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Abstract

This article reviews the theory of electron-phonon interactions in solids from the point
of view of ab initio calculations. While the electron-phonon interaction has been studied
for almost a century, predictive non-empirical calculations have become feasible only during
the past two decades. Today it is possible to calculate from first principles many materials
properties related to the electron-phonon interaction, including the critical temperature of
conventional superconductors, the carrier mobility in semiconductors, the temperature de-
pendence of optical spectra in direct and indirect-gap semiconductors, the relaxation rates
of photoexcited carriers, the electron mass renormalization in angle-resolved photoelectron
spectra, and the non-adiabatic corrections to phonon dispersion relations. Here we review the
theoretical and computational framework underlying modern electron-phonon calculations
from first principles, as well as landmark investigations of the electron-phonon interaction
in real materials. In the first part of the article we summarize the elementary theory of
electron-phonon interactions and their calculations based on density-functional theory. In
the second part we discuss a general field-theoretic formulation of the electron-phonon prob-
lem, and establish the connection with practical first-principles calculations. In the third
part we review a number of recent investigations of electron-phonon interactions in the areas
of vibrational spectroscopy, photoelectron spectroscopy, optical spectroscopy, transport, and
superconductivity.
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1 Introduction

The interaction between fermions and bosons is one of the cornerstones of many-particle physics.
It is therefore unsurprising that, despite being one of the most thoroughly studied chapters of
solid state physics, the interaction between electrons and phonons in solids continues to attract
unrelenting attention.

Electron-phonon interactions (EPIs) are ubiquitous in condensed matter and materials physics.
For example, they underpin the temperature dependence of the electrical resistivity in metals
and the carrier mobility in semiconductors, they give rise to conventional superconductivity, and
contribute to optical absorption in indirect-gap semiconductors. In addition, EPIs enable the
thermalization of hot carriers, determine the temperature dependence of electron energy bands
in solids, and distort band structures and phonon dispersion relations of metals, leading to char-
acteristic kinks and Kohn anomalies in photoemission and Raman/neutron spectra, respectively.
EPIs also play a role in the areas of spintronics and quantum information, for example by cou-
pling lattice and spin degrees of freedom in electromagnons, or by modulating the lifetimes of
electron spins in color centers.

Given the fundamental and practical importance of electron-phonon interactions, it is perhaps
surprising that the majority of theoretical studies in this area still rely on semi-empirical model
Hamiltonians, especially in times when ab initio calculations have become pervasive in every
area of condensed matter and materials physics. The reason for this lag can be found in the
complexity of electron-phonon calculations: while density functional theory (DFT) calculations
of total energies and structural properties were already well established in the early 1980s [2],
systematic ab initio calculations of EPIs had to wait for the development of density functional
perturbation theory (DFPT) for lattice dynamics between the late 1980s and the mid 1990s [3–5].

Despite this delayed start, the past two decades have witnessed tremendous progress in this
area, and new exciting applications are becoming accessible as first-principles techniques for
studying EPIs catch up with more established DFT methods. These advances are driving the
evolution from qualitative and descriptive theories of electron-phonon effects in model solids to
quantitative and predictive theories of real materials. As the methodology for calculating EPIs
from first principles is rapidly reaching maturity, it appears that the time is ripe for reviewing
this vast, complex and fascinating landscape.

One of the most authoritative reviews on the theory of EPIs is the classic book by Grimvall [6].
This monumental work represents an unmissable reference for the specialist. However, as this
book pre-dates the rise of ab initio computational methods based on DFT, it inevitably misses
the most recent developments in this area. The present article constitutes an attempt at filling
this gap by reflecting on what DFT calculations can contribute to the study of electron-phonon
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physics. In addition, this article is also an opportunity to establish a unified conceptual and
mathematical framework in this incredibly diverse landscape, shed light on the key approxima-
tions, and identify some of the challenges and opportunities ahead.

As emphasized by the title ‘Electron-phonon interactions from first principles’, the aim of this
article is to review the ab initio theory of EPIs and to survey modern advances in ab initio
calculations of EPIs. The reader interested in the fundamentals of electron-phonon physics or
in theoretical developments relating to model Hamiltonians is referred to the outstanding mono-
graphs by Ziman [7], Grimvall [6], Schrieffer [8], Mahan [9], and Alexandrov and Devreese [10].

Among significant recent advances that are covered in this review we mention the zero-point
renormalization and the temperature dependence of electronic band structures; the calculation
of phonon-assisted optical absorption spectra; the electron mass renormalization and the kinks in
angle-resolved photoemission spectra; the thermalization of hot carriers in semiconductors; the
calculation of phonon-limited mobility; the development of efficient computational techniques
for calculating EPIs; and efforts to improve the predictive power of EPI calculations by going
beyond standard density functional theory.

The review is organized as follows: Sec. 2 provides an historical perspective on the development
of theories of the EPI, from early semi-empirical approaches to modern first-principles calcula-
tions. In Sec. 3 we examine the various components of DFT calculations of EPIs in solids, and
set the formalism which will be used throughout this article. Section 4 provides a synthesis of
the most advanced field-theoretic approaches employed to study EPIs, and Sec. 5 makes the link
between the most general formalism and DFT calculations for real materials. In this section the
reader will find a number of expressions which are useful for practical implementations. Section 6
reviews advanced computational techniques for performing calculations of EPIs efficiently and
accurately, such as Wannier interpolation and Fermi surface harmonics. Here we also discuss
recent progress in the study of electron-phonon couplings in polar semiconductors. In Sec. 7 we
discuss recent calculations of phonons beyond the adiabatic Born-Oppenheimer approximation.
Section 8 reviews calculations of EPIs in the context of photoelectron spectroscopy. Section 9
focuses on the optical properties of semiconductors and insulators, in particular the temperature
dependence of the band structure and phonon-assisted optical processes. In Sec. 10 we review
calculations on the effects of EPIs on carrier dynamics and transport, including carrier thermal-
ization rates and mobilities. Section 11 discusses EPI calculations in the area of phonon-mediated
superconductivity. Attempts at improving the accuracy and predictive power of ab initio EPI
calculations by using more sophisticated electronic structure methods are discussed in Sec. 12.
Finally in Sec. 13 we highlight the most pressing challenges in the study of EPIs from first prin-
ciples, and we present our conclusions. We leave to the appendices some notational remarks and
more technical discussions.
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2 Historical development

The notion of ‘electron-phonon interactions’ is as old as the quantum theory of solids. In fact in
the very same work where Bloch discussed the formal solutions of the Schrödinger equation in
periodic potentials [11], Sec. V begins with the all-telling title: “The interaction of the electrons
and the elastic waves of the lattice”. In this work the first quantum theory of the temperature-
dependent electrical resistivity of metals was developed. It took only a few years for Bloch’s
‘elastic waves’ to be replaced by the brand-name ‘phonon’ by Frenkel [12], thus establishing a
tradition that continues unaltered almost a century later [13].

In order to discuss the early approaches to the electron-phonon problem, it is useful to state
right from the start the standard form of the Hamiltonian describing a coupled electron-phonon
system:

Ĥ =
∑
nk

εnkĉ
†
nkĉnk +

∑
qν

~ωqν(â†qν âqν + 1/2)

+ N
− 1

2
p

∑
k,q
mnν

gmnν(k,q) ĉ†mk+qĉnk (âqν + â†−qν)

[
+ N−1p

∑
k,q,q′

mnνν′

gDW
mnνν′(k,q,q

′) ĉ†mk+q+q′ ĉnk (âqν + â†−qν)(âq′ν′ + â†−q′ν′)

]
. (1)

In this expression the first line describes the separate electron and phonon subsystems using the
usual second-quantized formalism, while the second line specifies the mutual coupling between
electrons and phonons to first order in the atomic displacements [9]. Here εnk is the single-particle
eigenvalue of an electron with crystal momentum k in the band n, ωqν is the frequency of a lattice
vibration with crystal momentum q in the branch ν, and ĉ†nk/ĉnk (â†qν/âqν) are the associated
fermionic (bosonic) creation/destruction operators. Np is the number of unit cells in the Born-
von Kármán supercell (see Appendix A). The third line of Eq. (1) describes the electron-phonon
coupling Hamiltonian to second order in the atomic displacements. This contribution is rarely
found in the early literature (hence the square brackets), but it plays an important role in the
theory of temperature-dependent band structures (Sec. 5.2.1). The matrix elements gmnν(k,q)

and gDW
mnνν′(k,q,q

′) measure the strength of the coupling between the electron and the phonon
subsystems, and have physical dimensions of an energy. Here the superscript ‘DW’ stands for
Debye-Waller, and relates to the Debye-Waller self-energy to be discussed in Sec. 5.2.2. Complete
details as well as a derivation of Eq. (1) will be provided in Sec. 3.

The formal simplicity of Eq. (1) conceals some important difficulties that one faces when attempt-
ing to use this equation for predictive calculations. For example, the electronic Hamiltonian relies
on the assumption that the system under consideration can be described in terms of well-defined
quasi-particle excitations. Similarly, the phonon term is meaningful only within the harmonic
and the adiabatic approximations. More importantly, Eq. (1) does not provide us with any
prescription for determining the numerical parameters εnk, ωqν , gmnν(k,q), and gDW

mnνν′(k,q,q
′).

In a sense the history of the study of electron-phonon interactions is really the history of how to
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calculate the parameters entering Eq. (1) using procedures that can be at once rigorous, reliable,
and practical. As it will become clear in Sec. 4, despite enormous progress in this area, some
conceptual difficulties still remain.

2.1 Early approaches to the electron-phonon interaction

2.1.1 Metals

A clear account of the theory of EPIs until the late 1950s is given by Ziman [7]. In the following
we highlight only those aspects that are relevant to the subsequent discussion in this article.

Early studies of electron-phonon interactions in solids were motivated by the quest for a quan-
tum theory of the electrical resistivity in metals [14]. The common denominator of most early
approaches is that the electronic excitations in Eq. (1) were described using the free electron gas
model, εnk = ~2k2/2me − εF, me being the electron mass and εF the Fermi energy; the lattice
vibrations were described as acoustic waves using the Debye model, ωqν = vs|q|, vs being the
speed of sound in the solid. Both approximations were reasonable given that the systems of
interest included almost exclusively elemental metals, and primarily monovalent alkali and noble
metals [15]. While these approximations were fairly straightforward, it was considerably more
challenging to determine the EPI matrix elements gmnν(k,q) using realistic approximations.

The very first expression of the electron-phonon matrix element was derived by Bloch [11]; using
contemporary notation it can be written as:

gmnν(k,q) = −i
(

~
2NpMκωqν

)1/2
q · eκν(q)V0. (2)

Here Mκ is the mass of the κ-th nucleus, and eκν(q) is the polarization of the acoustic wave
corresponding to the wavevector q and mode ν. The term V0 represents a unit-cell average of
the ‘effective’ potential experienced by the electrons in the crystal. Equation (2) was meant to
describe the scattering from an initial electronic state with wavevector k to a final state with
wavevector k + q, via an acoustic phonon of wavevector q and frequency ωqν . The formula
was developed for free electron metals, and neglects so-called ‘umklapp’ (folding) processes, i.e.
scattering events whereby k goes into k + q + G with G being a reciprocal lattice vector. A
derivation of Eq. (2) is provided in Sec. 3.2.5. In order to determine V0 Bloch [11] argued that
the crystal may be described as a continuous deformable medium. Starting from this assumption
he reached the conclusion that the average potential can be approximated as V0 = ~2/(16mea

2
0)

(a0 is the Bohr radius). Even though Bloch’s matrix element is no longer in use, this model
provides helpful insight into the nature of EPIs in monovalent metals. For example the so-called
‘polarization factor’ in Eq. (2), q ·eκν(q), shows that (in the absence of umklapp processes) only
longitudinal sound waves scatter electrons.

Nordheim proposed a refinement of Bloch’s model whereby the average potential V0 in Eq. (2) is
replaced by the Fourier component Vκ(q) of the ionic Coulomb potential (see Sec. 3.2.5) [16]. The
key assumption underlying this model is that the effective potential experienced by the electrons
is simply the sum of the individual bare ionic potentials of each nucleus. When a nucleus is
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displaced from its equilibrium position, the corresponding potential also shifts rigidly. This is
the so-called ‘rigid-ion’ approximation.

The main difficulty that arises with the rigid-ion model is that the Fourier transform of the
Coulomb potential diverges as q−2 for q = |q| → 0; this leads to unrealistically strong EPIs. In
order to circumvent this difficulty Mott and Jones proposed to truncate the ionic potential at
the boundary of the Wigner-Seitz unit cell of the crystal [15]. This choice represents the first
attempt at including the electronic screening of the nuclear potential in a rudimentary form. In
practice Mott and Jones calculated the Fourier transform of Vκ(r) by restricting the integration
over a Wigner-Seitz cell; the resulting potential is no longer singular at long wavelengths. A
detailed discussion of this model can be found in Ref. [7].

Despite some initial successes in the study of the electrical conductivity of metals, the descriptive
power of these early models was undermined by the complete neglect of the electronic response
to the ionic displacements. The first attempt at describing the effect of the electronic screening
was made by Bardeen [17]. In his model the average potential V0 in Eq. (2) is replaced by:

V0 → Vκ(q)/ε(q), (3)

where ε(q) is the Lindhard function [9]:

ε(q) = 1 + (kTF/q)
2F (q/2kF). (4)

Here kTF and kF are the Thomas-Fermi screening wavevector and the Fermi wavevector, respec-
tively, and F (x) = 1/2 + (4x)−1(1 − x2) log |1 + x|/|1 − x|. A derivation of Bardeen’s model is
provided in Sec. 3.2.5. Since ε(q) → (kTF/q)

2 for q → 0, the sigularity of the electron-nuclei
potential is removed in Bardeen’s matrix element. The work of Bardeen can be considered as a
precursor of modern ab initio approaches, insofar the calculation of the matrix element was car-
ried out using a self-consistent field method within the linearized Hartree theory. This strategy
is similar in spirit to modern DFPT calculations.

The key qualitative difference between the approach of Bardeen and modern techniques lies in
the neglect of exchange and correlation effects in the screening. A possible route to overcome
this limitation was proposed by Bardeen and Pines [18]. In this work the authors considered the
role of a screened exchange interaction in the electron-phonon problem (see Appendix B of their
work), however the mathematical complexity of the formalism prevented further progress along
this direction. Similar efforts were undertaken by Hone [19], and a more detailed account of the
early approximations to exchange and correlation can be found in Ref. [6].

The most interesting aspect of the work by Bardeen and Pines [18], as well as previous work
along the same lines by Nakajima [20], is that for the first time the electron-phonon problem was
addressed using a field-theoretic approach.

One interesting feature in the theory of Bardeen and Pines is that their field-theoretic formu-
lation naturally leads to a retarded electron-phonon vertex: the effective potential experienced
by electrons upon the displacement of nuclei depends on how fast this displacement takes place.
In this approach the effective potential V0 in Eq. (2) is replaced by the dynamically screened
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potential:
V0 → Vκ(q)/ε(q, ωqν). (5)

Here ε(q, ω) is the frequency-dependent Lindhard function [9], and the effect of electronic screen-
ing is evaluated at the phonon frequency, ω = ωqν . Somewhat surprisingly, this development
was not followed up in the literature on ab initio calculations of EPIs.

2.1.2 Semiconductors

While the investigation of electron-phonon effects was initially restricted to monovalent met-
als, the formal developments were soon extended to the case of more complex systems such as
semiconductors. Carriers in semiconductors are typically confined within a narrow energy range
near the band extrema; consequently it is expected that the dominant electron-phonon scatter-
ing mechanisms will involve long-wavelength phonons (q → 0). This concept was formalized by
Bardeen and Shockley [21, 22], laying the foundations of the ‘deformation-potential’ method.

