

which have to be updated and maintained separately, and which therefore not always follow the

pace of the implementation of new features, methods, and functionals (such as e.g., DFT+U,

vdW-DF, hybrid functionals, or ACBN0 [171]) in their ground-state counterparts. Such a non-

perturbative approach is followed in the FD package, which implements the “frozen-phonon”

method for the computation of phonons and vibrational spectra: the interatomic Force Con-

stants (IFCs) and electronic dielectric constant are computed as finite differences of forces and

polarizations, with respect to finite atomic displacements or external electric fields, respec-

tively [172, 173]. IFC’s are computed in two steps: first, code fd.x generates the symmetry-

independent displacements in an appropriate supercell; after the calculations for the various
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Figure 2: Examples of calculations that can be performed using EPW. (a) Parallel scaling of

EPW on ARCHER Cray XC30. This example corresponds to the calculation of electron-phonon
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culated temperature-dependent resistivity of Pb by including/neglecting spin-orbit coupling.

Reproduced from Ref. [29]. (c) Calculated superconducting gap function of MgB2, color-coded

on the Fermi surface. Reproduced from Ref. [29]. (d) Eliashberg spectral function α2F and

transport spectral function α2Ftr of Pb. Reproduced from Ref. [29].



displacements are completed, code fd ifc.x reads the forces and generates IFC’s. These are

further processed in matdyn.x, where non-analytical long-ranged dipolar terms are subtracted

out from the IFCs following the recipe of Ref. 174. The calculation of dielectric tensor and of

the Born effective charges proceeds from the evaluation of the electronic susceptibility following

the method proposed by Umari and Pasquarello [173], where the introduction of a non local

energy functional EE
tot[ψ] = E0[ψ]−E ·(Pion+Pel[ψ]) allows to compute the electronic structure

for periodic systems under finite homogeneous electric fields. E0 is the ground state total energy

in the absence of external electric fields; Pion is the usual ionic polarization, and Pel is given as

a Berry phase of the manifold of the occupied bands [175]. The high-frequency dielectric tensor

ε∞ is then computed as ε∞ij = δi,j + 4πχij , while Born effective-charge tensors Z∗I,ij are obtained

as the polarization induced along the direction i by a unit displacement of the I-th atom in the

j direction; alternatively, as the force induced on atom I by an applied electric field, E.

The calculation of the Raman spectra proceeds along similar lines. Within the finite-field ap-

proach, the Raman tensor is evaluated in terms of finite differences of atomic forces in the

presence of two electric fields [176]. In practice, the tensor χ
(1)
ijIk is obtained from a set of

calculations combining finite electric fields along different Cartesian directions. χ
(1)
ijIk is then

symmetrized to recover the full symmetry of the structure under study.

2.5 Multi-scale modeling

2.5.1 Environ: Self-Consistent Continuum Solvation embedding model

Continuum models are among the most popular multiscale approaches to treat solvation effects

in the quantum-chemistry community [177]. In this class of models, the degrees of freedom of

solvent molecules are effectively integrated out and their statistically-averaged effects on the

solute are mimicked by those of a continuous medium surrounding a cavity in which the solute

is thought to dwell. The most important interaction usually handled with continuum models is

the electrostatic one, in which the solvent is described as a dielectric continuum characterized

by its experimental dielectric permittivity.

Following the original work of Fattebert and Gygi [178] , a new class of continuum models was

designed, in which a smooth transition from the QM-solute region to the continuum-environment

region of space is introduced and defined in terms of the electronic density of the solute. The

corresponding free energy functional is optimized using a fully variational approach, leading

to a generalized Poisson equation that is solved via a multi-grid solver[178]. This approach,

ideally suited for plane-wave basis sets and tailored for MD simulations, has been featured in

the Quantum ESPRESSO distribution since v. 4.1. This approach was recently revised[20],

by defining an optimally smooth QM/continuum transition, reformulated in terms of iterative

solvers[179] and extended to handle in a compact and effective way non-electrostatic interactions

[20]. The resulting self-consistent continuum solvation (SCCS) model, based on a very limited

number of physically justified parameters, allows one to reproduce experimental solvation ener-

gies for aqueous solutions of neutral [20] and charged[180] species with accuracies comparable

to or higher than state-of-the-art quantum-chemistry packages.

The SCCS model involves different embedding terms, each representing a specific interaction



with an external continuum environment and contributing to the total energy, KS potential, and

interatomic forces of the embedded QM system. Every contribution may depend explicitly on the

ionic (rigid schemes) and/or electronic (self-consistent or soft schemes) degrees of freedom of the

embedded system. All the different terms are collected in the stand-alone Environ module [181].

The present discussion refers to release 0.2 of Environ, which is compatible with Quantum

ESPRESSO starting from versions 5.1. The module requires a separate input file with the

specifications of the environment interactions to be included and of the numerical parameters

required to compute their effects. Fully parameterized and tuned SCCS environments, e.g.,

corresponding to water solutions for neutral and charged species, are directly available to the

users. Otherwise individual embedding terms can be switched on and tuned to the specific

physical conditions of the required environment. Namely, the following terms are currently

featured in Environ:

• Smooth continuum dielectric, with the associated generalized Poisson problem solved via a

direct iterative approach or through a preconditioned conjugate gradient algorithm [179].

• Electronic enthalpy functional, introducing an energy term proportional to the quantum-

volume of the system and able to describe finite systems under the effect of an applied

external pressure[182].

• Electronic cavitation functional, introducing an energy term proportional to the quantum-

surface able to describe free energies of cavitation and other surface-related interaction

terms[183].

• Parabolic corrections for periodic boundary conditions in aperiodic and partially periodic

(slab) systems [21, 184].

• Fixed dielectric regions, allowing for the modelling of complex inhomogenous dielectric

environments.

• Fixed Gaussian-smoothed distributions of charges, allowing for a simplified modelling of

countercharge distributions, e.g., in electrochemical setups.

Different packages of the Quantum ESPRESSO distribution have been interfaced with the

Environ module, including PWscf, CP, PWneb, and turboTDDFT, the latter featuring a linear-

response implementation of the SCCS model (see Sec.2.2.2). Moreover, continuum environment

effects are fully compatible with the main features of Quantum ESPRESSO, and in particular,

with reciprocal space integration and smearing for metallic systems, with both norm-conserving

and ultrasoft pseudopotentials and PAW, with all XC functionals.

2.5.2 QM-MM

QM-MM was implemented in v.5.0.2 using the method documented in Ref. [42]. Such method-

ology accounts for both mechanical and electrostatic coupling between the QM (quantum-

mechanical) and MM (molecular-mechanics) regions, but not for bonding interactions (i.e.,

bonds between the QM and MM regions). In practice, we need to run two different codes,



Quantum ESPRESSO for the QM region and a classical force-field code for the MM region,

that communicate atomic positions, forces, electrostatic potentials.

LAMMPS [41] is the software chosen to deal with the classical (MM) degrees of freedom. This

is a well-known and well-maintained package, released under an open-source license that allows

redistribution together with Quantum ESPRESSO. The communications between the QM

and MM regions use a “shared memory” approach: the MM code runs on a master node,

communicates directly via the memory with the QM code, which is typically running on a

massively parallel machine. Such approach has some advantages: the MM part is typically

much faster than the QM one and can be run in serial execution, wasting no time on the HPC

machine; there is a clear and neat separation between the two codes, and very small code changes

in either codes are needed. It has however also a few drawbacks, namely: the serial computation

of the MM part may become a bottleneck if the MM region contains many atoms; direct access

to memory is often restricted for security reasons on HPC machines.

An alternative approach has been implemented in v.5.4. A single (parallel) executable runs

both the MM and the QM codes. The two codes exchange data and communicate via MPI.

This approach is less elegant than the previous one and requires a little bit more coding, but its

implementation is quite straightforward thanks also to the changes in the logic of parallelization

mentioned in Sec. 3.4. The coupling of the two codes has required some modifications also to the

qmmm library inside LAMMPS and to the related fix qmmm (a “fix” in LAMMPS is any operation

that is applied to the system during the MD run). In particular, electrostatic coupling has been

introduced, following the approach described in Ref. [185]. The great advantage of this approach

is that its performance on HPC machines is as good as the separate performances of the QM

and MM codes. Since LAMMPS is very well parallelized, this is a significant advantage if the

MM region contains many atoms. Moreover, it can be run without restrictions on any parallel

machine. This new QM-MM implementation is an integral part of the Quantum ESPRESSO

distribution and will soon be included into LAMMPS as well (the “fix” is currently under testing)

and it is straightforward to compile and execute it.

2.6 Miscellaneous feature enhancements and additions

2.6.1 Fully relativistic projector augmented-wave method

By applying the PAW formalism to the equations of relativistic spin density functional theory

[186, 187], it is possible to obtain the fully relativistic PAW equations for four-component spinor

pseudo-wavefunctions [18]. In this formalism the pseudo-wavefunctions can be written in terms

of large |Ψ̃A
i,σ〉 and small |Ψ̃B

i,σ〉 components, both two-component spinors (the index σ runs

over the two spin components). The latter is of order v
c of the former, where v is of the order

of the velocity of the electron and c is the speed of light. These equations can be simplified

introducing errors of the order of the transferability error of the pseudopotential or of order

1/c2, depending on which is the largest. In the final equations only the large components of

the pseudo-wavefunctions appear. The non relativistic kinetic energy p2/2m (m is the electron

mass) acts on the large component of the pseudo-wavefunctions |Ψ̃A
i,σ〉 in the mesh defined by

the FFT grid and the same kinetic energy is used to calculate the expectation values of the



Hamiltonian between partial pseudo-waves |ΦI,PS,A
n,σ 〉. The Dirac kinetic energy is used instead

to calculate the expectation values of the Hamiltonian between all-electron partial waves |ΦI,AE
n,η 〉

(η is a four-component index). In this manner, relativistic effects are hidden in the coefficients

of the non-local pseudopotential. The equations are formally very similar to the equations of

the scalar-relativistic case:∑
σ2

[
p2

2m
δσ1,σ2 +

∑
η1,η2

∫
drṼ η1,η2

LOC (r)K̃(r)η1,η2σ1,σ2 − εiS
σ1,σ2

+
∑
I,mn

(D1
I,mn − D̃1

I,mn)|βI,Am,σ1〉〈β
I,A
n,σ2 |

]
|Ψ̃A

i,σ2〉 = 0, (42)

where D1
I,mn and D̃1

I,mn are calculated inside the PAW spheres:

D1
I,mn =

∑
η1,η2

〈ΦI,AE
m,η1 |T

η1,η2
D + V I,η1,η2

LOC |ΦI,AE
n,η2 〉, (43)

D̃1
I,mn =

∑
σ1,σ2

〈ΦI,PS,A
m,σ1 |

p2

2m
δσ1,σ2 + Ṽ I,σ1,σ2

LOC |ΦI,PS,A
n,σ2 〉

+
∑
η1,η2

∫
ΩI

drQ̂Imn,η1,η2(r)Ṽ I,η1,η2
LOC (r). (44)

Here TD is the Dirac kinetic energy:

TD = cα · p + (β − 14×4)mc2, (45)

written in terms of the 4 × 4 Hermitian matrices α and β and V η1,η2
LOC is the sum of the local,

Hartree, and XC potential (Veff) together, in magnetic systems, with the contribution of the XC

magnetic field: V η1,η2
LOC (r) = Veff(r)δη1,η2−µBBxc(r)·(βΣ)η1,η2 . We refer to Ref. [18] for a detailed

definition of the partial waves |ΦI,AE
n,η 〉, |ΦI,PS,A

n,σ 〉 and projectors |βI,Am,σ〉, of the augmentation

functions Q̂Imn,η1,η2(r) and K̃(r)η1,η2σ1,σ2 , and of the overlap matrix Sσ1,σ2 and for their rewriting in

terms of projector functions that contain only spherical harmonics. Solving these equations it is

possible to include spin-orbit coupling effects in electronic structure calculations. In Quantum

ESPRESSO these equations are used when input variables noncolin and lspinorb are both

.TRUE. and the PAW data sets are fully relativistic, as those available with the pslibrary

project.