In the deformation potential approach it is assumed that the atomic displacements can be de-
scribed by long-wavelength acoustic waves, and these can be related in turn to the elastic strain
of the crystal. Using concepts from the effective mass theory, Bardeen and Shockley showed that
in this approximation the potential V0 in Eq. (2) can be replaced by:

V0 → E1,nk = Ω ∂εnk/∂Ω, (6)

where Ω represents the volume of the unit cell, and the electron eigenvalues correspond to the
valence or conduction band extrema. The derivation of this result can be found in Appendix B
of Ref. [22]. The deformation potentials E1 were obtained empirically; for example Bardeen and
Shockley determined these values for the band extrema of silicon by fitting mobility data [22].
More complex scenarios such as anisotropic constant-energy surfaces in semiconductors were
subsequently addressed by considering the effects of shear deformations [23]. While the concept
of deformation potentials has become a classic in semiconductor physics, this method relies on a
semi-empirical approach and lacks predictive power.

2.1.3 Ionic crystals

A class of materials that played an important role in the development of the theory of EPIs is
that of ionic crystals. The qualitative difference between ionic solids and the systems discussed
in Secs. 2.1.1-2.1.2 is that the atomic displacements can generate long-ranged electric fields; these
fields provide a new scattering channel for electrons and holes.

The theory of polar electron-phonon coupling started with the investigation of the electron
mean free path in ionic crystals, in search for a theoretical model of dielectric breakdown in
insulators [24, 25]. The central idea of these models is that in insulators the density of free
carriers is very low, therefore it is sensible to consider a single electron interacting with the
polarization field of the ionic lattice.
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The Fröhlich model is similar in spirit to the contemporary work of Bardeen for metals. The
main difference is that Fröhlich considered the screening arising from the dielectric polarization
of an insulating crystal, while Bardeen considered the screening arising from the response of the
Fermi sea.

Fröhlich showed that in the case of isotropic ionic crystals the effective potential V0 appearing
in Eq. (2) must be replaced by [26]:

V0 → −

[
e2Mκω

2
qν

ε0 Ω

(
1

ε∞
− 1

ε0

)]1
2 1

|q|2
. (7)

In this expression e is the electron charge, ε0 is the dielectric permittivity of vacuum, ε0 and ε∞

are the static and the high-frequency relative permittivities, respectively. This result is derived
in Sec. 6.1.3. Using Eqs. (7) and (2) we see that when ε0 > ε∞ the matrix element gmnν(k,q)

diverges as |q|−1 at long wavelengths. This singular behavior can lead to very strong EPIs, and
provides the physical basis for the phenomenon of electron self-trapping in polarons [27, 28].
The initial studies in this area were rapidly followed by more refined approaches based on field-
theoretic methods [29]. A comprehensive discussion of the various models can be found in the
original review article by Fröhlich [30].

2.2 The pseudopotential method

The approximations underpinning the models discussed in Sec. 2.1 become inadequate when one
tries to study EPIs for elements across the periodic table. This and other limitations stimulated
the development of the pseudopotential method, starting in the late 1950s with the work of
Phillips and Kleinman [31]. The theory of pseudopotentials is too vast to be summarized in a
few lines, and the reader is referred to Chapter 11 of Ref. [2] for a thorough discussion. Here we
only highlight the aspects that are relevant to the calculation of EPIs.

The genesis of the pseudopotential method is linked with the question on how the valence elec-
trons of metals could be described using the electron gas model, even though the orthogonality
to the core states imposes rapid fluctuations of the valence wavefunctions near the atomic cores.
In order to address this question, it is useful to go through the key steps of the orthogonalized
planewaves method [32]. In this method one considers planewaves |k + G〉 for the wavevector
k+G, and projects out the component belonging the Hilbert subspace spanned by core electrons.
This is done by defining |k + G〉OPW = |k + G〉 −

∑
c|φc〉〈φc|k + G〉, where the |φc〉 represent

the core states of all atoms in the system. The functions |k + G〉OPW are by construction or-
thogonal to core states, therefore they can be used to expand the valence electron wavefunctions
|ψnk〉 using only a few basis elements: |ψnk〉 =

∑
G ck(G)|k + G〉OPW. In the language of

pseudopotential theory |ψnk〉 is referred to as the ‘all-electron’ wavefunction, while the function
|ψ̃nk〉 =

∑
G ck(G)|k + G〉 is referred to as the ‘pseudo’ wavefunction. The all-electron and the

pseudo wavefunctions are simply related as follows:

|ψnk〉 = T̂ |ψ̃nk〉, with T̂ = 1−
∑

c
|φc〉〈φc|. (8)
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Here we used a modern notation borrowed from the projector-augmented wave (PAW) method of
Blöchl [33]. By construction, the pseudo-wavefunction |ψ̃nk〉 does not exhibit rapid fluctuations
near the atomic cores. The projector operator T̂ is now used to rewrite the single-particle
Schrödinger equation for the all-electron wavefunction (e.g. the Kohn-Sham equations) in terms
of the pseudo-wavefunctions. Using Ĥ|ψnk〉 = εnk|ψnk〉 and Eq. (8) we have:

T̂ † Ĥ T̂ |ψ̃nk〉 = εnk T̂ †T̂ |ψ̃nk〉, (9)

which is a generalized eigenvalue problem. By replacing the definition of T̂ given above one
finds [31]:

(Ĥ + V̂ rep)|ψ̃nk〉 = εnk|ψ̃nk〉, (10)

with V̂ rep =
∑

c(εnk − εc)|φc〉〈φc| and εc being the eigenvalue of a core electron. Clearly the
additional potential V̂rep is strongly repulsive and is localized near the atomic cores. Cohen and
Heine showed that this extra potential largely cancels the attractive potential of the nuclei [34].
This is the reason why valence electrons in metals behave almost like free electrons.

The practical consequence of these developments is that it is possible to define smooth effective
‘pseudo-potentials’ for systematic band structure calculations, whose form factors include only
a few Fourier components [35–38].

The use of pseudopotentials in electron-phonon calculations started with the works of Sham
and Ziman [39, 40]. Sham showed that, if the pseudopotential can be described by a local
function, then the electron-phonon matrix element gmnν(k,q) can be calculated by replacing the
all-electron potentials and wavefunctions by the corresponding pseudo-potentials and pseudo-
wavefunctions [39]. In this approach the pseudo-potentials move around rigidly with the ionic
cores, therefore we are dealing effectively with an improved version of the rigid-ion approximation
discussed in Sec. 2.1.

The pseudopotential method was employed by Shuey in order to calculate the electron-phonon
matrix elements in germanium [41]. Shortly afterwards many calculations of electron-phonon
interactions based on the pseudopotential method appeared in the literature, including work
on the resistivity of metals [42–45], the electron mass-enhancement in metals [46–50], the su-
perconducting transition temperatures within the McMillan formalism [51, 52], the mobility of
semiconductors [53], and the temperature dependence of semiconductor band structures [54, 55].
These calculations were mostly based on phonon dispersion relations extracted from neutron
scattering data, and the results were in reasonable agreement with experiment. It seems fair
to say that the pseudopotential method enabled the evolution from qualitative to quantitative
calculations of electron-phonon interactions.

Before proceeding we note that, although Eqs. (8) and (9) were introduced starting from the
method of orthogonalized planewaves, there exists considerable freedom in the choice of the
operator T̂ . In practice T̂ can be chosen so as to make ψ̃nk as smooth as possible, while retaining
information on the all-electron wavefunctions near the ionic cores. This was achieved by the PAW
method [33]. Broadly speaking it is also possible to re-interpret the historical development of the
pseudopotential method as the evolution of the projector T̂ . In fact Blöchl showed how the most
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popular pseudopotential methods [56–59] can be derived from the PAW method under specific
approximations [33].

2.3 Ab initio self-consistent field calculations

Predictive calculations of EPIs became possible with the development of ab initio DFT tech-
niques. The key advantage of DFT methods is the possibility of calculating electron band
structures, phonon dispersion relations, and electron-phonon matrix elements entirely from first
principles. Historically, DFT started with the works of Hohenberg and Kohn [60] and Kohn and
Sham [61]. However, its widespread use had to wait for the development of accurate parametriza-
tions of the exchange and correlation energy of the electron gas [62–66]. An introduction to DFT
techniques can be found in the books by Parr and Yang [67] (advanced), Martin [2] (intermedi-
ate), and Giustino [68] (elementary).

The first calculation of electron-phonon interactions using DFT was carried out by Dacorogna
et al. [69] using a ‘frozen-phonon’ approach (see Sec. 3.2.3). In this work the authors computed
electron bands, phonon dispersions, and electron-phonon matrix elements of Al entirely from
first principles. Quoting from the original manuscript: “This calculation is ab initio since only
information about the Al atom, i.e. the atomic number and atomic mass, is used as input”. Da-
corogna et al. calculated the so-called electron-phonon coupling strength λqν for several phonon
branches ν and momenta q throughout the Brillouin zone, as well as the phonon linewidths
arising from the EPI (see Secs. 7 and 11.1). The average coupling strength was found to be in
good agreement with that extracted from the superconducting transition temperature. In the
approach of Refs. [69–72] the electron-phonon matrix element was calculated using:

gmnν(k,q) = 〈umk+q|∆qνv
KS|unk〉uc, (11)

with unk and umk+q being the Bloch-periodic components of the Kohn-Sham electron wavefunc-
tions, ∆qνv

KS being the phonon-induced variation of the self-consistent potential experienced
by the electrons, and the integral extending over one unit cell. Equation (11) will be discussed
in Sec. 3.2.2. The scattering potential ∆qνv

KS was calculated by explicitly taking into account
the re-arrangement of the electronic charge following a small displacement of the nuclei. The
inclusion of the self-consistent response of the electrons constitutes a considerable step forward
beyond the rigid-ion approximation of Sec. 2.2.

The next and most recent step in the evolution of electron-phonon calculations came with the
development of DFPT for lattice dynamics [3–5]. In contrast to frozen-phonon calculations,
which may require large supercells, DFPT enables the calculations of vibrational frequencies and
eigenmodes at arbitrary wavevectors in the Brillouin zone. This innovation was critical in the
context of electron-phonon physics, since the calculation of many physical quantities requires the
evaluation of nontrivial integrals over the Brillouin zone. The first calculations of EPIs using
DPFT were reported by Savrasov et al. [73], Liu and Quong [74], Mauri et al. [75], and Bauer et
al. [76]. They calculated the electrical resistivity, thermal conductivity, mass enhancement and
superconducting critical temperature of a number of elemental metals (e.g. Al, Au, Cu, Mo, Nb,
Pb, Pd, Ta, V, and Te), and reported good agreement with experiment.
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By the late 1990s most of the basic ingredients required for the ab initio calculation of EPIs
were available; subsequent studies focused on using these techniques for calculating a variety
of materials properties, and on improving the efficiency and accuracy of the methodology. The
most recent advances will be reviewed in Secs. 6-12.

3 Electron-phonon interaction in density-functional theory

In this section we review the basic formalism underlying the calculation of EPIs using DFT, and
we establish the link with the Hamiltonian in Eq. (1). We start by introducing the standard
formalism for lattice vibrations, and the electron-phonon coupling Hamiltonian. Then we briefly
summarize established methods of DFPT for calculating electron-phonon matrix elements. For
the time being we describe electrons and phonons as separate subsystems; a rigorous theoretical
framework for addressing the coupled electron-phonon system will be discussed in Sec. 4.

3.1 Lattice vibrations in crystals

The formalism for studying lattice dynamics in crystals is covered in many excellent textbooks
[7, 77–80]. Here we introduce the notation and summarize those aspects which will be useful for
subsequent discussions in this section and in Secs. 4 and 5.

We consider M nuclei or ions in the unit cell. The position vector and Cartesian coordinates
of the nucleus κ in the primitive unit cell are denoted by τκ and τκα, respectively. We describe
the infinitely extended solid using Born-von Kármán (BvK) boundary conditions. In this ap-
proach, periodic boundary conditions are applied to a large supercell which contains Np unit
cells, identified by the direct lattice vectors Rp, with p = 1, . . . , Np. The position of the nucleus
κ belonging to the unit cell p is indicated by τκp = Rp + τκ. The Bloch wavevectors q are taken
to define a uniform grid of Np points in one unit cell of the reciprocal lattice, and the vectors of
the reciprocal lattice are indicated by G. In Appendix A we provide additional details on the
notation, and we state the Fourier transforms between direct and reciprocal lattice.

Using standard DFT techniques it is possible to calculate the total potential energy of electrons
and nuclei in the BvK supercell. This quantity is denoted as U({τκp}), where the braces are
a short-hand notation for the coordinates of all the ions. The total potential energy refers to
electrons in their ground state, with the nuclei being represented as classical particles clamped
at the coordinates τκp. Every DFT software package available today provides the quantity U as
a standard output.

In order to study lattice vibrations, one begins by making the harmonic approximation. Accord-
ingly, the total potential energy is expanded to second order in the displacements ∆τκαp of the
ions in the BvK supercell away from their equilibrium positions τ 0

κp:

U = U0 +
1

2

∑
καp
κ′α′p′

∂2U

∂τκαp∂τκ′α′p′
∆τκαp∆τκ′α′p′ , (12)
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where U0 denotes the total energy calculated for the ions in their equilibrium positions, and the
derivatives are evaluated for the equilibrium structure. The second derivatives of the total energy
with respect to the nuclear coordinates define the matrix of ‘interatomic force constants’:

Cκαp,κ′α′p′ = ∂2U/∂τκαp∂τκ′α′p′ . (13)

The Fourier transform of the interatomic force constants yields the ‘dynamical matrix’ [81]:

Ddm
κα,κ′α′(q) = (MκMκ′)

− 1
2

∑
p
Cκα0,κ′α′p exp(iq ·Rp), (14)

where Mκ is the mass of the κ-th ion. The superscript ‘dm’ is there to distinguish this quan-
tity from the many-body phonon propagators D(12) and Dκαp,κ′α′p′ that will be introduced in
Sec. 4.2. The dynamical matrix is Hermitian and therefore admits real eigenvalues, which we
denote as ω2

qν : ∑
κ′α′

Ddm
κα,κ′α′(q) eκ′α′,ν(q) = ω2

qν eκα,ν(q). (15)

In classical mechanics, each ωqν corresponds to the vibrational frequency of an independent
harmonic oscillator. The hermiticity of the dynamical matrix allows us to choose the eigenvectors
eκα,ν(q) to be orthonormal for each q:∑

ν
e∗κ′α′,ν(q)eκα,ν(q) = δκκ′δαα′ , (16)∑

κα
e∗κα,ν(q)eκα,ν′(q) = δνν′ . (17)

Here the index ν runs from 1 to 3M . The column vectors eκα,ν(q) for a given ν are called the
‘normal modes of vibration’ or the ‘polarization’ of the vibration wave. The following relations
can be derived from Eq. (14):

ω2
−qν = ω2

qν ; eκα,ν(−q) = e∗κα,ν(q). (18)

These relations between normal modes carry a degree of arbitrariness in the choice of phases;
here we have chosen to follow the same phase convention as in Ref. [81].