2.6.2 Electronic and structural properties in field-effect configuration

Since Quantum ESPRESSO v.6.0 it is possible to compute the electronic structure under a

field-effect transistor (FET) setup in periodic boundary conditions [188]. In physical FETs, a

voltage is applied to a gate electrode, accumulating charges at the interface between the gate

dielectric and a semiconducting system (see Fig. 3). The gate electrode is simulated with a

charged plate, henceforth referred to as the gate. Since the interaction of this charged plate with

its periodic image generates a spurious nonphysical electric field, a dipolar correction, equivalent

to two planes of opposite charge, is added [189], canceling out the field on the left side of the

gate. In order to prevent electrons from spilling towards the gate for large electron doping [190],

a potential barrier can be added to the electrostatic potential, mimicking the effect of the gate

dielectric.
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The setup for a system in FET configuration is shown in Fig. 3. The gate has a charge ndopA

and the system has opposite charge. Here ndop is the number of doping electrons per unit area

(i.e., negative for hole doping), A is the area of the unit cell parallel to the surface. In practice

the gate is represented by an external potential

Vgate(r) = −2π ndop

(
− |z|+ z2

L + L
6

)
(46)

Here z = z − zgate with z ∈ [−L/2;L/2] measures the distance from the gate (see Fig. 3). The

dipole of the charged system plus the gate is canceled by an electric dipole generated by two

planes of opposite charge [189, 191, 192], placed at zdip−ddip/2 and zdip +ddip/2, in the vacuum

region next to the gate (Vdip in Fig. 3). Additionally one may include a potential barrier to avoid

charge spilling towards the gate, or as a substitute for the gate dielectric. Vb(r) is a periodic

function of z defined on the interval z ∈ [0, L] as equal to a constant Vb for z1 < z < z2 and zero

elsewhere. Figure 3 shows the resulting total potential (black line). The following additional

variables are needed: zgate, z1, z2, and V0. In the code these variables are named zgate, block 1,

block 2, and block height, respectively. The dipole corrections and the gate are activated by

the options dipfield=.true. and gate=.true.. In order to enable the potential barrier and the

relaxation of the system towards it, the new input parameters block and relaxz, respectively,

have to be set to .true. More details about the implementation can be found in Ref. 188.

2.6.3 Cold restart of Car-Parrinello molecular dynamics

In the standard Lagrangian formulation of ab initio molecular dynamics [51], the coefficients of

KS molecular orbitals over a given basis set (i.e.. their Fourier coefficients, in the case of plane

waves) are treated as classical degrees of freedom obeying Newton’s equations of motion that

derive from a suitably defined extended Lagrangian. This Lagrangian is obtained from the Born-

Oppenheimer total energy by augmenting it with a fictitious electronic kinetic-energy term and

relaxing the constraint that the molecular orbitals stay at each instant of the trajectory in their

instantaneous KS ground state. The idea is that, by choosing a suitably small fictitious electronic

mass, the thermalization time of the electronic degrees of freedom can be made much longer

than the typical simulation times, so that if the system is prepared in its electronic KS ground

state at the start of the simulation, the electronic dynamics would follow almost adiabatically

the nuclear one all over the simulation, thus effectively mimicking a bona fide Born-Oppenheimer

dynamics.

While in Car-Parrinello MD both the physical nuclear and fictitious electronic velocities are

determined by the equations of motion on a par, the question still remains as to how choose them

at the start of the simulation. Initial nuclear velocities are dictated by physical considerations

(e.g., thermal equilibrium) or may be taken from a previously interrupted MD run. Electronic

velocities (i.e., the time derivatives of the KS molecular orbitals), instead, are not available when

the simulation is started from scratch. and are not independent of the physical nuclear ones,

but are determined by the adiabatic time evolution of the system. Moreover, the projection

over the occupied-state manifold of the electronic velocities, ψ̇
‖
v
.
= P̂ ψ̇v is ill-defined because the

KS ground-state solution is defined modulo a unitary transformation within this manifold. This

means that the starting electronic velocities may not be simply obtained as finite differences of



KS orbitals at times t = 0 and t = ∆t. Here and in the following P̂ indicates the projector

over the occupied-state manifold, and Q̂ = 1 − P̂ its complement (i.e. the projector over the

virtual-orbital manifold).

The component of the electronic velocities over the virtual-state manifold, ψ̇⊥v
.
= Q̂ψ̇v, is instead

well defined and can be formally written using standard first-order perturbation theory:

ψ̇⊥v (r) =
∑
c

ψc(r)
〈ψc|V̇KS |ψv〉
εv − εc

, (47)

where v and c indicate occupied (valence) and virtual (conduction) states, respectively, εn the

corresponding orbital energies, and V̇KS is the time derivative of the KS potential, VKS . V̇KS

is the linear response of VKS to the perturbation in the external potential determined by an

infinitesimal displacement of the nuclei along a MD trajectory: V̇ext(r) =
∑

R
∂vR(r−R)

∂R · Ṙ,

where vR(r−R) is the bare ionic pseudopotential of the atom at position R and Ṙ its velocity.

Electronic velocities can conveniently be initialized to the values given by Eq. (47), which are

those that minimize their norm and, hence, the initial electronic temperature, which is defined

as the sum of the squared norms of the electronic velocities.

While this could in principle be done using density-functional perturbation theory [89, 92], it

is more convenient to compute them numerically, following the procedure described below. At

t = 0 the KS molecular orbitals are initialized from a ground-state computation, performed with

whatever method is available or preferred (standard SCF calculation or global optimization,

such as e.g., with conjugate gradients [193]). The KS molecular orbitals that would result

from a perfectly adiabatic propagation at t = ∆t are then determined from a second ground-

state computation, performed after half a “velocity-Verlet” MD step, i.e., at nuclear positions

R(∆t) = R(0) + Ṙ(0)∆t. The initial velocities are then obtained from the relation:

ψ̇⊥v = ˆ̇Pψv, (48)

which is obtained by simply differentiating the definition of occupied-state projector, P̂ψv = ψv.

The right-hand side of Eq. (48) is finally easily computed by subtracting from each KS orbital

at time t = 0, its component over the occupied-state manifold at t = ∆t and dividing by ∆t.

2.6.4 Optimized tetrahedron method

The integration over k-points in the BZ is a crucial step in the calculation of the electronic

structure of a periodic system, affecting not only the ground state but linear response as well.

This is especially true for metallic systems where the integrand is discontinuous at the Fermi

level. Even more problematic is the integration of Dirac delta functions, such as those appearing

in the density of states (DOS), partial DOS and in the electron-phonon coupling constant.

Quantum ESPRESSO has always implemented a variety of “smearing” methods, in which

the delta function is replaced by a function of finite width (e.g., a Gaussian function, or more

sophisticated choices). It has also always implemented the linear tetrahedron method [194] with

the correction proposed by Blöchl [195], in which the BZ is divided into tetrahedra and the

integration is performed analytically by linear interpolation of KS eigenvalues in each tetrahe-

dron. Such method is however limited in its convenience and range of applicability: in fact the



linear interpolation systematically overestimates convex functions, thus making the convergence

against the number of k-points slow. The linear tetrahedron method was thus mostly restricted

to the calculation of DOS and partial DOS.

Since Quantum ESPRESSO v.6.1, the optimized tetrahedron method [196] is implemented.

Such method overcomes the drawback of the linear tetrahedron method using an interpolation

that accounts for the curvature of the interpolated function. The optimized tetrahedron method

has better convergence properties and an extended range of applicability: in addition to the

calculation of the ground-state charge density, DOS and partial DOS, it can be used in linear-

response calculation of phonons and of the electron-phonon coupling constant.

2.6.5 Wyckoff positions

In Quantum ESPRESSO the crystal geometry is traditionally specified by a Bravais lattice

index (called ibrav), by the crystal parameters (celldm, or a, b, c, cosab, cosac, cosbc)

describing the unit cell, and by the positions of all atoms in the unit cell, in crystal or Cartesian

axis.

Since v.5.1.1, it is possible to specify the crystal geometry in crystallographic style[197], ac-

cording to the notations of the International Tables of Crystallography (ITA)[198]. A complete

description of the crystal structure is obtained by specifying the space-group number according

to the ITA and the positions of symmetry-inequivalent atoms only in the unit cell. The latter

can be provided either in the crystal axis of the conventional cell, or as Wyckoff positions: a

set of special positions, listed in the ITA for each space group, that can be fully specified by

a number of parameters, none to three depending upon the site symmetry. Table 1 reports a

few examples of accepted syntax. The code generates the symmetry operations for the specified

Table 1: Examples of valid syntax for Wyckoff positions. C is the element name, followed by

the Wyckoff label of the site (number of equivalent atoms followed by a letter identifying the

site), followed by the site-dependent parameters needed to fully specify the atomic positions.

ATOMIC POSITIONS sg

C 1a

C 8g x

C 24m x y

C 48n x y z

C x y z

space group and applies them to inequivalent atoms, thus finding all atoms in the unit cell.

For some crystal systems there are alternate descriptions in the ITA, so additional input pa-

rameters may be needed to select the desired one. For the monoclinic system the “c-unique”

orientation is the default and bunique=.TRUE. must be specified in input if the “b-unique”

orientation is desired. For some space groups there are two possible choices of the origin. The

origin appearing first in the ITA is chosen by default, unless origin choice=2 is specified in

input. Finally, for trigonal space groups the atomic coordinates can be referred to the rhom-

bohedral or to the hexagonal Bravais lattices. The default is the rhombohedral lattice, so



rhombohedral=.FALSE. must be specified in input to use the hexagonal lattice.

A final comment for centered Bravais lattices: in the crystallographic literature, the conventional

unit cell is usually assumed. Quantum ESPRESSO however assumes the primitive unit cell,

having a smaller volume and a smaller number of atoms, and discards atoms outside the primitive

cell. Auxiliary code supercell.x, available in thermo pw (see Sec.2.4.1), prints all atoms in the

conventional cell when necessary.

3 Parallelization, modularization, interoperability and stability

3.1 New parallelization levels

The basic modules of Quantum ESPRESSO are characterized by a hierarchy of parallelization

levels, described in Ref.[6]. Processors are divided into groups, labeled by a MPI communicator.

Each group of processors distributes a specific subset of computations. The growing diffusion

of HPC machines based on nodes with many cores (32 and more) makes however pure MPI

parallelization not always ideal: running one MPI process per core has a high overhead, limiting

performances. It is often convenient to use mixed MPI-OpenMP parallelization, in which a

small number of MPI processes per node use OpenMP threads, either explicitly (i.e., with

compiler directives) or implicitly (i.e., via calls to OpenMP-aware library). Explicit OpenMP

parallelization, originally confined to computationally intensive FFT’s, has been extended to

many more parts of the code.

One of the challenges presented by massively parallel machine is to get rid of both memory and

CPU time bottlenecks, caused respectively by arrays that are not distributed across processors

and by non-parallelized sections of code. It is especially important to distribute all arrays and

parallelize all computations whose size/complexity increases with the dimensions of the unit cell

or of the basis set. Non-parallelized computations hamper “weak” scalability, that is, parallel

performance while increasing both the system size and the amount of computational resources,

while non-distributed arrays may become an unavoidable RAM bottleneck with increasing prob-

lem size. “Strong” scalability (that is, at fixed problem size and increasing number of CPUs)

is even more elusive than weak scalability in electronic-structure calculations, requiring, in ad-

dition to systematic distribution of computations, to keep to the minimum the ratio between

time spent in communications and in computation, and to have a nearly perfect load balancing.

In order to achieve strong scalability, the key is to add more parallelization levels and to use

algorithms that permit to overlap communications and computations.

For what concerns memory, notable offenders are arrays of scalar products between KS states

ψi: Oij = 〈ψi|Ô|ψj〉, where Ô can be either the Hamiltonian or an overlap matrix; and scalar

products between KS states and pseudopotential projectors β, pij = 〈ψi|βj〉. The size of such

arrays grows as the square of the size of the cell. Almost all of them are now distributed

across processors of the “linear-algebra group”, that is, the group of processors taking care

of linear-algebra operations on matrices. The most expensive of such operations are subspace

diagonalization (used in PWscf in the iterative diagonalization) and iterative orthonormalization

(used by CP). In both cases, a parallel dense-matrix diagonalization on distributed matrix is



needed. In addition to ScaLAPACK, Quantum ESPRESSO can now take advantage of newer

ELPA libraries (Ref. [199]), leading to significant performance improvements.

The array containing the plane-wave representation, ck,n(G), of KS orbitals is typically the

largest array, or one of the largest. While plane waves are already distributed across processors

of the “plane-wave group” as defined in Ref. [6], it is now possible to distribute KS orbitals as

well. Such a parallelization level is located between the k-point and the plane-wave paralleliza-

tion levels. The corresponding MPI communicator defines a subgroup of the “k-point group” of

processors and is called “band group communicator”. In the CP package, band parallelization is

implemented for almost all available calculations. Its usefulness is better appreciated in simu-

lations of large cells — several hundreds of atoms and more — where the number of processors

required by memory distribution would be too large to get good scalability from plane-wave

parallelization only.