Using Eqs. (12) and (13) the Hamiltonian for nuclei considered as quantum particles can be
written as:

Ĥp =
1

2

∑
καp
κ′α′p′

Cκαp,κ′α′p′∆τκαp∆τκ′α′p′ −
∑
καp

~2

2Mκ

∂2

∂τ2καp
, (19)

where the ground-state energy U0 has been omitted and the last term is the kinetic energy
operator. The Hamiltonian in the above expression corresponds to the energy of an entire BvK
supercell. Equation (19) relies on two approximations: (i) the harmonic approximation, which
coincides with the truncation of Eq. (12) to second order in the displacements; and (ii) the Born-
Oppenheimer adiabatic approximation. This latter approximation is made when one calculates
the interatomic force constants with the electrons in their ground state. The scope and validity
of the adiabatic approximation will be discussed in detail in Sec. 5.1.1. We note incidentally
that, strictly speaking, the Born-Oppenheimer approximation does not need to be invoked were
one to use the generalization of DFT to multicomponent systems introduced in Refs. [82, 83].
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For practical purposes it is convenient to rewrite Eq. (19) by introducing the quanta of lattice
vibrations. This is accomplished by defining the standard creation (â†qν) and destruction (âqν)
operators for each phonon of energy ~ωqν and polarization eκα,ν(q). This operation is not entirely
trivial and is described in detail in Appendix B. The formal definition of the ladder operators is
given in Eqs. (226)-(227). These operators obey the commutation relations [âqν , â

†
q′ν′ ] = δνν′δqq′

and [âqν , âq′ν′ ] = [â†qν , â
†
q′ν′ ] = 0, where δ is the Kronecker symbol. From these relations we

know that the quanta of the harmonic oscillations in crystals obey Bose-Einstein statistics. In
Appendix B it is shown that the atomic displacements can be expressed in terms of the ladder
operators as follows:

∆τκαp =

(
M0

NpMκ

)1
2 ∑

qν

eiq·Rpeκα,ν(q) lqν (âqν + â†−qν), (20)

with lqν being the ‘zero-point’ displacement amplitude:

lqν = [~/(2M0ωqν)]1/2. (21)

HereM0 is an arbitrary reference mass which is introduced to ensure that lqν has the dimensions
of a length and is similar in magnitude to ∆τκαp. Typically M0 is chosen to be the proton mass.

Using Eqs. (13)-(21) the nuclear Hamiltonian can be written in terms of 3MNp independent
harmonic oscillators as follows:

Ĥp =
∑

qν
~ωqν

(
â†qν âqν + 1/2

)
, (22)

where the sum is over all wavevectors. The ground-state wavefunction of this Hamiltonian is a
product of Gaussians, and all other states can be generated by acting on the ground state with the
operators â†qν . In the case of |q| = 0 there are three normal modes for which ωqν =0. For these
modes, which correspond to global translations of the crystal, the zero-point displacement lqν is
not defined. Throughout this article it is assumed that these modes are skipped in summations
containing zero-point amplitudes. A detailed derivation of Eq. (22) and a discussion of the
eigenstates of Ĥp are provided in Appendix B.

3.2 Electron-phonon coupling Hamiltonian

Having outlined the standard formalism for addressing lattice vibrations in crystals, we now
proceed to make the connection between DFT calculations and the remaining terms of Eq. (1).
The electronic band structure εnk and electron-phonon matrix elements gmnν(k,q) are almost
invariably calculated by using the Kohn-Sham (KS) Hamiltonian [60, 61]. A justification for
these choices will be provided in Sec. 5; for now we limit ourselves to outline the key elements
of practical calculations.

3.2.1 Kohn-Sham Hamiltonian

Let us denote the Kohn-Sham eigenfunctions by ψnk(r), and use k to indicate both the wavevector
and spin. We shall restrict ourselves to systems with collinear spins. The KS eigenfunctions
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satisfy the equation ĤKSψnk(r) = εnkψnk(r), with the Hamiltonian given by:

ĤKS = − ~2

2me
∇2 + V KS(r; {τκαp}). (23)

Here the potential V KS is the sum of the nuclear (or ionic) contribution V en, the Hartree elec-
tronic screening V H, and the exchange and correlation potential V xc [2]:

V KS = V en + V H + V xc. (24)

The potentials appearing in Eq. (24) are defined as follows. The electron-nuclei potential energy
is given by:

V en(r; {τκαp}) =
∑

κp,T
Vκ(r− τκp −T), (25)

where Vκ(r) is the interaction between an electron and the nucleus κ located at the center of the
reference frame, and T denotes a lattice vector of the BvK supercell. In the case of all-electron
DFT calculations, Vκ(r) is the Coulomb interaction:

Vκ(r) = − e2

4πε0

Zκ
|r|
, (26)

where Zκ is the atomic number of the nucleus κ. In the case of pseudopotential implementations
Vκ is a function that goes as in Eq. (26) at large |r|, but remains finite at |r|=0. Furthermore the
nuclear charge is replaced by the ionic charge, that is the difference between the nuclear charge
and the number of core electrons described by the pseudopotential. In all modern pseudopotential
implementations Vκ(r) is nonlocal due to the separation of the angular momentum channels [2].
However, since this nonlocality is short-ranged and is inconsequential in the following discussion,
it will be ignored here in order to maintain a light notation. The Hartree term is obtained from
the electron density, n(r′; {τκαp}):

V H(r; {τκαp}) =
e2

4πε0

∑
T

∫
sc

n(r′; {τκαp})
|r− r′ −T|

dr′, (27)

where the integral extends over the supercell. The exchange and correlation potential is the func-
tional derivative of the exchange and correlation energy with respect to the electron density [61]:

V xc(r; {τκαp}) = δExc[n]/δn
∣∣
n(r;{τκαp}). (28)

The eigenfunctions ψnk of ĤKS can be expressed in the Bloch form:

ψnk(r) = N
− 1

2
p unk(r)eik·r, (29)

with unk a lattice-periodic function. The wavefunction ψnk is taken to be normalized to one
in the supercell, while the periodic part unk(r) is normalized to one in the crystal unit cell.
The electron density is n(r) =

∑
vk |ψvk(r)|2, where v indicates occupied states. In order to

determine ψnk and εnk the Kohn-Sham equations are solved self-consistently. This requires one
to start from a reasonable guess for the electron density (for example a superposition of atomic
electron densities), calculate the potentials in Eq. (24), and determine the solutions of the KS
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Hamiltonian in Eq. (23). The electron density is re-calculated using these solutions, and the
cycle is repeated until convergence.

In order to establish the link with Eq. (1), we can regard the KS Hamiltonian as an effective one-
body operator, and make the transition to a second-quantized formalism by using the standard
prescription [84]:

Ĥe =
∑

nk,n′k′

〈ψnk|ĤKS|ψn′k′〉ĉ†nkĉn′k′ =
∑
nk

εnk ĉ
†
nkĉnk. (30)

This expression is useful for performing formal manipulations in the study of coupled electron-
phonon systems. However, Eq. (30) implicitly introduces the drastic approximation that the
electronic system can be described in terms of sharp quasiparticle excitations. A field-theoretic
approach that does not rely on any such approximation is discussed in Sec. 4.

3.2.2 Electron-phonon coupling Hamiltonian to first- and second-order in the atomic
displacements

Within the DFT Kohn-Sham formalism, the coupling Hamiltonian appearing in the second line
of Eq. (1) is obtained by expanding the Kohn-Sham effective potential in terms of the nuclear
displacements ∆τκp from their equilibrium positions τ 0

κp. The potential to first order in the
displacements is:

V KS({τκp}) = V KS({τ 0
κp}) +

∑
καp

∂V KS

∂τκαp
∆τκαp. (31)

This expression can be rewritten into normal mode coordinates using Eq. (20):

V KS=V KS({τ 0
κp}) + N

− 1
2

p

∑
qν

∆qνV
KS(âqν + â†−qν), (32)

having defined:

∆qνV
KS = eiq·r∆qνv

KS, (33)

∆qνv
KS = lqν

∑
κα

(M0/Mκ)
1
2 eκα,ν(q) ∂κα,qv

KS, (34)

∂κα,qv
KS =

∑
p
e−iq·(r−Rp) ∂V

KS

∂τκα

∣∣∣∣
r−Rp

. (35)

From the last expression we see that ∂κα,qvKS and ∆qνv
KS are lattice-periodic functions. The

transition to second quantization is performed as in Eq. (30) [84]:

Ĥep =
∑

nk,n′k′

〈ψnk|V KS({τκp})− V KS({τ 0
κp})|ψn′k′〉ĉ

†
nkĉn′k′ , (36)

where the brakets indicate an integral over the supercell. After using Eqs. (29), (32)-(35), and
(213) we have:

Ĥep = N
− 1

2
p

∑
k,q
mnν

gmnν(k,q) ĉ†mk+qĉnk(âqν + â†−qν), (37)
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where the electron-phonon matrix element is given by:

gmnν(k,q) = 〈umk+q|∆qνv
KS|unk〉uc. (38)

Here the subscript ‘uc’ indicates that the integral is carried out within one unit cell of the crystal.
The coupling Hamiltonian in Eq. (37) yields the energy of an entire supercell. In the case of
the three translational modes at |q| = 0 we set the matrix elements gmnν(k,q) to zero, as a
consequence of the acoustic sum rule (see discussion in Sec. 9.1.1).

Taken together, Eqs. (22), (30), and (37) constitute the starting point of most first-principles cal-
culations of electron-phonon interactions. It remains to be seen how one calculates the electron-
phonon matrix elements gmnν(k,q); the most common procedures are described in Sec. 3.2.3.

Before proceeding, we discuss briefly the second-order coupling Hamiltonian which appears in
the third and fourth lines of Eq. (1). The rationale for incorporating this extra term is that
the expansion of the Kohn-Sham potential to first order in the atomic displacements, Eq. (31),
is somewhat inconsistent with the choice of expanding the total potential energy in Eq. (12) to
second order in the atomic displacements. This aspect was discussed by Allen and Heine [85]
and Allen [86]. In order to obtain an electron-phonon coupling Hamiltonian including terms of
second-order in the displacements, we must include the second derivatives of the Kohn-Sham
potential in Eq. (31), and follow the same steps which led to Eq. (37). By calling the extra term
Ĥ

(2)
ep we have:

Ĥ(2)
ep = N−1p

∑
k,q,q′

mnνν′

gDW
mnνν′(k,q,q

′)ĉ†mk+q+q′ ĉnk (âqν + â†−qν)(âq′ν′ + â†−q′ν′), (39)

where
gDW
mnνν′(k,q,q

′) =
1

2
〈umk+q+q′ |∆qν∆q′ν′v

KS|unk〉uc. (40)

The variations ∆qν are the same as in Eqs. (33)-(35).

The second-order coupling Hamiltonian in Eq. (39) is considerably more involved than its first-
order counterpart; the increased complexity partly explains why in the literature this term has
largely been ignored. So far the Hamiltonian Ĥ(2)

ep has only been described using an approxima-
tion based on first-order perturbation theory [85]. In this special case, the only terms in Eq. (39)
that can modify the electron excitation spectrum are those with q′ =−q. The corresponding
energy shift is ∆εnk=N−1p

∑
qν g

DW
nnνν(k,q,−q)(2nqν+1), with nqν being the number of phonons

in each mode. We will come back to this point in Sec. 9.1.1.

3.2.3 Calculation of electron-phonon matrix elements using density-functional per-
turbation theory

In this section we review how the scattering potential ∆qνv
KS appearing in Eq. (38) is calcu-

lated in first-principles approaches. The most intuitive approach is to evaluate the derivatives
appearing in Eq. (35) by using finite atomic displacements in a supercell:

∂V KS

∂τκαp

∣∣∣∣
τ0
κp

'
[
V KS(r; τ0καp + b)− V KS(r; τ0καp)

]
/b. (41)
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In this expression b is a small displacement of the order of the zero-point amplitude (∼ 0.1 Å), and
the atom κ in the unit cell p is displaced along the direction α. The first calculations of electron-
phonon interactions within DFT employed a variant of this ‘supercell approach’ whereby all
atoms are displaced according to a chosen vibrational eigenmode [69–72]; this strategy is usually
referred to as the ‘frozen-phonon’ method.

One disadvantage of the frozen-phonon method is that the supercell may become impractically
large when evaluating matrix elements corresponding to long-wavelength phonons. This difficulty
can be circumvented by using DFPT [3–5]. The main strength of DFPT is that the scattering
potential ∆qνv

KS in Eq. (38) is obtained by performing calculations within a single unit cell.
Since the computational workload of standard (non linear-scaling) DFT calculations scales as the
cube of the number of electrons, the saving afforded by DFPT over the frozen-phonon method
is proportional to N2

p , and typically corresponds to a factor > 103.

In the DFPT approach of Ref. [87] one calculates the lattice-periodic scattering potential ∂κα,qvKS

defined by Eq. (35). By differentiating Eq. (24) via Eq. (35) this potential is written as:

∂κα,qv
KS = ∂κα,qv

en + ∂κα,qv
H + ∂κα,qv

xc. (42)

The variation of the ionic potential is obtained from Eqs. (25) and (35). The result is conveniently
expressed in reciprocal space:

∂κα,qv
en(G) = −i (q + G)αVκ(q + G)e−i(q+G)·τκ , (43)

where the convention for the Fourier transform is f(G) = Ω−1
∫
uc dr e

−iG·rf(r), and Ω is the
volume of the unit cell. In order to keep the presentation as general as possible we avoid
indicating explicitly the non-locality of Vκ which arises in pseudopotential implementations.
The adaptation of this equation and the following ones to the case of nonlocal pseudopotentials,
ultrasoft pseudopotentials, and the projector-augmented wave method can be found in Refs. [88],
[89], and [90], respectively. The variation of the Hartree and exchange-correlation contributions
to the Kohn-Sham potential is obtained from the self-consistent charge density response to the
perturbation in Eq. (43). After a few manipulations using Eqs. (27) and (35) one obtains:

∂κα,qv
H(G) = Ω vC(q + G) ∂κα,qn(G), (44)

where vC(q) = Ω−1
∫
dr e−iq·re2/4πε0|r| is the Fourier transform of the Coulomb potential. For

the exchange and correlation potential we use Eq. (28) and the Taylor expansion of a functional
to find:

∂κα,qv
xc(G) = Ω

∑
G′
fxc(q + G,q + G′) ∂κα,qn(G′), (45)

where fxc indicates the standard exchange and correlation kernel, which is the second-order
functional derivative of the exchange and correlation energy Exc with respect to the electron
density [60]:

fxc(r, r′) =
δ2Exc[n]

δn(r)δn(r′)

∣∣∣∣
n(r;{τ0

κp})
. (46)

In the case of the local density approximation (LDA) to DFT the exchange and correlation kernel
reduces to a local function [67], and Eq. (45) is more conveniently evaluated in real space. Today

19



DFPT calculations can be performed using one of several exchange and correlation kernels. The
effect of the kernel on the calculation of lattice-dynamical properties of solids has been analyzed
in several works [91, 92]. The formal structure of the DFPT equations discussed in this section
remains unchanged if we replace the DFT kernel in Eq. (46) by more sophisticated versions. For
example both DFPT calculations based on Hubbard-corrected DFT [93] and DFPT coupled with
dynamical mean-field theory [94] have been demonstrated.

It should be noted that in Eqs. (45)-(46) we are implicitly assuming a spin-unpolarized system.
The adaptation of these equations as well as the other DFPT equations to the most general case
of non-collinear spin systems can be found in Refs. [95–97].

From Eqs. (44) and (45) we see that the evaluation of gmnν(k,q) goes through the calculation
of the variation of the electron density induced by the perturbation ∂κα,qv

KS(r) eiq·r. Within
DFPT such a variation is obtained by evaluating the change of the Kohn-Sham wavefunctions
to first order in perturbation theory. After inspection of the perturbed Hamiltonian it becomes
evident that the wavefunction change must be of the form ∂unk,q e

iq·r, with ∂unk,q a lattice-
periodic function. Using this observation the first-order variation of the Kohn-Sham equations
can be written as a Sternheimer equation [98]:(

ĤKS
k+q − εvk

)
∂uvk,q = −∂κα,qvKSuvk, (47)

with ĤKS
k+q = e−i(k+q)·r ĤKS ei(k+q)·r. In this equation the index v indicates an occupied state.

For |q| = 0 one needs also to consider a shift of the energy eigenvalues which introduces an
additional term 〈uvk|∂κα,0v|uvk〉uc uvk on the right-hand side of Eq. (47). In practice this term
is canceled by the use of the projectors described in Eq. (48) below, unless one is dealing with
metallic systems. This aspect is discussed in detail in Refs. [99] and [87]. The principal advantage
of Eq. (47) over standard perturbation theory is that it does not involve unoccupied electronic
states.