In PWscf, band parallelization is implemented for calculations using hybrid functionals. The

standard algorithm to compute Hartree-Fock exchange in a plane-wave basis set (see Sec. 2.1.1)

contains a double loop on bands that is by far the heaviest part of computation. A first form of

parallelization, described in Ref. [36], was implemented in v.5.0. In the latest version, this has

been superseded by parallelization of pairs of bands, Ref. [37]. Such algorithm is compatible

with the “task-group” parallelization level (that is: over KS states in the calculation of V ψi

products) described in Ref. [6].

In addition to the above-mentioned groups, that are globally defined and in principle usable in all

routines, there are a few additional parallelization levels that are local to specific routines. Their

goal is to reduce the amount of non-parallel computations that may become significant for many-

atom systems. An example is the calculation of DFT+U (Sec. 2.1.3) terms in energy and forces,

Eqs. (12) and (14) respectively. In all these expressions, the calculation of the scalar products

between valence and atomic wave functions is in principle the most expensive step: for Nb bands

and Npw plane waves, O(NpwNb) floating-point operations are required (typically, Npw � Nb).

The calculation of these terms is however easily and effectively parallelized, using standard

matrix-matrix multiplication routines and summing over MPI processes with a mpi reduce

operation on the plane-wave group. The sum over k-points can be parallelized on the k-point

group. The remaining sums over band indices ν and Hubbard orbitals I,m may however require

a significant amount of non-parallelized computation if the number of atoms with a Hubbard U

term is not small. The sum over band indices is thus parallelized by simply distributing bands

over the plane-wave group. This is a convenient choice because all processors of the plane-wave

group are available once the scalar products are calculated. The addition of band parallelization

speeds up the computation of such terms by a significant factor. This is especially important

for Car-Parrinello dynamics, requiring the calculation of forces at each time step, when a sizable

number of Hubbard manifolds is present.

3.2 Aspects of interoperability

One of the original goals of Quantum ESPRESSO was to assemble different pieces of rather

similar software into an integrated software suite. The choice was made to focus on the following

four aspects: input data formats, output data files, installation mechanism, and a common base



of code. While work on the first three aspects is basically completed, it is still ongoing on the

fourth. It was however realized that a different form of integration — interoperability, i.e., the

possibility to run Quantum ESPRESSO along with other software — was more useful to the

community of users than tight integration. There are several reasons for this, all rooted in new

or recent trends in computational materials science. We mention in particular the usefulness of

interoperability for

1. excited-states calculations using many-body perturbation theory, at various levels of so-

phistication: GW , TDDFT, BSE (e.g., yambo [200], SaX [201], or BerkeleyGW [202]);

2. calculations using quantum Monte Carlo methods;

3. configuration-space sampling, using such algorithms as nudged elastic band (NEB), ge-

netic/evolutionary algorithms, meta-dynamics;

4. inclusion of quantum effects on nuclei via path-integral Monte Carlo;

5. multi-scale simulations, requiring different theoretical approaches, each valid in a given

range of time and length scale, to be used together;

6. high-throughput, or “exhaustive”, calculations (e.g., AiiDA [203, 204] and AFLOWπ [205])

requiring automated submission, analysis, retrieval of a large number of jobs;

7. “steering”, i.e., controlling the computation in real time using either a graphical user

interface (GUI) or an interface in a high-level interpreted language (e.g., python).

It is in principle possible, and done in some cases, to implement all of the above into Quantum

ESPRESSO, but this is not always the best practice. A better option is to use Quantum

ESPRESSO in conjunction with external software performing other tasks.

Cases 1 and 2 mentioned above typically use as starting step the self-consistent solution of

KS equations, so that what is needed is the possibility for external software to read data files

produced by the main Quantum ESPRESSO codes, notably the self-consistent code PWscf

and the molecular dynamics code CP.

Cases 3 and 4 typically require many self-consistent calculations at different atomic configura-

tions, so that what is needed is the possibility to use the main Quantum ESPRESSO codes

as “computational engine”, i.e., to call PWscf or CP from an external software, using atomic

configurations supplied by the calling code.

The paradigmatic case 5 is QM-MM (Sec.2.5.2), requiring an exchange of data, notably: atomic

positions, forces, and some information on the electrostatic potential, between Quantum ESPRESSO

and the MM code – typically a classical MD code.

Case 6 requires easy access to output data from one simulation, and easy on-the-fly generation

of input data files as well. This is also needed for case 7, which however may also require a finer-

grained control over computations performed by Quantum ESPRESSO routines: in the most

sophisticated scenario, the GUI or python interface should be able to perform specific operations

“on the fly”, not just running an entire self-consistent calculation. This scenario relies upon the

existence of a set of application programming interfaces (API’s) for calls to basic computational

tasks.



3.3 Input/Output and data file format

On modern machines, characterized by fast CPU’s and large RAM’s, disk input/output (I/O)

may become a bottleneck and should be kept to a strict minimum. Since v.5.3 both PWscf

and CP do not perform by default any I/O at run time, except for the ordinary text output

(printout), for checkpointing if required or needed, and for saving data at the end of the run.

The same is being gradually extended to all codes. In the following, we discuss the case of the

final data writing.

The original organization of output data files (or more exactly, of the output data directory)

was based on a formatted “head” file, with a XML-like syntax, containing general information

on the run, and on binary data files containing the KS orbitals and the charge density. We

consider the basic idea of such approach still valid, but some improvements were needed. On

one hand, the original head file format had a number of small issues—inconsistencies, missing

pieces of relevant information—and used a non-standard syntax, lacking a XML “schema” for

validation. On the other hand, data files suffered from the lack of portability of Fortran binary

files and had to be transformed into text files, sometimes very large ones, in order to become

usable on a different machine.

3.3.1 XML files with schema

Since v.6.0, the “head” file is a true XML file using a consistent syntax, described by a XML

schema, that can be easily parsed with standard XML tools. It also contains complete informa-

tion on the run, including all data needed to reproduce the results, and on the correct execution

and exit status. This aspect is very useful for high-throughput applications, for databasing of

results and for verification and validation purposes.

The XML file contains an input section and can thus be used as input file, alternative to the

still existing text-based input. It supersedes the previous XML-based input, introduced several

years ago, that had a non-standard syntax, different from and incompatible with the one of the

original head file. Implementing a different input is made easy by the clear separation existing

between the reading and initialization phases: input data is read, stored in a separate module,

copied to internal variables.