A practical problem arises when attempting to solve Eq. (47): the linear system on the left-hand
side is ill-conditioned owing to small eigenvalues corresponding to εvk ' εv′k+q; furthermore in
the case of accidental degeneracies, εvk = εv′k+q, the system becomes singular. In order to make
the system non-singular Giannozzi et al. noted that the variation of the electron density only
involves the component of ∂uvk,q belonging to the unoccupied manifold of Kohn-Sham states [88].
As a consequence, what is really needed is only ∂ũvk,q = (1− P̂ occ

k+q) ∂uvk,q, having denoted by
P̂ occ
k+q =

∑
v |uvk+q〉〈uvk+q| the projector over the occupied states with wavevector k + q. The

equation for this ‘trimmed’ wavefunction variation is simply obtained by projecting both side of
Eq. (47) onto (1− P̂ occ

k+q), and noting that P̂ occ
k+q and ĤKS

k+q do commute:(
ĤKS

k+q − εvk
)
∂ũvk,q = −(1− P̂ occ

k+q) ∂κα,qv
KSuvk. (48)

At this point it is possible to remove all small or null eigenvalues of the operator on the left-hand
side by adding a term αP̂ occ

k+q to the Hamiltonian. This term has no effect on the wavefunction
variation, since P̂ occ

k+q ∂ũvk,q = 0 by construction. The operator is made non-singular by choos-
ing the parameter α larger than the valence bandwidth [87]. From the wavefunction variation
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obtained by solving Eq. (48), it is now possible to construct the density response associated with
the wavevector q:

∂nκα,q(r) = 2N−1p
∑

vk
u∗vk ∂ũvk,q. (49)

For simplicity a spin-degenerate system has been assumed (a factor of 2 is implicitly included
in the sum over k), and time-reversal symmetry has been used in order to make the expression
more compact (yielding the factor of 2 on the right-hand side).

In practical DFPT calculations, Eq. (48) is solved using an iterative procedure which is similar
to standard DFT total energy calculations. One sets the starting perturbation ∂κα,qvKS to be
equal to the electron-nuclei potential in Eq. (43). By solving Eq. (48) for each occupied state
v and each wavevector k using standard linear algebra techniques, one obtains the induced
density in Eq. (49). The new density is now used to construct the variations of the Hartree and
exchange-correlation potentials in Eqs. (44) and (45). These induced potentials are added to the
electron-nuclei potential, yielding a ‘screened’ perturbation ∂κα,qv

KS in Eq. (48). The cycle is
repeated until the change of ∂nκα,q between two successive cycles is smaller than a set tolerance.

It can be shown that the screened perturbation ∂κα,qvKS described in this section is also the key
ingredient required for calculating the interatomic force constants in Eq. (13) [87]. As a practical
consequence, every software implementation that supports DFPT calculations already contains
all the information necessary for evaluating the electron-phonon matrix elements gmnν(k,q).

All the quantities introduced in this section can equivalently be calculated using an alternative,
variational formulation of density-functional perturbation theory [4, 100–102]. A thorough dis-
cussion of the connection between the Sternheimer approach and the variational approach to
DFPT is given in Ref. [103].

The second-order matrix elements gDW
mn,νν′(k,q,q

′) given by Eq. (40) involve the second deriva-
tive of the Kohn-Sham potential with respect to the nuclear displacements. The evaluation of
these quantities would require the solution of second-order Sternheimer equations for the second
variations of the Kohn-Sham wavefunctions. The general structure of second-order Sternheimer
equations can be found in Sec. IV.H of [103]. Since these calculations are rather involved, most
practical implementations employ an approximation whereby the Debye-Waller matrix elements
are expressed in terms of products of the standard matrix elements gmnν(k,q). Such an alter-
native formulation was developed by Allen and Heine [85] and Allen and Cardona [54], and will
be discussed in Sec. 9.1.1. All recent ab initio calculations of electron-phonon interactions based
on DFPT employed this latter approach.1

3.2.4 The dielectric approach

Besides the DFPT method described in the previous section, it is also possible to calculate the
screened perturbation ∂κα,qvKS using the so-called ‘dielectric approach’ [113, 114]. This latter
approach did not find as widespread an application as those of Refs. [3–5], but it is useful to

1 See for example Refs. [104–112].
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establish a link between DFT calculations of electron-phonon matrix elements and the field-
theoretic formulation to be discussed in Sec. 4.

For consistency with Sec. 3.2.3, we derive the key expressions of the dielectric approach starting
from DFPT. To this aim we expand the variation of the wavefunction ∂ũvk,q using the complete
set of states unk+q (with n referring to both occupied and empty Kohn-Sham states). Then we
replace this expansion inside Eq. (48), project onto an arbitrary conduction state, and insert
the result in Eq. (49). After taking into account time-reversal symmetry, these steps lead to the
following result:

∂κα,qn(r) =

∫
uc
dr′χ0

q(r, r′) ∂κα,qv
KS(r′), (50)

having defined:

χ0
q(r, r′) = N−1p

∑
mnk

fnk − fmk+q

εnk − εmk+q
u∗nk(r)umk+q(r)u∗mk+q(r′)unk(r′). (51)

In this expression fnk and fmk+q are the occupations of each state, and the indices run over all
bands. A factor of 2 for the spin degeneracy is implicitly included in the sum over k. The quantity
χ0
q in Eq. (51) is the lattice-periodic component for the wavevector q of the ‘independent-electron

polarizability’ [113–116].

For ease of notation we can write Eq. (50) in symbolic form as ∂n = χ0 ∂vKS. Using the same
symbolic notation it is also possible to formally rewrite Eqs. (42), (44), and (45) as follows:

∂vKS = ∂ven + (vC + fxc)χ0 ∂vKS, (52)

from which one obtains:
∂vKS =

(
εHxc

)−1
∂ven, (53)

having defined the dielectric matrix:

εHxc = 1− (vC + fxc)χ0. (54)

The superscript ‘Hxc’ refers to the Hartree and exchange and correlation components of the
screening. In the language of many-body perturbation theory εHxc is referred to as the ‘test
electron’ dielectric matrix, hinting at the fact that the electron density redistribution in response
to a perturbation arises both from classical electrostatics (the Hartree term vC χ0) and from
quantum effects (the exchange and correlation term fxc χ0). If we neglect the kernel fxc in this
expression, then we obtain the ‘test charge’ dielectric matrix, which is most commonly known
as the dielectric matrix in the random-phase approximation (RPA) [117]:

εH = 1− vCχ0. (55)

The symbolic expressions outlined here remain almost unchanged when using a reciprocal-space
representation. As an example, Eq. (55) becomes simply:

εHGG′(q) = δGG′ −Ω2
∑
G′′

χ0
G′′G′(q)vC(q+G)δGG′′ . (56)
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Taken together Eqs. (38) and (53) show that the calculation of electron-phonon matrix elements
using DFPT is equivalent to screening the bare electron-nucleus interaction using εHxc; in this
case we say that the screening is described at the ‘RPA+xc’ level of approximation.

At this point it is worth to point out that so far we only considered the screening of static
perturbations: in fact ∂ven was implicitly taken to be frequency-independent. Physically this
choice corresponds to describing phonons as quasi-static perturbations, so that at each set of
instantaneous atomic positions during a vibration cycle, the electrons have enough time to re-
adjust and reach their ground state. This is a statement of the adiabatic approximation [118].
The importance of retardation effects in the electron-phonon problem was already recognized
in the early work of Bardeen and Pines [18], but the first ab initio calculations of these effects
appeared much later [119, 119]. The formal framework required to incorporate retardation in
the study of EPIs will be presented in Sec. 4.

3.2.5 Connection with early formulations

For completeness, we illustrate the link between electron-phonon matrix elements obtained within
DFPT (Sec. 3.2.3) and the early approaches of Refs. [11, 17] (Sec. 2.1).

The Bloch matrix element can be derived as follows. We assume that the scattering potential is
unscreened and corresponds to the bare pseudopotentials Vκ in Eq. (43); that there is only one
atom at the origin of the unit cell; and the Kohn-Sham wavefunctions can be approximated by
free electrons, unk(r) = Ω−

1
2 exp(iGn · r). In the last expression, the subscript in Gn is used

in order to stress the one-to-one correspondence between the reciprocal lattice vectors and the
energy bands of the free electron gas in the reduced zone scheme. Using these approximations
in Eqs. (21), (34), (38), and (43), we find:

gmnν(k,q) = −i [~/(2NpMκωqν)]
1
2 Vκ(q + Gm −Gn) (q + Gm −Gn) · eκ,ν(q). (57)

By further neglecting umklapp processes (Gm 6= Gn) the previous result becomes (see Sec. 3.4
of Ref. [6]):

gmnν(k,q) = −i[~/(2NpMκωqν)]
1
2 q · eκ,ν(q)Vκ(q). (58)

The expression obtained by Bloch [11] and reproduced in Eq. (2) is simply obtained by replacing
Vκ(q) with the effective potential V0.

The Bardeen matrix element is more elaborate and can be derived as follows. We describe
the screening of the bare ionic potential within the RPA approximation, and determine the
dielectric matrix by replacing the Kohn-Sham wavefunctions by free electrons. Using unk(r) =

Ω−
1
2 exp(iGn · r) and εnk = ~2(k + Gn)2/2me − εF in Eq. (51), the polarizability reduces to:

χ0
GG′(q) = − mekF

π2~2Ω
F (|q + G|/2kF) δGG′ , (59)

where F is the function defined below Eq. (4). The derivation of this result requires making
the transition from the first Brillouin zone to the extended zone scheme. If we use Eq. (59)
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inside Eq. (56), neglect the exchange and correlation kernel, and use the Fourier transform of
the Coulomb potential, we find:

εGG′(q) = δGG′
[
1+
(
k2TF/|q+G|2

)
F (|q+G|/2kF)

]
, (60)

where the Thomas-Fermi screening length is given by kTF = [4me2kF/(4πε0π~2)]1/2. Equa-
tion (60) is the well-known Lindhard dielectric matrix, and the diagonal matrix elements are
the same as in Eq. (4) (see Refs. [9, 120] for in-depth discussions of the Lindhard function). By
following the same steps that led to Eq. (58), replacing the bare ionic potential by its screened
counterpart, and using Eq. (53) with ε instead of εHxc, we obtain:

gmnν(k,q) = −i [~/(2NpMκωqν)]
1
2 q · eκ,ν(q)Vκ(q)/ε(q). (61)

Here we considered only one atom at the center of the unit cell, and we neglected umklapp
processes. This is essentially the result derived by Bardeen [17] and reproduced in Eq. (3).

4 Field-theoretic approach to the electron-phonon interaction

In Sec. 3 we discussed how the materials parameters entering the electron-phonon Hamiltonian in
Eq. (1), namely εnk, ωqν , and gmnν(k,q), can be calculated from first principles using DFT and
DFPT. Today the formalism and techniques described in Sec. 3 constitute de facto the standard
tool in quantitative studies of electron-phonon interactions in solids (see Secs. 7-12).

However, it should be noted that the DFT approach to EPIs does not rest on strong theoretical
foundations. For one, the evaluation of the EPI matrix elements via Eq. (38) relies on the
assumption that the interaction between electrons and nuclei is governed by the effective Kohn-
Sham potential; therefore we can expect the matrix elements to be sensitive to the exchange
and correlation functional (see Sec. 12). Furthermore, the very definition of phonons starting
from Eq. (12) relies on the Born-Oppenheimer approximation, and one might ask whether this
choice is accurate enough in metals and narrow-gap semiconductors (see Sec. 7). Finally, if one
were to go beyond the Born-Oppenheimer approximation, then it would seem sensible to also
incorporate retardation effects in the calculation of the EPI matrix elements.

On top of these practical points, and at a more fundamental level, we expect that the electron-
phonon interaction will modify both the electronic structure and the lattice dynamics of a solid,
and these modifications will in turn affect the coupling between electrons and phonons. It
is therefore clear that a complete theory of interacting electrons and phonons must be self-
consistent. In order to address these issues it is necessary to formulate the electron-phonon
problem using a rigorous and general theory of interacting electrons and phonons in solids.

The most systematic and elegant approach is based on quantum field theory [121], and is tightly
connected with the development of the GW method [122]. The first attempts in this direction
were from Nakajima [20], Bardeen and Pines [18], Migdal [123], and Engelsberg and Schrief-
fer [124]. However, from the point of view of the present article, these works are of limited
usefulness since they were mostly developed around the homogeneous electron gas.
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A completely general formulation of the problem, which seamlessly applies to metals, semi-
conductors, and insulators, was first provided by Baym [125] and subsequently by Hedin and
Lundqvist [126]. The formalism developed in these articles constitutes today the most complete
theory of the electron-phonon problem. In fact, many aspects of this formalism are yet to be
explored within the context of ab initio calculations. After these seminal works several authors
contributed to clarifying various aspects of the many-body theory of the coupled electron-phonon
system, including Keating [127], Gillis [128], Sjölander and Johnson [129], Maksimov [130], Vogl
[131], and more recently van Leeuwen [132] and Marini et al. [133]. In particular, Ref. [132]
focused on the issues of translational and rotational invariance of the resulting theory, while
Ref. [133] analyzed the connection between many-body perturbation theory approaches and
DFT calculations.

Since the mathematical notation of the original articles is obsolete and rather difficult to follow,
in Secs. 4.1-4.4 we cover the theory in some detail using contemporary notation. The following
derivations can be found across Refs. [125, 126, 130, 134]. Here we provide a synthesis of these
contributions using a unified notation, and we fill the gaps wherever it is necessary. The pre-
sentation requires some familiarity with field operators (see for example Ref. [84] for a succinct
introduction).

4.1 Operators and distinguishability

The starting point for studying EPIs using a field-theoretic approach is to define the Fock space
and the field operators for electrons and nuclei. In the case of electrons the choice is unambigu-
ous, since any many-body state can be represented as a linear combination of Slater determinants
constructed using a basis of single-particle wavefunctions. In the case of nuclei the situation is
slightly more ambiguous: in principle we might proceed in a very general way by choosing to
focus on the nuclei as our quantum particles, as opposed to their displacements from equilibrium.
In practice this choice leads to a dead end for two reasons. Firstly, the quantum statistics of
nuclei would be dependent on their spin, therefore we would end up with an unwieldy mix of
fermions and bosons depending on the solid. Secondly, the notion of ‘indistinguishable’ particles,
which is central to second quantization, does not apply to nuclei in solids (at least in thermody-
namic equilibrium and far from a solid-liquid phase transition). In fact, in many cases we can
directly label the nuclei, for example by means of experimental probes such as scanning tunneling
microscopy and electron diffraction. In order to avoid these issues, it is best to study the electron-
phonon problem by considering (i) indistinguishable electrons, for which it is convenient to use
second-quantized operators; (ii) distinguishable nuclei, for which it is best to use first quantiza-
tion in the displacements; (iii) indistinguishable phonons, resulting from the quantization of the
nuclear displacements; in this latter case the distinction between first and second quantization
is irrelevant. These aspects are briefly mentioned by Baym [125] and Maksimov [130].

With these choices, the dynamical variables of the problem are the electronic field operators ψ̂
(discussed below) and the nuclear displacements from equilibrium ∆τ̂ (discussed in Sec. 4.3). In
this theory the equilibrium coordinates of the nuclei are regarded as external parameters, and are
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to be obtained for example from crystallography or DFT calculations. Throughout this section,
we limit ourselves to consider equilibrium Green’s functions at zero temperature. As a result, all
expectation values will be evaluated for the electron-nuclei ground state |0〉. The extension of
the main results to finite temperature is presented in Sec. 5. We will not specify how to obtain
the ground state, since the following discussion is independent on the precise shape of this state.
In order to derive expressions that are useful for first-principles calculations, at the very end the
ground state will be approximated using standard DFT wavefunctions and phonons (see Sec. 5).