The current XML file can be easily parsed and generated using standard XML tools and is

especially valuable in conjunction with GUI’s. The schema can be found at the URL:

http://www.quantum-espresso.org/ns/qes/qes-1.0.xsd.

3.3.2 Large-record data file format

Although not as I/O-bound as other kinds of calculations, electronic-structure simulations may

produce a sizable amount of data, either intermediate or needed for further processing. The

largest array typically contains the plane-wave representation of KS orbitals; other sizable arrays

contain the charge and spin density, either in reciprocal or in real space. In parallel execution

using MPI, large arrays are distributed across processors, so one has two possibilities: let each

MPI process write its own slice of the data (“distributed” I/O), or collect the entire array on a



single processor before writing it (“collected” I/O). In distributed I/O, coding is straightforward

and efficient, minimizing file size and achieving some sort of I/O parallelization. A global file

system, accessible to all MPI processes, is needed. The data is spread into many files that are

directly usable only by a code using exactly the same distribution of arrays, that is, exactly

the same kind of parallelization. In collected I/O, the coding is less straightforward. In order

to ensure portability, some reference ordering, independent upon the number of processors and

the details of the parallelization, must be provided. For large simulations, memory usage and

communication pattern must be carefully optimized when a distributed array is collected into a

large array on a single processor.

In the original I/O format, KS orbitals were saved in reciprocal space, in either distributed or

collected format. For the latter, a reproducible ordering of plane waves (including the ordering

within shells of plane waves with the same module), independent upon parallelization details

and machine-independent, ensures data portability. Charge and spin density were instead saved

in real space and in collected format. In the new I/O scheme, available since v.6.0, the output

directory is simplified, containing only the XML data file, one file per k-point with KS orbitals,

one file for the charge and spin density. Both files are in collected format and both quantities

are stored in reciprocal space. In addition to Fortran binary, it is possible to write data files

in HDF5 format[206]. HDF5 offers the possibility to write structured record and portability

across architectures, without significant loss in performances; it has an excellent support and

is the standard for I/O in other fields of scientific computing. Distributed I/O is kept only for

checkpointing or as a last-resort alternative.

In spite of its advantages, such a solution has still a bottleneck in large-scale computations on

massively parallel machines: a single processor must read and write large files. Only in the case of

parallelization over k-points is I/O parallelized in a straightforward way. More general solutions

to implement parallel I/O using parallel extensions of HDF5 are currently under examination

in view of enabling Quantum ESPRESSO towards “exascale” computing (that is: towards

O(1018) floating-point operations per second).

3.4 Organization of the distribution

Codes contained in Quantum ESPRESSO have evolved from a small set of original codes, born

with rather restricted goals, into a much larger distribution via continuous additions and exten-

sions. Such a process - presumably common to most if not all scientific software projects - can

easily lead to uncoordinated growth and to bad decisions that negatively affect maintainability.

3.4.1 Package re-organization and modularization

In order to make the distribution easier to maintain, extend and debug, the distribution has

been split into

a. base distribution, containing common libraries, tools and utilities, core packages PWscf,

CP, PostProc, plus some commonly used additional packages, currently: atomic, PWgui,

PWneb, PHonon, XSpectra, turboTDDFT, turboEELS, GWL, EPW;



b. external packages such as SaX [201], yambo [200], Wannier90 [170], WanT [207, 208], that

are automatically downloaded and installed on demand.

The directory structure now explicitly reflects the structure of Quantum ESPRESSO as a “fed-

eration” of packages rather than a monolithic one: a common base distribution plus additional

packages, each of which fully contained into a subdirectory.

In the reorganization process, the implementation of the NEB algorithm was completely rewrit-

ten, following the paradigm sketched in Sec. 3.2. PWneb is now a separate package that imple-

ments the NEB algorithm, using PWscf as the computational engine. The separation between

the NEB algorithm and the self-consistency algorithm is quite complete: PWneb could be adapted

to work in conjunction with a different computational engine with a minor effort.

The implementation of meta-dynamics has also been re-considered. Given the existence of

a very sophisticated and well-maintained package[209] Plumed for all kinds of meta-dynamics

calculations, the PWscf and CP packages have been adapted to work in conjunction with Plumed

v.1.x, removing the old internal meta-dynamics code. In order to activate meta-dynamics, a

patching process is needed, in which a few specific “hook” routines are modified so that they

call routines from Plumed.

3.4.2 Modular parallelism

The logic of parallelism has also evolved towards a more modular approach. It is now possible

to have all Quantum ESPRESSO routines working inside a MPI communicator, passed as

argument to an initialization routine. This allows in particular the calling code to have its own

parallelization level, invisible to Quantum ESPRESSO routines; the latter can thus perform

independent calculations, to be subsequently processed by the calling code. For instance: the

“image” parallelization level, used by NEB calculations, is now entirely managed by PWneb and

no longer in the called PWscf routines. Such a feature is very useful for coupling external codes

to Quantum ESPRESSO routines. To this end, a general-purpose library for calling PWscf

or CP from external codes (either Fortran or C/C++ using the Fortran 2003 ISO C binding

standard) is provided in the directory COUPLE/.

3.4.3 Reorganization of linear-response codes

All linear-response codes described in Secs. 2.2 and 2.1.4 share as basic computational step

the self-consistent solution of linear systems Ax = b for different perturbations b, where the

operator A is derived from the KS Hamiltonian H and the linear-response potential. Both

the perturbations and the methods of solution differ by subtle details, leading to a plethora of

routines, customized to solve slightly different versions of the same problem. Ideally, one should

be able to solve any linear-response problem by using a suitable library of existing code. To

this end, a major restructuring of linear-response codes has been started. Several routines have

been unified, generalized and extended. They have been collected into the same subdirectory,

LR Modules, that will be the container of “generic” linear-response routines. Linear-response-

related packages now contain only code that is specific to a given perturbation or property

calculation.



3.5 Quantum ESPRESSO and scripting languages

A desirable feature of electronic-structure codes is the ability to be called from a high-level

interpreted scripting language. Among the various alternatives, python has emerged in the

last years due to its simple and powerful syntax and to the availability of numerical extensions

(NumPy). Since v.6.0, an interface between PWscf and the path integral MD driver i-PI [43]

is available and distributed together with Quantum ESPRESSO. Various implementations

of an interface between Quantum ESPRESSO codes and the atomic simulation environment

(ASE) [210] are also available. In the following we briefly highlight the integration of Quantum

ESPRESSO with AiiDA, the pwtk toolkit for PWscf, and the QE-emacs-modes package for

user-friendly editing of Quantum ESPRESSO with the Emacs editor [211].

3.5.1 AiiDA: a python materials’ informatics infrastructure

AiiDA [203] is a comprehensive python infrastructure aimed at accelerating, simplifying, and

organizing major efforts in computational science, and in particular computational materials

science, with a close integration with the Quantum ESPRESSO distribution. AiiDA is struc-

tured around the four pillars of the ADES model (Automation, Data, Environment, and Sharing,

Ref. 203)), and provides a practical and efficient implementation of all four. In particular, it

aims at relieving the work of a computational scientist from the tedious and error-prone tasks

of running, overseeing, and storing hundreds or more of calculations daily (Automation pillar),

while ensuring that strict protocols are in place to store these calculations in an appropriately

structured database that preserves the provenance of all computational steps (Data pillar). This

way, the effort of a computational scientist can become focused on developing, curating, or ex-

ploiting complex workflows (Environment pillar) that calculate in a robust manner e.g. the

desired materials properties of a given input structure, recording expertise in reproducible se-

quences that can be progressively perfected, while being able to share freely both the workflows

and the data generated with public or private common repositories (Sharing). AiiDA is built us-

ing an agnostic structure that allows to interface it with any given code — through plugins and a

plugin repository — or with different queuing systems, transports to remote HPC resources, and

property calculators. In addition, it allows to use arbitrary object-relational mappers (ORMs) as

backends (currently, Django and SQLAlchemy are supported). These ORMs map the AiiDA ob-

jects (“Codes”, “Calculations” and “Data”) onto python classes, and lead to the representation

of calculations through Directed Acyclic Graphs (DAGs) connecting all objects with directional

arrows; this ensures both provenance and reproducibility of a calculation. As an example, in

Fig. 4 we present a simple DAG representing a PWscf calculation on BaTiO3.

3.5.2 Pwtk: a toolkit for PWscf

The pwtk, standing for PWscf ToolKit, is a Tcl scripting interface for PWscf set of pro-

grams contained in the Quantum ESPRESSO distribution. It aims at providing a flexible and

productive framework. The basic philosophy of pwtk is to lower the learning curve by using

syntax that closely matches the input syntax of Quantum ESPRESSO. Pwtk features include:

(i) assignment of default values of input variables on a project basis, (ii) reassignment of input



Figure 4: A simple AiiDA directed acyclic graph for a Quantum ESPRESSO calculation using

PWscf (square), with all the input nodes (data, circles; code executable, diamond) and all the

output nodes that the daemon creates and connects automatically.

variables on the fly, (iii) stacking of input data, (iv) math-parser, (v) extensible and hierarchical

configuration (global, project-based, local), (vi) data retrieval functions (i.e., either loading the

data from pre-existing input files or retrieving the data from output files), and (vii) a few prede-

fined higher-level tasks, that consist of several seamlessly integrated calculations. Pwtk allows to

easily automate large number of calculations and to glue together different computational tasks,

where output data of preceding calculations serve as input for subsequent calculations. Pwtk

and related documentation can be downloaded from http://pwtk.quantum-espresso.org.

3.5.3 QE-emacs-modes

The QE-emacs-modes package is an open-source collection of Emacs major-modes for making

the editing of Quantum ESPRESSO input files easier and more comfortable with Emacs. The

package provides syntax highlighting (see Fig. 5a), auto-indentation, auto-completion, and a

few utility commands, such as M-x prog-insert-template that inserts a respective input file

template for the prog program (e.g., pw, neb, pp, projwfc, dos, bands). The QE-emacs-modes

are aware of all namelists, variables, cards, and options that are explicitly documented in the

INPUT PROG.html files, which describe the respective input file syntax (see Fig. 5b), where

PROG stands for the uppercase name of a given program of Quantum ESPRESSO. The

reason for this is that both INPUT PROG.html files and QE-emacs-modes are automatically

generated by the internal helpdoc utility of Quantum ESPRESSO.



(a) (b)

Figure 5: (a) pw.x input file opened in Emacs with pw-mode highlighting the following ele-

ments: namelists and their variables (blue and brown), cards and their options (purple and

green), comments (red), string and logical variable values (burgundy and cyan, respectively).

A mistyped variable (i.e., ibrv instead of ibrav) is not highlighted. (b) An excerpt from the

INPUT PW.html file, which describes the pw.x input file syntax. Both the QE-emacs-modes and

the INPUT PW.html are automatically generated from the Quantum ESPRESSO’s internal

definition of the input file syntax.

3.6 Continuous Integration and testing

The modularization of Quantum ESPRESSO reduces the extent of code duplication, thus

improving code maintainability, but it also creates interdependencies between the modules so

that changes to one part of the code may impact other parts. In order to monitor and mitigate

these side effects we developed a test-suite for non-regression testing. Its purpose is to increase

code stability by identifying and correcting those changes that break established functionalities.

The test-suite relies on a modified version of python script testcode [212].

The layout of the test-suite is illustrated in Fig. 6. The suite is invoked via a Makefile that

accepts several options to run sequential or parallel tests or to test one particular feature of

the code. The test-suite runs the various executables of Quantum ESPRESSO, extracts the

numerical data of interest, compares them to reference data, and decides whether the test is

successful using specified thresholds. At the moment, the test-suite contains 181 tests for PW,

14 for PH, 17 for CP, 43 for EPW, and 6 for TDDFpT covering 43%, 30%, 29%, 63% and 25% of

the blocks, respectively. Moreover, 60%, 44%, 47%, 76% and 32% of the subroutines in each of

these codes are tested, respectively.

The test-suite also contains the logic to automatically create reference data by running the

relevant executables and storing the output in a benchmark file. These benchmarks are updated

only when new tests are added or bugfixes modify the previous behavior.