The electronic field creation/destruction operators are denoted by ψ̂†(x)/ψ̂(x), where the variable
x indicates both the position r and the spin label σ. These operators obey the anti-commutation
relations [84]: {ψ̂(x), ψ̂(x′)}={ψ̂†(x), ψ̂†(x′)}=0, {ψ̂(x), ψ̂†(x′)} = δ(x−x′). The most general
non-relativistic Hamiltonian for a system of coupled electrons and nuclei can be written as:

Ĥ = T̂e + T̂n + Ûee + Ûnn + Ûen, (62)

where each term will be introduced hereafter. The electron kinetic energy is:

T̂e = − ~2

2me

∫
dx ψ̂†(x)∇2 ψ̂(x), (63)

with me being the electron mass, and the integrals
∫
dx denoting the sum over spin and the

integration over space,
∑

σ

∫
dr. The electron-electron interaction is:

Ûee =
1

2

∫
dr

∫
dr′ n̂e(r)

[
n̂e(r

′)− δ(r− r′)
]
v(r, r′), (64)

where the electron particle density operator is given by n̂e(r) =
∑

σψ̂
†(x)ψ̂(x), and where

v(r, r′) = e2/(4πε0|r − r′|) is the Coulomb interaction between two particles of charge e. In
Eqs. (63) and (64) the integrals are over the entire crystal. This corresponds to considering a
supercell of infinite size (therefore the lattice vectors T of the supercell drop out) and a dense
sampling of wavevectors q in the Brillouin zone. This choice is useful in order to maintain the for-
malism as light as possible. Accordingly, all sums over q are replaced using N−1p

∑
q → Ω−1BZ

∫
dq,

where the integral is over the Brillouin zone of volume ΩBZ. Similarly the closure relations in
Eq. (213) are replaced by:

∫
dq exp(iq · Rp) = ΩBZ δp0 and

∑
p exp(iq · Rp) = ΩBZ δ(q). The

nuclear kinetic energy operator is the same as the last term in Eq. (19). Using the same notation
as in Sec. 3 the nucleus-nucleus interaction energy is:

Ûnn =
1

2

∑
κ′p′ 6=κp

ZκZκ′v(τ 0
κp + ∆τ̂κp, τ

0
κ′p′ + ∆τ̂κ′p′). (65)

Here τ 0
κp denotes the classical equilibrium position of each nucleus, and the displacement op-

erators ∆τ̂κp will later be expressed in terms of the ladder operators from Appendix B. The
electron-nucleus interaction energy is:

Ûen =

∫
dr

∫
dr′ n̂e(r)n̂n(r′)v(r, r′), (66)

where the nuclear charge density operator is given by:

n̂n(r) = −
∑

κp
Zκ δ(r− τ 0

κp −∆τ̂κp). (67)
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Here the density operators are expressed in units of the electron charge, so that the expectation
value of the total charge density is −e〈0|n̂(r)|0〉 with n̂(r) = n̂e(r) + n̂n(r).

We underline the asymmetry between Eqs. (64) and (65): in the case of electrons one considers
the electrostatic energy of a continuous distribution of charge, and the unphysical self-interaction
is removed by the Dirac delta; whereas in the case of nuclei, the particles are distinguishable
therefore one has to take into account all pairwise interactions individually.

4.2 Electron Green’s function

4.2.1 Equation of motion and self-energy

In this section we focus on the electrons. By combining Eqs. (62)-(66) and using the anti-
commutation relations for the field operators one finds the standard expression:

Ĥ = T̂n + Ûnn +

∫
dx ψ̂†(x)

[
− ~2

2me
∇2 + V̂n(r)

]
ψ̂(x) +

1

2

∫
dx dx′ v(r, r′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x),

(68)
where the nuclear potential V̂n is given by:

V̂n(r) =

∫
dr′v(r, r′)n̂n(r′). (69)

In order to study the excitation spectrum of the many-body Hamiltonian Ĥ at equilibrium we
need to determine the time-ordered one-electron Green’s function [134, 135]. At zero temperature
this function is defined as:

G(xt,x′t′) = − i
~
〈0| T̂ ψ(xt)ψ†(x′t′)|0〉, (70)

where T̂ is Wick’s time-ordering operator for fermions, and ensures that the times of the sub-
sequent operators increase towards the left. The formal definition of the Wick operator is:
T̂ψ(xt)ψ†(x′t′) = θ(t−t′)ψ(xt)ψ†(x′t′)− θ(t′−t)ψ†(x′t′)ψ(xt), where θ is the Heaviside function.
Based on this definition we see that for t > t′ the Green’s function in Eq. (70) corresponds to the
scalar product between the initial state ψ†(x′t′)|0〉 and the final state ψ†(xt)|0〉. This product
is precisely the probability amplitude for finding an electron in the position x at the time t,
after having introduced an electron in x′ at an earlier time t′. In the case t < t′ the situation is
reversed and the Green’s function describes the propagation of a hole created in the system at
the time t′.

In order to determineG(xt,x′t′) we need to establish an equation of motion for the field operators.
This can be done by describing the time-dependence of the operators within the Heisenberg
picture:

ψ̂(xt) = eitĤ/~ ψ̂(x) e−itĤ/~, (71)

where Ĥ was defined in Eq. (68). From this definition it follows immediately:

i~
∂

∂t
ψ̂(xt) = [ψ̂(xt), Ĥ]. (72)
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By combining Eqs. (68) and (72) and using the anti-commutation relations for the field operators
one obtains:

i~
∂

∂t
ψ̂(xt) =

[
− ~2

2me
∇2 +

∫
dr′v(r, r′) n̂(r′t)

]
ψ̂(xt), (73)

where the time-dependence in n̂(r′t) is to be understood in the Heisenberg sense, as in Eq. (71).
This equation of motion allows us to write the corresponding equation for the electron Green’s
function in Eq. (70):[
i~
∂

∂t
+

~2

2me
∇2 − ϕ(rt)

]
G(xt,x′t′) = δ(xt,x′t′)− i

~

∫
dr′′dt′′v(rt, r′′t′′)〈T̂ n̂(r′′t′′)ψ(xt)ψ†(x′t′)〉.

(74)
Here v(rt, r′′t′′) = v(r, r′′)δ(t− t′′), the brakets 〈· · ·〉 are a short-hand notation for 〈0| · · · |0〉, and
the additional term ϕ is discussed below. In order to obtain Eq. (74) we used once again the
anti-commutation relations, and we noted that the derivative of the Heaviside function is a Dirac
delta.

The new term ϕ(rt) which appeared in Eq. (74) is a scalar electric potential which couples to both
electronic and nuclear charges. This potential has been introduced in order to perturb the system
via the additional Hamiltonian Ĥ1(t) =

∫
dr n̂(rt)ϕ(rt). The physical idea behind this choice

is to use ϕ(rt) in order to induce forced oscillations in the system. When the system resonates
with the perturbation we know that the resonant frequency must correspond to a free oscillation,
that is a many-body eigenmode. From a formal point of view, the potential ϕ(rt) is introduced
in order to exploit Schwinger’s functional derivative technique (Ref. [134], Appendix II) and is
set to zero at the end of the derivation.

One complication arising from the introduction of ϕ(rt) in Eq. (74) is that the time evolution in
Eq. (71) is no longer valid, since the perturbed Hamiltonian now depends on the time variable.
The way around this complication is to switch from the Heisenberg picture to the interaction
picture. This change amounts to replacing the exponentials in Eq. (71) by the time-ordered Dyson
series Û(t) = T̂ exp

(
−i~−1

∫ t
0 Ĥ(t′)dt′

)
([135], p. 57). Since this would lead to an overlong

derivation, we prefer to leave this aspect aside and refer the reader to Ref. [136] for a more
comprehensive discussion.

In order to write Eq. (74) in a manageable form, we use the identity [134]:

δ〈T̂ â(t1)b̂(t2)〉
δϕ(r′′t′′)

=− i
~
〈T̂
[
n̂(r′′t′′)−〈n̂(r′′t′′)〉

]
â(t1)b̂(t2)〉. (75)

In this and the following expressions δ/δϕ(r′′t′′) denotes the functional derivative with respect
to ϕ(r′′t′′), and should not be confused with the Dirac delta functions δ(xt,x′t′). Equation (75)
is proven in Refs. [134] (Appendix II) and [126] (Appendix B.a). After identifying â and b̂ with
ψ̂(xt) and ψ̂†(x′t′), respectively, Eq. (74) becomes:[

i~
∂

∂t
+

~2

2me
∇2 − Vtot(rt)−i~

∫
dr′′dt′′v(rt+ η, r′′t′′)

δ

δϕ(r′′t′′)

]
G(xt,x′t′) = δ(xt,x′t′), (76)

where η is a positive infinitesimal arising from the time-ordering, and Vtot(rt) is the total potential
acting on the electronic and nuclear charges, averaged over the many-body quantum state |0〉:

Vtot(rt) =

∫
dr′v(r, r′)〈n̂(r′t)〉+ ϕ(rt). (77)
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Equation (76) was first derived by Kato et al. [134]. In order to avoid a proliferation of variables,
it is common practice to replace the letters by integer numbers, using the convention (xt) or
(rt) → 1, (x′t′) or (r′t′) → 2, (rt+η) → 1+, and so on. Using this convention the last two
equations become:[

i~
∂

∂t1
+

~2

2me
∇2(1)− Vtot(1)− i~

∫
d3 v(1+3)

δ

δϕ(3)

]
G(12) = δ(12), (78)

and
Vtot(1) =

∫
d2 v(12)〈n̂(2)〉+ ϕ(1). (79)

In these expressions the spin labels are implied for the Green’s function and for the Dirac delta.

At this point, a set of self-consistent equations for coupled electrons and phonons can be gener-
ated by eliminating the functional derivative in Eq. (78). For this purpose one first relates the
total screened electrostatic potential Vtot to the external potential ϕ by introducing the inverse
dielectric matrix ε−1 as a functional derivative:

ε−1(12) = δVtot(1) / δϕ(2). (80)

The function ε−1(12) is the many-body counterpart of the dielectric matrix discussed in Sec. 3.2.4.
The form given by Eq. (80) is the most general field-theoretic formulation for a system of inter-
acting electrons and nuclei.

The next step is to rewrite δG/δϕ inside Eq. (78) in terms of the inverse Green’s function, G−1.
By using the fact that δ

∫
d2G(12)G−1(23) = 0 and the rule for the functional derivative of a

product [137] one obtains:

δG(12)

δϕ(3)
= −

∫
d(45)G(14)

δG−1(45)

δϕ(3)
G(52). (81)

In order to eliminate any explicit reference to ϕ we can express the functional derivative on the
right-hand side using the chain rule for functional differentiation [137]:

δG−1(45)

δϕ(3)
=

∫
d6
δG−1(45)

δVtot(6)

δVtot(6)

δϕ(3)
. (82)

It is customary to call ‘vertex’ the three-point quantity defined by:

Γ(123) = − δG−1(12) / δVtot(3). (83)

By combining Eqs. (78) and (80)-(83) one finds:[
i~

∂

∂t1
+

~2

2me
∇2(1)− Vtot(1)

]
G(12)−

∫
d3 Σ(13)G(32) = δ(12), (84)

having introduced the so-called ‘electron self-energy’ Σ:

Σ(12) = i~
∫
d(34)G(13)Γ(324)W (41+), (85)

which in turn contains the ‘screened Coulomb interaction’ W , defined as:

W (12) =

∫
d3 ε−1(13) v(32) =

∫
d(3) v(13)ε−1(23). (86)
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The last equality can be obtained by observing that δ〈n̂(1)〉/δϕ(2) = δ〈n̂(2)〉/δϕ(1) after Eq. (75),
therefore W (12) = W (21).

Now, by inverting Eq. (84) and using Eq. (83), we can express the vertex Γ in terms of Σ and G:

Γ(123)=δ(12)δ(13) +

∫
d(4567)

δΣ(12)

δG(45)
G(46)G(75)Γ(673). (87)

The derivation of this result is rather lengthy: it requires the use of the chain rule, in symbols
δ/δVtot = (δG/δVtot)δ/δG, as well as Eq. (81) with Σ and Vtot instead of G and ϕ, respectively.

Equations (84)-(87) form a nonlinear system of equations for the electron Green’s function, G,
the electron self-energy, Σ, the total screened Coulomb interaction, W , and the vertex, Γ. In
order to close the loop it remains to specify the relation between W and the other quantities.
The next section is devoted to this aspect.

4.2.2 The screened Coulomb interaction

An equation for the screened Coulomb interaction can be found by combining Eqs. (79), (80),
and (86):

W (12) = v(12) +

∫
d(34) v(13)

δ〈n̂(3)〉
δVtot(4)

W (42). (88)

By defining the ‘polarization propagator’ as:

P (12) =
δ〈n̂(1)〉
δVtot(2)

, (89)

the previous expression takes the usual form [122]:

W (12) = v(12) +

∫
d(34) v(13)P (34)W (42). (90)

This result can be combined with Eq. (86) in order to express the dielectric matrix in terms of
the polarization:

ε(12) = δ(12)−
∫
d(3)v(13)P (32). (91)

We now consider the special case whereby the nuclei are regarded as classical point charges
clamped to their equilibrium positions. In this situation, the variation of the charge density
δ〈n̂〉 in Eq. (89) corresponds to the re-distribution of the electronic charge in response to the
perturbation δVtot. In order to describe this special case it is convenient to introduce a new
polarization propagator, Pe, associated with the electronic response only:

Pe(12) =
δ〈n̂e(1)〉
δVtot(2)

=−i~
∑
σ1

∫
d(34)G(13)G(41+)Γ(342). (92)

The last equality in this expression is obtained by using Eq. (81) with Vtot instead of ϕ, together
with Eq. (83), and by considering that the electron density is related to the Green’s function via
the relation:

〈n̂e(1)〉 = −i~
∑

σ1
G(11+). (93)
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In conjunction with Pe it is natural to define the Coulomb interaction screened by the electronic
polarization only:

We(12) = v(12) +

∫
d(34) v(13)Pe(34)We(42), (94)

as well as the associated dielectric matrix, in analogy with Eq. (91):

εe(12) = δ(12)−
∫
d3 v(13)Pe(32). (95)

Taken together, Eqs. (84)-(87) with W replaced by We constitute the well-known Hedin’s equa-
tions for a system of interacting electrons when the nuclei are clamped to their equilibrium
positions [122].

In order to go back to the most general case whereby the nuclei are not clamped to their equi-
librium positions, one has to describe the re-adjustment of both electronic and nuclear charge.
To this aim we combine Eq. (80), (86), (88), (92), (94), and (95). The result is:

W (12) = We(12) +

∫
d(34)We(13)

δ〈n̂n(3)〉
δϕ(4)

v(42). (96)

An explicit expression for δ〈n̂n〉/δϕ can be obtained using the following reasoning. We go into
the details since this is a delicate passage. Equation (75) provides a recipe for evaluating the
variation of any operator with respect to a potential ϕ(rt) which couples to the total charge
density operator n̂(rt) via Ĥ1(t) =

∫
dr n̂(rt)ϕ(rt). Therefore we can replace â b̂ in Eq. (75) by

n̂n to obtain:
δ〈n̂n(1)〉
δϕ(2)

= − i
~
〈T̂ [n̂(2)−〈n̂(2)〉][n̂n(1)−〈n̂n(1)〉]〉. (97)

In addition, if we introduce a second perturbation, Ĥ2(t) =
∫
dr n̂n(rt)J(rt), which couples only

to the nuclear charges, we can repeat the same reasoning as in Eq. (97) after replacing ϕ by J
and n̂ by n̂n:

δ〈n̂(1)〉
δJ(2)

=− i
~
〈T̂ [n̂n(2)−〈n̂n(2)〉] [n̂(1)− 〈n̂(1)〉]〉. (98)

The comparison between Eqs. (97) and (98) yields:

δ〈n̂n(1)〉
δϕ(2)

=
δ〈n̂(2)〉
δJ(1)

. (99)

This can be restated by using the chain rule, δ〈n̂e〉/δJ = δ〈n̂e〉/δVtot × δVtot/δ〈n〉 × δ〈n〉/δJ :

δ〈n̂(1)〉
δJ(2)

=

∫
d3 ε−1e (13)

δ〈n̂n(3)〉
δJ(2)

. (100)

The variation δ〈n̂n〉/δJ on the right-hand side can be expressed as in Eq. (98):

δ〈n̂n(1)〉
δJ(2)

=− i
~
〈T̂ [n̂n(2)−〈n̂n(2)〉] n̂n(1)〉, (101)

and since 〈n̂n − 〈n̂n〉〉 = 0 this can also be rewritten as:

δ〈n̂n(1)〉/δJ(2)=D(21), (102)
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having defined:

D(12) = − i
~
〈T̂ [n̂n(1)−〈n̂n(1)〉] [n̂n(2)−〈n̂n(2)〉]〉. (103)

This quantity is called the ‘density-density correlation function’ for the nuclei. Finally, we can
combine Eqs. (96), (99), (100), and (103) to obtain:

W (12) = We(12) +Wph(12), (104)

where Wph is the nuclear contribution to the screened Coulomb interaction, and is given by:

Wph(12) =

∫
d(34)We(13)D(34)We(24). (105)

This important result was derived first by Hedin and Lunqvist [126].