The test-suite enables automatic testing of the code using several Buildbot test farms. The

test farms monitor the code repository continuously, and trigger daily builds in the night after
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Figure 6: (Color online) Layout of the Quantum ESPRESSO test-suite. The program

testcode runs Quantum ESPRESSO executables, extracts numerical values from the out-

put files, and compares the results with reference data. If the difference between these data

exceeds a specified threshold, testcode issues an error indicating that a recent commit might

have introduced a bug in parts of the code.



every new commit. Several compilers (Intel, GFortran, PGI) are tested both in serial and

in parallel (openmpi, mpich, Intel mpi and mvapich2) execution with different mathematical

libraries (LAPACK, BLAS, ScaLAPACK, FFTW3, MKL, OpenBlas). More information can be

found at test-farm.quantum-espresso.org.

The official mirror of the development version of Quantum ESPRESSO (https://github.com/QEF/q-e)

employs a subset of the test-suite to run Travis CI. This tool rapidly identifies erroneous com-

mits and can be used to assist code review during a pull request.

4 Outlook and conclusions

This paper describes the core methodological developments and extensions of Quantum ESPRESSO

that have become available, or are about to be released, after Ref. 6 appeared. The main goal of

Quantum ESPRESSO to provide an efficient and extensible framework to perform simulations

with well-established approaches and to develop new methods remains firm, and it has nurtured

an ever growing community of developers and contributors.

Achieving such goal, however, becomes increasingly challenging. On one hand, computational

methods become ever more complex and sophisticated, making it harder not only to implement

them on a computer but also to verify the correctness of the implementation (for a much needed

initial effort on verification of electronic-structure codes based on DFT, see Ref. [5]). On the

other hand, exploiting the current technological innovations in computer hardware can requires

massive changes to software and even algorithms. This is especially true for the case of “ac-

celerated” architectures (GPUs and the like), whose exceptional performance can translate to

actual calculations only after heavy restructuring and optimization. The complexity of existing

codes makes a rewrite for new architectures a challenging choice, and a risky one given the fast

evolution of computer architectures.

We think that the main directions followed until now in the development of Quantum ESPRESSO

are still valid, not only for new methodologies, but also for adapting to new computer architec-

tures and future “exascale” machines. Namely, we will continue pushing towards code reusability,

by removing duplicated code and/or replacing it with routines performing well-defined tasks,

by identifying the time-intensive sections of the code for machine-dependent optimization, by

having documented APIs with a predictable behavior and with limited dependency upon global

variables, and we will continue to optimize performance and reliability. Finally, we will push

towards extended interoperability with other software, also in view of its usefulness for data

exchange and for cross-verification, or to satisfy the needs of high-throughput calculations.

Still, the investment in the development and maintenance of state-of-the-art scientific software

has historically lagged behind compared to the investment in the applications that use such

software, and one wonders is this the correct or even forward-looking approach given the strategic

importance of such tools, their impact, their powerful contribution to open science, and their

full and complete availability to the entire community. In all of this, the future of materials

simulations appear ever more bright[213], and the usefulness and relevance of such tools to

accelerating invention and discovery in science and technology is reflected in its massive uptake

by the community at large.
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[29] S. Poncé, E. Margine, C. Verdi, and F. Giustino, Comput. Phys. Commun. 209, 116

(2016).



[30] P. Umari, G. Stenuit, and S. Baroni, Phys. Rev. B 79, 201104 (2009).

[31] P. Umari, G. Stenuit, and S. Baroni, Phys. Rev. B 81, 115104 (2010).

[32] M. Schlipf, H. Lambert, N. Zibouche, and F. Giustino, “SternheimerGW,” https://

github.com/QEF/SternheimerGW (2017).

[33] A. Dal Corso, https://github.com/dalcorso/thermo_pw ().

[34] L. Paulatto, F. Mauri, and M. Lazzeri, Phys. Rev. B 87, 214303 (2013).

[35] G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Phys. Rev. B 88, 045430 (2013).

[36] N. Varini, D. Ceresoli, L. Martin-Samos, I. Girotto, and C. Cavazzoni, Comput. Phys.

Commun. 184, 1827 (2013).

[37] T. Barnes, T. Kurth, P. Carrier, N. Wichmann, D. Prendergast, P. R. C. Kent, and

J. Deslippe, Comput. Phys. Commun. 241, 52 (2017).

[38] A. Dal Corso, http://pslibrary.quantum-espresso.org ().

[39] A. Dal Corso, Comp. Material Science 95, 337 (2015).

[40] I. Castelli, G. Prandini, A. Marrazzo, N. Mounet, and N. Marzari, http://

materialscloud.org/sssp/.

[41] S. Plimpton, J. Comput. Phys. 117, 1 (1995).

[42] C. Ma, L. Martin-Samos, S. Fabris, A. Laio, and S. Piccinin, Comput. Phys. Commun.

195, 191 (2015).

[43] M. Ceriotti, J. More, and D. E. Manolopoulos, Comput. Phys. Commun. 185, 1019

(2014).

[44] I. Carnimeo, P. Giannozzi, and S. Baroni, in preparation.

[45] M. Marsili and P. Umari, Phys. Rev. B 87, 205110 (2013).

[46] J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005).

[47] D. Anil, L. Lin, and Y. Lexing, J. Chem. Theory Comput. 11, 1463 (2015).

[48] D. Anil, L. Lin, and Y. Lexing, (2017), SIAM J. Sci. Comput., in press.

[49] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

[50] M. Sharma, Y. Wu, and R. Car, Int. J. Quantum Chem. 95, 821 (2003).

[51] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

[52] B. Santra, R. A. DiStasio Jr., F. Martelli, and R. Car, Mol. Phys. 113, 2829 (2015).



[53] R. H. French, V. A. Parsegian, R. Podgornik, R. F. Rajter, A. Jagota, J. Luo, D. Asthagiri,

M. K. Chaudhury, Y.-m. Chiang, S. Granick, S. Kalinin, M. Kardar, R. Kjellander, D. C.

Langreth, J. Lewis, S. Lustig, D. Wesolowski, J. S. Wettlaufer, W.-Y. Ching, M. Finnis,

F. Houlihan, O. A. von Lilienfeld, C. J. van Oss, and T. Zemb, Rev. Mod. Phys. 82, 1887

(2010).

[54] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010).

[55] A. Tkatchenko, R. A. DiStasio Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402

(2012).

[56] A. Ambrosetti, A. M. Reilly, R. A. DiStasio Jr., and A. Tkatchenko, J. Chem. Phys. 140,

18A508 (2014).

[57] M. A. Blood-Forsythe, T. Markovich, R. A. DiStasio Jr., R. Car, and A. Aspuru-Guzik,

Chem. Sci. 7, 1712 (2016).
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