4.2.3 Nuclear contribution to the screened Coulomb interaction

In view of the forthcoming discussion, it is useful to derive a more explicit expression for the
screened interaction Wph in Eq. (105). Here we follow Refs. [125, 130]. The Taylor expansion of
the Dirac delta to second order in the displacement u reads:

δ(r− u) = δ(r)− u · ∇δ(r) +
1

2
u·∇∇δ(r)·u, (106)

where u ·∇∇·u is a short-hand notation for the second-order derivative
∑

αα′uαuα′∇α∇α′ . The
above expression derives from the Fourier representation of the Dirac delta. Using Eq. (106)
inside (67) we deduce:

n̂n(r) = n0n(r) +
∑

κp
Zκ ∆τ̂κp · ∇δ(r− τ 0

κp)−
1

2

∑
κp
Zκ ∆τ̂κp · ∇∇δ(r− τ 0

κp) ·∆τ̂κp, (107)

where n0n(r) is the density of nuclear point charges at the classical equilibrium positions τ 0
κp.

After taking into account the time evolution in the Heisenberg picture as in Eq. (71), we can
replace this expansion inside Eq. (103) to obtain:

D(12) =
∑
καp
κ′α′p′

Zκ∇1,αδ(r1 − τ 0
κp)Dκαp,κ′α′p′(t1t2)Zκ′∇2,α′δ(r2 − τ 0

κ′p′). (108)

On the right-hand side we introduced the ‘displacement-displacement correlation function’:

Dκαp,κ′α′p′(tt
′) = − i

~
〈T̂ ∆τ̂καp(t) ∆τ̂κ′α′p′(t

′)〉. (109)

If we insert the last two equations in Eq. (105) we find:

Wph(12) =
∑
καp
κ′α′p′

∫
d(34) ε−1e (13)∇3,αVκ(r3 − τ 0

κp)Dκαp,κ′α′p′(t3t4)ε
−1
e (24)∇4,α′Vκ′(r4 − τ 0

κ′p′).

(110)
In this expression Vκ is the bare Coulomb potential of a nucleus or its ionic pseudo-potential.

At this point of the derivation, Hedin and Lundqvist introduce the approximation that the
electronic dielectric matrix in Eq. (110) can be replaced by its static counterpart [126]. This choice

32



implies the Born-Oppenheimer adiabatic approximation. In view of maintaining the formalism as
general as possible, we prefer to keep retardation effects, following the earlier works by Bardeen
and Pines [18] and Baym [125]. We will come back to this aspect in Secs. 5.1.3 and 5.2.2.

We stress that the sole approximation used until this point is to truncate the density operator
for the nuclei to the second order in the atomic displacements. This is the standard harmonic
approximation. Apart from this approximation, which is useful to express Wph in a tractable
form, no other assumptions are made. Gillis proposed a generalization of the results of Ref. [125]
which does not use the harmonic approximation [128]. However, the resulting formalism is
exceedingly complex, and has not been followed up.

4.3 Phonon Green’s function

In order to complete the set of self-consistent many-body equations for the coupled electron-
phonon system, it remains to specify a prescription for calculating the displacement-displacement
correlation function, Dκαp,κ′α′p′(tt

′). This function is seldom referred to as the ‘phonon Green’s
function’, although stricly speaking this name should be reserved for the quantity −(i/~)〈T̂ âqν(t)

â†q′ν′(t
′)〉 which will be discussed in Sec. 5.1.1. In the following we describe the procedure

originally devised by Baym [125], and subsequently analyzed by Keating [127], Hedin and
Lundqvist [126], Gillis [128], and Maksimov [130].

The starting point is the equation of motion for the displacement operators ∆τ̂καp(t). In analogy
with Eq. (72) we have: i~∂/∂t∆τ̂κp(t) = [∆τ̂κp(t), Ĥ]. Since we are considering the harmonic
approximation and we expect the nuclei to oscillate around their equilibrium positions, it is
convenient to aim for an expression resembling Newton’s equation. This can be done by taking
the time-derivative of the equation of motion:

Mκ
∂2

∂t2
∆τ̂κp = −Mκ

~2
[[∆τ̂κp, Ĥ], Ĥ]. (111)

After evaluating the commutators using Eqs. (62)-(66) and performing the derivatives with re-
spect to the nuclear displacements by means of Eq. (106), we obtain (the steps are laborious but
straightforward):

Mκ
∂2

∂t2
∆τ̂κp(t) = Zκ

∫
dr dr′ n̂(κp)(rt)v(r, r′)

{
−∇′δ(r′−τ 0

κp) +∇′
[
∇′δ(r′−τ 0

κp) ·∆τ̂κp(t)
]}
.

(112)
Here n̂(κp)(r) is the total charge density of electrons and nuclei, except for the contribution of the
nucleus κ in the unit cell p. In the second line ∇′ indicates that the derivatives are taken with
respect to the variable r′. At this point, we can use the functional derivative technique as in
Sec. 4.2 in order to determine an expression involving the displacement-displacement correlation
function from Eq. (109). Here, instead of using J(r) as in Sec. 4.2.2 for the nuclear density,
it is convenient to work with the individual displacements, and introduce a third perturbation
Ĥ3(t) =

∑
κp Fκp(t) ·∆τ̂κp(t). The extra terms Fκp(t) have the meaning of external forces acting

on the nuclei. Using this perturbation, it is possible to write the displacement-displacement
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correlation function in a manner similar to Eq. (101):

δ〈∆τ̂καp(t)〉
δFκ′α′p′(t′)

= Dκαp,κ′α′p′(tt
′). (113)

This result was derived by Baym [125] using a finite-temperature formalism. As in the case of
the electron Green’s function in Sec. 4.2, it can only be obtained by working in the interaction
picture, and by taking into account the explicit time-dependence of the Hamiltonian Ĥ + Ĥ3(t).
Also in the present case, we omit these details for the sake of conciseness.

If we take the expectation value of Eq. (112) in the ground state, after having added the new
force term −Fκp(t), and carry out the functional derivative with respect to Fκ′p′(t

′), we obtain:

Mκ
∂2

∂t2
Dκαp,κ′α′p′(tt

′) = −δκαp,κ′α′p′δ(tt′) + Zκ

∫
dr dr′

[
− δ〈n̂(κp)(rt)〉
δFκ′α′p′(t′)

v(r, r′)∇′α δ(r′ − τ 0
κp)

+ 〈n̂(κp)(rt)〉v(r, r′)∇′α∇′γ δ(r′−τ 0
κp)Dκγp,κ′α′p′(tt

′)

]
, (114)

where the sum over the Cartesian directions γ is implied. The derivation of this result is rather
cumbersome and involves the following considerations: (i) the Dirac deltas in the first line come
from the force terms −Fκp added to the Hamiltonian; (ii) within the Harmonic approximation
the expectation value 〈n̂(κp)∆τ̂κp〉 can be replaced by 〈n̂(κp)〉〈∆τ̂κp〉 [125]; (iii) the expectation
value 〈∆τ̂κp〉 can be set to zero, because at the end of the derivation one sets |Fκp| = 0 hence the
expectation values of the displacements vanish. We note that Hedin and Lundqvist omitted the
last line of Eq. (114) in their derivation [126], but this term was correctly included by Baym [125]
and Maksimov [130].

The remaining functional derivative in Eq. (114) can be expressed in terms of the nuclear charge
density using the same strategy which led to Eq. (100). The result is:

δ〈n̂(κp)(rt)〉
δFκ′α′p′(t′)

=

∫
dr′′dt′′ε−1e (rt, r′′t′′)

δ〈n̂n(r′′t′′)〉
δFκ′α′p′(t′)

−
∑

γ
ZκDκγp,κ′α′p′(tt

′)∇γδ(r−τ 0
κp). (115)

By inserting this result inside Eq. (114) and using the expansion in Eq. (107), we finally obtain
the equation of motion for the displacement-displacement correlation function:

Mκ
∂2

∂t2
Dκαp,κ′α′p′(tt

′) = −δκαp,κ′α′p′δ(tt′)−
∑

κ′′α′′p′′

∫
dt′′Πκαp,κ′′α′′p′′(tt

′′)Dκ′′α′′p′′,κ′α′p′(t
′′t′). (116)

The quantity Πκpα,κ′p′α′(tt
′) in this expression is called the ‘phonon self-energy’ and is given by:

Πκαp,κ′α′p′(tt
′) =

∫
drdr′

[
Zκ∇α δ(r−τ 0

κp)We(rt, r
′t′)Zκ′∇′α′δ(r′−τ 0

κ′p′)

+ δκp,κ′p′δ(tt
′)∇α〈n̂(r)〉 v(r, r′)Zκ′∇′α′δ(r′−τ 0

κ′p′)
]
. (117)

The derivation of Eq. (117) is nontrivial and is not found consistently in the literature; it requires
converting the derivatives with respect to the position variables r, r′ into derivatives with respect
to the nuclear coordinates; integrating by parts in order to re-arrange the derivatives with respect
to r and r′; invoking the harmonic approximation; and considering that, after setting the forces
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Fkp(t) = 0 and the field ϕ(rt) = 0 at the end, the expectation value 〈n̂(rt)〉 does not depend
on time. The term in the third line of Eq. (117) is what Baym called the ‘static force’, since it
arises from the forces experienced by the nuclei in their equilibrium configuration [125].

In order to simplify Eq. (117) it is convenient to move from the time to the frequency domain. We
use the following convention for the Fourier transform of a function f(t): f(ω)=

∫∞
−∞ dtf(t)eiωt.

Since we are considering equilibrium properties in absence of time-dependent external potentials,
the time variables enter in the above quantities only as differences [138]; for exampleWe(rt, r

′t′) =

We(r, r
′, t− t′). As a consequence, Eq. (116) is rewritten as:∑

κ′′α′′p′′

[
Mκω

2δκαp,κ′′α′′p′′ −Πκαp,κ′′α′′p′′(ω)
]
Dκ′′α′′p′′,κ′α′p′(ω) = δκαp,κ′α′p′ , (118)

whereas the phonon self-energy in the frequency-domain at equilibrium reads:

Πκαp,κ′α′p′(ω) =

∫
drdr′

[
Zκ∇α δ(r−τ 0

κp)We(r, r
′, ω) + δκp,κ′p′∇α〈n̂(r)〉 v(r, r′)

]
Zκ′∇′α′δ(r′−τ 0

κ′p′).

(119)
The second line in this expression is conveniently rewritten by making use of the acoustic sum
rule. This sum rule is well-known in the theory of lattice dynamics of crystals [77], and can be
generalized to the case of many-body Green’s function approaches as follows [126]:∑

κ′p′
Πκαp,κ′α′p′(ω = 0) = 0 for any α, α′. (120)

This relation was first derived by Baym [125] by imposing the condition that the nuclei in the
crystal must remain near their equilibrium positions due to fictitious restoring forces. Physically
this condition corresponds to considering a crystal which is held fixed in the laboratory reference
frame. In this approach, the crystal cannot translate or rotate as a whole. Similar relations were
derived in Refs. [128, 129].

If we combine Eqs. (119) and (120), perform integrations by parts, and carry out the integrations
in r and r′ we obtain:

Πκαp,κ′α′p′(ω) =
∑
κ′′p′′

ZκZκ′′
∂2

∂rα∂r′α′

∣∣∣∣r =τ0
κp

r′=τ0
κ′′p′′

[
δκ′p′,κ′′p′′We(r, r

′, ω)−δκp,κ′p′We(r, r
′, 0)

]
, (121)

which fulfils the sum rule in Eq. (120).

Eqs. (118) and (121) completely define the nuclear dynamics in the harmonic approximation.
After obtaining the displacement-displacement correlation function Dκαp,κ′α′p′(tt

′) by solving
this set of equations, it is possible to construct the expectation value of the nuclear density using
Eqs. (107) and (109):

〈n̂n(rt)〉 = n0n(r)− i~
2

∑
κp,αα′

Zκ
∂2δ(r− τ 0

κp)

∂rα∂rα′
Dκαp,κα′p(t

+t). (122)

We should emphasize that, according to Eq. (121), the coupling of the nuclear displacements to
the electrons is completely defined by the electronic dielectric matrix through We. Similarly, the
nuclei affect the electronic structure via the dielectric matrix which enters Wph in Eq. (110) and
via the nuclear density inside Vtot in Eq. (79). From these considerations it should be clear that
the electronic dielectric matrix εe(r, r′, ω) plays an absolutely central role in the the field-theoretic
approach to the electron-phonon problem.
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Eq. Description Expression

(93) Electronic charge density 〈n̂e(1)〉 = −i~
∑
σ1
G(11+)

(122) Nuclear charge density 〈n̂n(rt)〉 = n0
n(r)− (i~/2)

∑
κp,αα′ Zκ∂

2δ(r− τ 0
κp)/∂rα∂rα′

×Dκαp,κα′p(t
+t)

(79) Total electrostatic potential Vtot(1) =
∫
d2 v(12) [〈n̂e(2)〉+ 〈n̂n(2)〉]

(84) Equation of motion, electrons
[
i~∂/∂t1 + (~2/2me)∇2(1)− Vtot(1)

]
G(12)−

∫
d3 Σ(13)G(32) = δ(12)

(118) Equation of motion, nuclei
∑
κ′′α′′p′′

[
Mκω

2δκαp,κ′′α′′p′′ −Πκαp,κ′′α′′p′′(ω)
]

×Dκ′′α′′p′′,κ′α′p′(ω) = δκαp,κ′α′p′

(85) Electron self-energy Σ(12) = i~
∫
d(34)G(13) Γ(324)

[
We(41+) +Wph(41+)

]
(94) Screened Coulomb, electrons We(12) = v(12) +

∫
d(34) v(13)Pe(34)We(42)

(92) Electronic polarization Pe(12) = −i~
∑
σ1

∫
d(34)G(13)G(41+) Γ(342)

(95) Electronic dielectric matrix εe(12) = δ(12)−
∫
d(3)v(13)Pe(32)

(87) Vertex Γ(123)=δ(12)δ(13)+
∫
d(4567) [δΣ(12)/δG(45)]G(46)G(75)Γ(673)

(110) Screened Coulomb, nuclei Wph(12) =
∑
καp,κ′α′p′

∫
d(34) ε−1

e (13)∇3,αVκ(r3−τ 0
κp)

×Dκαp,κ′α′p′(t3t4)ε−1
e (24)∇4,α′Vκ′(r4−τ 0

κ′p′)

(121) Phonon self-energy Πκαp,κ′α′p′(ω) =
∑
κ′′p′′ZκZκ′′(∂2/∂rα∂r

′
α′)

× [δκ′p′,κ′′p′′We(r, r
′, ω)−δκp,κ′p′We(r, r

′, 0)]
r=τ0

κp,r
′=τ0

κ′′p′′

Table 1: Self-consistent Hedin-Baym equations for the coupled electron-phonon system in the
harmonic approximation.

4.4 Hedin-Baym equations

Apart from making use of the harmonic approximation, the set of equations given by Eqs. (79),
(84), (85), (87), (92), (93), (94), (95), (110), (118), (121), and (122) describe the coupled electron-
phonon system entirely from first principles. This set of equations can be regarded as the most
sophisticated description of interacting electrons and phonons available today. Since the self-
consistent equations for the electrons were originally derived by Hedin [122], and those for the
nuclei were derived first by Baym [125], we will refer to the complete set as the Hedin-Baym
equations. Given the importance of these relations, we summarize them schematically in Table 1.
The standard Hedin’s equations for interacting electrons in the potential of clamped nuclei [122]
are immediately recovered from the Hedin-Baym equations by setting to zero the displacement-
displacement correlation function of the nuclei, Dκpα,κ′p′α′ = 0.

Table 1 provides a closed set of self-consistent equations whose solution yields the Green’s func-
tions of a fully-interacting electron-phonon system, within the harmonic approximation. We
stress that these relations are fundamentally different from diagrammatic approaches. In fact,
here the coupled electron-phonon system is not addressed using Feynman-Dyson perturbation
theory as it was done for example in Ref. [127]. Instead, in Table 1, electrons and phonons are
described non-perturbatively by means of a coupled set of nonlinear equations for the exact prop-
agators. In particular we emphasize that this approach does not require the Born-Oppenheimer
adiabatic approximation, and therefore it encompasses insulators, intrinsic as well as doped
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semiconductors, metals, and superconductors.

Almost every property related to electron-phonon interactions in solids that can be calculated
today from first principles can be derived from these equations. Examples to be discussed in
Secs. 5-10 include the renormalization of the Fermi velocity, the band gap renormalization in semi-
conductors and insulators, the non-adiabatic corrections to vibrational frequencies, the Fröhlich
interaction, and the lifetimes of electrons and phonons. The generalization of these results to the
case of finite temperature should also be able to describe phonon-mediated superconductivity,
although this phenomenon is best addressed by studying directly the propagation of Cooper pairs
(see Sec. 11).

Baym’s theory can in principle be extended to go beyond the harmonic approximation [128].
However, the mathematical complexity of the resulting formalism is formidable, due to the
appearance of many additional terms which are neglected in the harmonic approximation.

5 From a many-body formalism to practical calculations

The Hedin-Baym equations summarized in Table 1 define a rigorous formalism for studying
interacting electrons and phonons in metals, semiconductors, and insulators entirely from first
principles. However, a direct numerical solution of these equations for real materials is currently
out of reach, and approximations are needed for practical calculations. The following sections
establish the connection between the Hedin-Baym equations and standard expressions which are
currently in use in ab initio calculations of electron-phonon interactions.

5.1 Effects of the electron-phonon interaction on phonons

5.1.1 Phonons in the Born-Oppenheimer adiabatic approximation

The vibrational eigenmodes of the nuclei can be identified with the resonances of the displacement-
displacement correlation function Dκpα,κ′p′α′(tt

′) in the frequency domain. If we denote by M

the diagonal matrix having the nuclear masses Mκ along its diagonal, then the formal solution
of Eq. (118) can be written as:

D(ω) =
[
Mω2 −Π(ω)

]−1
, (123)

where D is the matrix with elements Dκpα,κ′p′α′ . The resonant frequencies of the system corre-
spond to the solutions of the nonlinear equations:

Ων(ω)− ω = 0, with ν = 1, . . . 3M, (124)

where Ω2
ν(ω) is an eigenvalue of M−1/2 Π(ω) M−1/2, parametric in the variable ω.

As expected, the study of lattice vibrations within a field-theoretic framework resembles the
standard eigenvalue problem reviewed in Sec. 3.1. In particular, the matrix Π(ω) represents the
many-body counterpart of the matrix of interatomic force constants Cκαp,κ′α′p′ introduced in
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Eq. (13). However, despite its formal simplicity, Eq. (124) conceals the full wealth of information
associated with the many-body electronic screening εe(r, r′, ω) via Eq. (121). In fact, the phonon
self-energy is generally complex and frequency-dependent. Therefore we can expect to find roots
of Eq. (124) outside of the real frequency axis, as well as multiple roots for the same ‘eigenmode’.

The link between Eq. (124) and phonon calculations by means of DFT is established by noting
that DFT relies on the Born-Oppenheimer adiabatic approximation. In the adiabatic approxi-
mation the nuclei are considered immobile during characteristic electronic timescales. Formally,
this approximation is introduced by setting ω = 0 in Eq. (121) [127]. In practice, this assumption
corresponds to stating that εe(r, r′, ω) can be replaced by εe(r, r′, 0) in the frequency range of
the vibrational excitations. Obviously this is not always the case, and important exceptions will
be discussed in Sec. 5.1.2.

In order to see more clearly the connection with the formalism discussed in Sec. 3.1, we partition
the phonon self-energy into ‘adiabatic’ and ‘non-adiabatic’ contributions:

Π(ω) = ΠA + ΠNA(ω), (125)

with ΠA = Π(ω = 0). As we will see below, the adiabatic term ΠA will be taken to describe
‘non-interacting’ phonons, and the non-adiabatic self-energy ΠNA will be used to describe the
effects of electron-phonon interactions.

In the early literature it is common to find a different partitioning, whereby the non-interacting
system is defined by the bare interatomic force constants, corresponding to nuclei in the absence
of electrons [6]. This alternative choice is not useful in modern calculations, because the result-
ing non-interacting phonon dispersions are very different from the fully-interacting dispersions.
The present choice of using instead adiabatic phonons as the non-interacting system, is more
convenient in the context of modern ab initio techniques, since calculations of adiabatic phonon
spectra are routinely performed within DFPT.

In the remainder of this section we concentrate on the adiabatic term, and we defer the discussion
of the non-adiabatic self-energy to Sec. 5.1.2. Using Eq. (121), we can rewrite the adiabatic self-
energy as follows:

ΠA
καp,κ′α′p′ =

∑
κ′′p′′

(δκ′p′,κ′′p′′ − δκp,κ′p′)
[∫

dr
∂ 〈n̂e(r)〉
∂τκ′′α′p′′

∂V en(r)

∂τκαp
+

∂2Unn

∂τκαp∂τκ′′α′p′′

]
. (126)

In this expression Unn is the nucleus-nucleus interaction energy from Eq. (65), V en is the electron-
nuclei interaction from Eq. (25), and all the derivatives are taken at the equilibrium coordinates.
The derivation of Eq. (126) requires the use of the identity:

∂ 〈n̂e(r)〉
∂τ0καp

= −Zκ
∫
dr′[ε−1e (r, r′; 0)−δ(r, r′)]∇′αδ(r′−τ 0

κp). (127)

This identity follows from the same reasoning leading to Eq. (100), after considering an external
potential which modifies the position of the nucleus κ in the cell p. Equation (126) can be recast
in a familiar form by exploiting the acoustic sum rule in Eq. (120). Indeed after a few tedious
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but straightforward manipulations we obtain:

ΠA
καp,κ′α′p′ =

∫
dr
∂〈n̂e(r)〉
∂τκ′α′p′

∂V en(r)

∂τκαp
+

∫
dr 〈n̂e(r)〉 ∂2V en(r)

∂τκαp∂τκ′α′p′
+

∂2Unn

∂τκαp∂τκ′α′p′
. (128)

In this form, one can see that the adiabatic self-energy gives precisely the interatomic force
constants that we would obtain using the Born-Oppenheimer approximation and the Hellman-
Feynman theorem, compare Eq. (128) for example with Ref. [87], p. 517.

The difference between the ΠA
καp,κ′α′p′ in Eq. (128) and the Cκαp,κ′α′p′ in Eq. (13) is that, in

the former case, the electron density response to atomic displacements is governed by the exact
many-body dielectric matrix εe(r, r′, 0) and electron density 〈n̂e(r)〉, as shown by Eqs. (127) and
(128). As a result, ΠA

καp,κ′α′p′ corresponds to force constants and electron density dressed by all
many-body interactions of the system (both electron-electron and electron-phonon interactions).
In contrast, when the force constants in Eq. (13) are calculated using DFT, the electron density
response to an atomic displacement is evaluated using the RPA+xc screening, that is εHxc(r, r′)
from Sec. 3.2.4, and the ground-state electron density is calculated at clamped nuclei.

The use of the adiabatic approximation in the study of phonons carries the important advantage
that the many-body force constants ΠA form a real and symmetric matrix. This can be seen
by rewriting Eq. (121) for ω = 0, and using the relation We(r, r

′, ω) = We(r
′, r,−ω) which

follows from the property W (12) = W (21) (see Sec. 4.2). Since ΠA is real and symmetric, all
its eigenvalues are guaranteed to be real. In this approximation, the excitations of the lattice
correspond to sharp resonances in the displacement-displacement correlation function D(ω), and
it is meaningful to talk about phonons as long-lived excitations of the system. In fact these
excitations are infinitely long-lived in the harmonic approximation. In practical calculations, the
many-body ΠA is invariably replaced by the DFT interatomic force constants, and in this case
the agreement of the calculated phonon frequencies with experiment is excellent in most cases.
Illustrative examples can be found among others in Refs. [87, 88, 91, 139–146].

The most obvious criticism to the adiabatic approximation is that, in the case of metals, the
assumption εe(r, r′, ω)'εe(r, r′, 0) is inadequate. This can intuitively be understood by recalling
that the dielectric function of the homogeneous electron gas diverges when ω,q → 0 [9]. In
practical calculations, this divergence is connected with vanishing denominators in Eq. (51) for
q→ 0. An approximate, yet very successful strategy for overcoming this problem, is to replace
the occupation numbers in Eq. (51) by smoothing functions such as the Fermi-Dirac distribution,
and to describe the singular terms analytically [99]. Most first-principles calculations of phonon
dispersion relations in metals have been carried out using this strategy. Improvements upon this
strategy will be discussed in Sec. 5.1.2.

The adiabatic approximation leads naturally to the definition of an ‘adiabatic’ propagator DA(ω),
which can be obtained from Eq. (123) after replacing the phonon self-energy by its static limit:

DA(ω) =
[
Mω2 −ΠA

]−1
. (129)

Now, if we identify ΠA
καp,κ′α′p′ with the interatomic force constant Cκαp,κ′α′p′ in Eq. (13), we can

obtain an explicit expression for the adiabatic phonon propagator in terms of the eigenmodes
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eκα,ν(q) and eigenfrequencies ωqν introduced in Sec. 3.1. To this end we invert Eq. (129) us-
ing Eqs. (14)-(17), and recall that the dynamical matrix is Hermitian and obeys the relation
Ddm,∗
κα,κ′α′(q) = Ddm

κα,κ′α′(−q) [81]. After tedious but straightforward steps we find:

DA
καp,κ′α′p′(ω) =

∑
ν

∫
dq

ΩBZ
S∗qν,καpSqν,κ′α′p′

2ωqν

ω2 − ω2
qν

, (130)

with the definition:
Sqν,καp = eiq·Rp(2Mκωqν)−1/2 eκα,ν(q). (131)

This result suggests that, as expected, the propagator should take a simple form in the eigen-
modes representation. In fact, by using the inverse transform of Eq. (131) we have: DA

qν,q′ν′(ω) =

ΩBZ δ(q−q′)DA
qνν′(ω), with

DA
qνν′(ω) = 2ωqν/(ω

2 − ω2
qν)δνν′ . (132)

This result can alternatively be obtained starting from the ladder operators of Appendix B. In
fact, after using Eqs. (20), (109), and (131) we find:

DA
qνν′(tt

′) = −i〈T̂ [â†qν(t)âqν(t′) + â−qν(t)â†−qν(t′)]〉δνν′ . (133)

An explicit evaluation of the right-hand side using the Heisenberg time evolution generated by
the phonon Hamiltonian in Eq. (22) yields precisely Eq. (132), with the added advantage that
it is easier to keep track of the time-ordering. The result is:

DA
qνν(ω) =

1

ω − ωqν + iη
− 1

ω + ωqν − iη
, (134)

with η a positive real infinitesimal. This alternative approach is very common in textbooks,
see for example Refs. [8, 147]. However, it does not carry general validity in a field-theoretic
framework since it rests on the adiabatic approximation.

5.1.2 Phonons beyond the adiabatic approximation

In order to go beyond the adiabatic approximation, it is necessary to determine the complete
propagator D(ω) in Eq. (123). Formally this can be done by combining Eqs. (123) and (125) to
obtain the following Dyson-like equation:

D(ω) = DA(ω) + DA(ω)ΠNA(ω)D(ω). (135)

In this form it is apparent that the non-adiabatic phonon self-energy ΠNA(ω) ‘dresses’ the non-
interacting phonons obtained within the adiabatic approximation, as shown schematically in
Fig. 1(a). It is convenient to rewrite the Dyson equation in such a way as to show more clearly
the poles of the propagator. Using Eqs. (131)-(132) we find:

D−1qνν′(ω) =
1

2ωqν

[
δνν′(ω

2 − ω2
qν)− 2ωqνΠNA

qνν′(ω)
]
, (136)

where ΠNA
qνν′ and D

−1
qνν′ are obtained using the transform of Eq. (131) and its inverse, respectively.
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Figure 1: Diagrammatic representation of the phonon Green’s function and self-energy.
(a) Dyson equation for the phonon propagator, Eq. (135). The thick wavy line represents the
fully-interacting, non-adiabatic propagator; the thin wavy line is the adiabatic propagator; the
disc is the non-adiabatic self-energy. (b) Lowest-order diagrammatic expansion of the phonon
self-energy in terms of the bare electron-phonon vertices and the RPA electronic polarization.
The small dots are the bare electron-phonon coupling functions, and the thin lines are the non-
interacting (for example Kohn-Sham) electron Green’s functions. This diagram is the simplest
possible term which begins and ends with a phonon line. (c) Non-perturbative representation of
the phonon self-energy in terms of the bare coupling, the dressed coupling (large gray disc), the
fully-interacting electron’s Green’s functions (thick lines), and the vertex Γ from Eq. (83). This
diagram was proposed in Ref. [127] and describes the first line of Eq. (141). (d) Schematic repre-
sentation of the relation between the dressed electron-phonon coupling g and the bare coupling
gb, from Eq. (144). Ref. [131] reports a similar diagram, although with gb instead of g in the
second term of the r.h.s.; the difference stems from the present choice of using the irreducible
polarization P = GGΓ instead of the reducible polarization employed in Ref. [131]. We note
that in Ref. [1] the placement of the large dark gray disc in (d) at one end of the bare Coulomb
line is incorrect. The mistake has been corrected in the present figure.
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From Eq. (136) we see that the non-adiabatic self-energy ΠNA modifies the adiabatic phonon
spectrum in four distinct ways: (i) the real part of the diagonal elements ΠNA

qνν shifts the adiabatic
frequencies; (ii) the imaginary part introduces spectral broadening; (iii) the off-diagonal elements
of ΠNA

qνν′ introduce a coupling between the adiabatic vibrational eigenmodes; (iv) the frequency-
dependence of ΠNA

qνν(ω) might lead to multiple poles for the same mode ν, thereby introducing
new structures in the phonon spectrum.

Today it is relatively common to calculate phonon linewidths arising from electron-phonon in-
teractions [76, 148]. Recently it has also become possible to study the frequency renormalization
due to non-adiabatic effects [149, 150].

The possibility of observing new features in vibrational spectra arising from the EPI has not
been studied from first principles, but the underlying phenomenology should be similar to that
of plasmon satellites in photoelectron spectra (see Sec. 5.2.6). Generally speaking we expect
satellites whenever εe(r, r′, ω) exhibits dynamical structure close to vibrational frequencies. This
can happen, for example, in the case of degenerate polar semicondutors, when phonon and plas-
mon energies are in resonance. In these cases, phonons and plasmons can combine into ‘coupled
plasmon-phonon modes’ [151], which are the electronic analogue of photon polaritons (Ref. [152],
p. 295). This phenomenon was predicted theoretically [153], and subsequently confirmed by Ra-
man measurements on GaAs [154]. We speculate that it should be possible to obtain coupled
plasmon-phonon modes from the frequency-dependence of the phonon self-energy in Eq. (136);
it would be interesting to perform first-principles calculations in order to shed light on these
aspects.

In practical calculations the non-adiabatic corrections to the adiabatic phonon spectrum are
evaluated from Eq. (136) using first-order perturbation theory, by retaining only the diagonal
elements of ΠNA. If we denote the complex zeros of D−1qνν(ω) by Ω̃qν = Ωqν − iγqν , in the case
of non-degenerate eigenmodes Eq. (136) gives:

Ω̃2
qν = ω2

qν + 2ωqνΠNA
qνν(Ω̃qν), (137)

therefore:

γqν = −ωqν

Ωqν
Im ΠNA

qνν(Ωqν − iγqν), (138)

Ω2
qν = ω2

qν + γ2qν + 2ωqνRe ΠNA
qνν(Ωqν − iγqν). (139)

Apart from the small γ2qν term in the second line, these expressions are identical to those provided
in Refs. [6, 148]. Since non-adiabatic corrections are usually small as compared to the adiabatic
phonon frequencies, the above expressions are often simplified further by using the additional
approximations |Ωqν − ωqν | � ωqν and |γqν | � ωqν , leading to γqν ' −Im ΠNA

qνν(ωqν) and
Ωqν ' ωqν + Re ΠNA

qνν(ωqν). In these forms it becomes evident that the real part of the self-
energy shifts the adiabatic phonon frequencies, and the imaginary part is responsible for the
spectral broadening of the resonances. Using these expressions in Eq. (136) and going back to
the time domain, it is seen that, as a result of the EPI, phonons acquire a finite lifetime given
by τphqν = (2γqν)−1.
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5.1.3 Expressions for the phonon self-energy used in ab initio calculations

In the literature on electron-phonon interactions, the phonon self-energy Π is almost invari-
ably expressed in terms of an electron-phonon vertex g and the electron Green’s function G as
Π = |g|2GG in symbolic notation, see for example Ref. [6], p. 195. While this has become com-
mon practice also in ab initio calculations, the origin of this choice is not entirely transparent.
One could derive the above expression directly from Eq. (1), using standard Green’s function
techniques. However, this procedure does not answer the key question on how to calculate the
electron-phonon matrix elements g.

Closer inspection of the theory reveals that this is a rather nontrivial point. In fact, on the one
hand, a straightforward expansion of the second-quantized Hamiltonian of Eq. (68) in terms of
the nuclear coordinates leads to ‘bare’ electron-phonon matrix elements, gb, which contain the
bare Coulomb interaction between electrons and nuclei. On the other hand, if we go back to
Sec. 3.2.2, we see that the electron-phonon matrix elements in DFT are ‘dressed’ by the self-
consistent response of the electrons. The difference between bare and dressed vertex is not only
quantitative, but also qualitative: for example in metals the bare vertex is long-ranged, while
the screened vertex is short-ranged.

The relation between bare and dressed electron-phonon vertices and the derivation of explicit
expressions for the phonon self-energy have been discussed by many authors, see for example
Refs. [155, 156]. In short the argument is that the lowest-order Feynman diagram starting and
ending with a phonon line must contain precisely two bare electron-phonon vertices, as shown
in Fig. 1(b). By construction this diagram corresponds to having Π = |gb|2GG. In order to
make the transition from the bare vertex to the dressed vertex it is necessary to collect together
all the proper electronic polarization diagrams around the vertex. However, these steps have
been carried out only for the homogeneous electron gas [155, 156]. In the following we show
how the dressed electron-phonon vertex emerges from a non-perturbative analysis based on the
Hedin-Baym equations.

The non-adiabatic phonon self-energy ΠNA introduced in Sec. 5.1.2 can be written explicitly by
combining Eqs. (119) and (125):

ΠNA
καp,κ′α′p′(ω) =

∫
drdr′Zκ∇α δ(r−τ 0

κp)
[
We(r, r

′, ω)−We(r, r
′, 0)

]
Zκ′∇′α′δ(r′−τ 0

κ′p′). (140)

Using the Dyson equation for the screened Coulomb interaction, it can be seen that this expres-
sion does indeed contain electron-phonon matrix elements. In fact, by inserting Eq. (94) into
Eq. (140) we find terms like vPeWe, and the electron-phonon matrix elements will arise from
taking the gradients of v and We, respectively. By working in the eigenmodes representation via
Eq. (131), after lengthy manipulations this procedure yields:

~ΠNA
qν,q′ν′(ω) =

∫
drdr′ gbqν(r)Pe(r, r

′, ω) gccq′ν′(r
′, ω)−

∫
drdr′ gbqν(r)Pe(r, r

′, 0) g∗q′ν′(r
′, 0), (141)

where we introduced electron-phonon ‘coupling functions’ as follows. The bare coupling gb is
defined as:

gbqν(r) = ∆qνV
en(r), (142)
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where V en is the potential of the nuclei from Eq. (25); in practical calculations this quantity is
replaced by the usual ionic pseudo-potentials. The meaning of the variation ∆qν is the same as
in Eqs. (33)-(35). The dressed couplings g and gcc are defined as [126]:

gqν(r, ω) =

∫
dr′ ε−1e (r, r′, ω) gbqν(r′), (143)

gccqν(r, ω) =

∫
dr′ ε−1e (r, r′, ω) gb,∗qν (r′). (144)

Since the dielectric matrix is real at ω= 0, we have the simple relation gccqν(r, 0) = g∗qν(r, 0). In
order to derive Eq. (141) it is best to carry out the algebra in the time domain. We emphasize
that the result expressed by Eq. (141) is non-perturbative, and relies solely on the harmonic
approximation.

Equation (141) is in agreement with the standard result for the homogeneous electron gas [155].
The same expression was also obtained by Keating [127] using a detailed diagrammatic analysis.
Keating’s diagrammatic representation of the self-energy is shown in Fig. 1(c), and can be ob-
tained from Eq. (141) by noting that, in symbolic notation, Pe = GGΓ from Eq. (92), therefore
Π = gbGGΓg. For completeness we also show in Fig. 1(d) a diagrammatic representation of
the dressed electron-phonon coupling function g as given by Eq. (144). This representation is
obtained by observing that g = ε−1gb, ε = 1− vP , and P = GGΓ, therefore g = gb + vGGΓg.

In view of practical first-principles calculations it is useful to have a simplified expression for the
non-adiabatic phonon self-energy in Eq. (141). To this aim we make the following approximations:

(i) The vertex function in Eq. (92) is set to Γ(123) = δ(12)δ(13). This is the same approxi-
mation at the heart of the GW method [122, 157, 158];

(ii) The fully-interacting electron Green’s function G is replaced by its non-interacting coun-
terpart, using the Kohn-Sham eigenstates/eigenvalues evaluated with the nuclei held in
their equilibrium positions;

(iii) The fully-interacting dielectric matrix in Eq. (144) is replaced by the RPA+xc response
obtained from a DFT calculation, as discussed in Sec. 3.2.2;

(iv) The frequency-dependence of the screened electron-phonon coupling defined in Eq. (144)
is neglected: gccqν(r, ω) ' gccqν(r, 0) = g∗qν(r, 0). This approximation is ubiquitous in the
literature but it is never mentioned explicitly;

(v) For notational simplicity, we consider a spin-degenerate system with time-reversal symme-
try; this simplification is easily removed.

Using these assumptions we can rewrite the component of Eq. (141) for q = q′ as:

~ΠNA
qνν′(ω) = 2

∑
mn

∫
dk

ΩBZ
gbmnν(k,q)g∗mnν′(k,q)

[
fmk+q − fnk

εmk+q − εnk − ~(ω + iη)
−
fmk+q − fnk
εmk+q − εnk

]
.

(145)
We note that the components of the phonon self-energy for q 6=q′ vanish due to the periodicity
of the lattice. In Eq. (145) the sums run over all Kohn-Sham states, with occupations fnk, and η
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is a real positive infinitesimal. In this case we indicate explicitly the factor of 2 arising from the
spin degeneracy. The matrix element gmnν(k,q) is the same as in Eq. (38), and it is precisely the
quantity calculated by most linear-response codes. The matrix element gbmnν(k,q) is obtained
from gmnν(k,q) by replacing the variation of the Kohn-Sham potential by the corresponding vari-
ation of the ionic (pseudo)potentials. The field-theoretic phonon self-energy given by Eq. (145)
is in agreement with the expression derived in Ref. [150] starting from time-dependent density-
functional perturbation theory.

The presence of both the bare electron-phonon matrix element and the screened matrix element
in Eq. (145) has not been fully appreciated in the literature, and most ab initio calculations
employ an approximate self-energy whereby gb is replaced by g. The replacement of the bare
matrix elements by their screened counterparts in the phonon self-energy goes a long way back,
and can be found already in the seminal work by Allen [148]. As a result many investigators
(including the author) calculated phonon lifetimes using the following expression [6]:

1

τphqν
=

2π

~
2
∑
mn

∫
dk

ΩBZ
|gmnν(k,q)|2(fnk − fmk+q)δ(εmk+q − εnk − ~ωqν). (146)

This is obtained from Eq. (145) by taking the imaginary part and by making the replacement
gb→ g. While Eq. (146) can be derived from the Fermi golden rule in a independent-particle
approximation (see Ref. [159], Appendix B), the choice of the electron-phonon matrix elements
is somewhat arbitrary. In future calculations of the phonon self-energy it will be important to
assess the importance of using the correct vertex structure, that is replacing |gmnν(k,q)|2 by
gbmnν(k,q)g∗mnν(k,q) in Eq. (146).

In general, the effects of the non-adiabatic self-energy on the phonon spectrum are expected to
be significant only in the case of metals and small-gap semiconductors. In fact, by combining
Eqs. (138), (139), and (145) it is seen that ΠNA can be large only when occupied and empty
single-particle states are separated by an energy of the order of the characteristic phonon energy.
In such a case, we can expect a shift of the adiabatic phonon frequencies, and a concomitant
broadening of the lines. A clear illustration of these effects was provided by Maksimov and
Shulga, who analyzed a simplified model of a metal with linear bands near the Fermi level [160].

Calculations of phonon linewidths based on Eq. (146) have been reported by several authors2

and have become commonplace in first-principles studies of electron-phonon physics. On the
other hand, calculations of the non-adiabatic phonon frequencies using Eq. (145) have only been
reported in Refs. [119, 149, 150, 167, 168], using the approximation that the bare vertex gb can
be replaced by the screened vertex g. Examples of such calculations will be reviewed in Sec. 7.

Equation (145) suggests several avenues worth exploring in the future: firstly, the use of the
bare vertex should not pose a challenge in practical calculations, since this quantity is already
being calculated in linear-response DFT codes. Testing the impact of the bare vertex on phonon
linewidths and frequency renormalizations will be important. Secondly, Eq. (145) contains off-
diagonal couplings, which are usually ignored. It will be interesting to check the effect of using
the complete matrix self-energy. Thirdly, the dynamical structure of the self-energy may con-

2See for example Refs. [76, 161–166].
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tain interesting information, such as for example spectral satellites and coupled phonon-plasmon
modes. Lastly, the move from Eq. (141) to Eq. (145) involves the approximation that the
frequency-dependence of the electron-phonon matrix elements can be neglected. The validity of
this approximation is uncertain, and there are no reference ab initio calculations on this. How-
ever, we note that frequency-dependent electron-phonon matrix elements have been employed
systematically in theoretical models of doped semiconductors (Ref. [9], Sec. 6.3).

Before closing this section we note that the formalism discussed here is based on zero-temperature
Green’s functions. In order to extend the present results to finite temperature it is necessary
to repeat all derivations using the Matsubara representation, and then perform the analytic
continuation of the self-energy to the real frequency axis. Detailed derivations can be found in
Refs. [125] and [128], and will not be repeated here. Fortunately it turns out that Eq. (145) can
be extended to finite temperature by simply replacing the occupation factors fnk and fmk+q by
the corresponding Fermi-Dirac distributions.3

5.2 Effects of the electron-phonon interaction on electrons

5.2.1 Electron self-energy: Fan-Migdal and Debye-Waller terms

In Sec. 5.1 we discussed the link between the Hedin-Baym equations summarized in Table 1
and ab initio calculations of phonons. We first identified a Hermitian eigenvalue problem for
the vibrational frequencies via the adiabatic approximation, and then we improved upon this
description by means of a non-adiabatic self-energy. In this section, we adopt a similar strategy
in order to discuss electronic excitation energies: first we identify an approximation to the Hedin-
Baym equations which does not include any electron-phonon interactions, and then we introduce
an electron self-energy to incorporate such interactions.

The single most common approximation in first-principles electronic structure calculations is
to describe nuclei as classical particles clamped in their equilibrium positions. Within this
approximation the expectation value of the nuclear charge density operator in Eq. (67), 〈n̂n(r)〉,
is replaced by the first term in Eq. (107), n0n(r). From Eq. (122) we see that this approximation
formally corresponds to setting to zero the displacement-displacement correlation function of
the nuclei. This observation suggests that, in order to unambiguously single out electron-phonon
interactions in the Hedin-Baym equations, we need to define a non-interacting problem by setting
Dκαp,κ′α′p′ = 0, and identify the electron-phonon interaction with the remainder. In the following,
we write an equation of motion for the electrons analogous to Eq. (84), except with the nuclei
clamped in their equilibrium positions; then we use a Dyson-like equation to recover the fully-
interacting electron Green’s function.

The equation of motion for the electron Green’s function at clamped nuclei, which we denote
3Throughout this article, when fnk and nqν have the meaning of Fermi-Dirac and Bose-Einstein distributions,

respectively, they are defined as follows: fnk = f [(εnk−εF)/kBT ] with f(x) = 1/(ex + 1) and εF being the Fermi
energy; nqν = n(~ωqν/kBT ) with n(x) = 1/(ex − 1).
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as Gcn, reads:[
i~

∂

∂t1
+

~2

2me
∇2(1)− V cn

tot(1)

]
Gcn(12)−

∫
d3 Σcn

e (13)Gcn(32) = δ(12). (147)

Here the potential V cn
tot differs from its counterpart Vtot of Eq. (79) in that the total density of

electrons and nuclei, 〈n̂〉, is replaced by the density calculated at clamped nuclei, 〈n̂cn〉:

V cn
tot(1) =

∫
d2 v(1, 2) 〈n̂cn(2)〉, (148)

where we defined:
〈n̂cn(1)〉 = −i~

∑
σ1
Gcn(11+) + n0n(r1). (149)

The term Σcn
e in Eq. (147) represents the electronic part of Hedin’s self-energy in Eq. (85),

evaluated at clamped nuclei:

Σcn
e (12) = i~

∫
d(34)Gcn(13) Γcn(324)W cn

e (41+). (150)

In this expression, the vertex Γcn and the screened Coulomb interaction W cn
e are both evaluated

via the Hedin-Baym equations at clamped nuclei. Equations (147)-(150) lead directly to the well-
known Hedin’s equations [122]. Hedin’s equations and the associated GW method at clamped
nuclei are addressed in a number of excellent reviews [126, 136, 157, 158] hence they will not be
discussed here.

In order to recover the complete Hedin-Baym equation of motion, Eq. (84), starting from
Eqs. (147)-(150), it is sufficient to introduce the Dyson equation:

G(12) = Gcn(12) +

∫
d(34)Gcn(13) Σep(34)G(42), (151)

together with the electron self-energy Σep arising from electron-phonon interactions:

Σep = ΣFM + ΣDW + ΣdGW, (152)

where we have defined:

ΣFM(12) = i~
∫
d(34)G(13) Γ(324)Wph(41+), (153)

ΣDW(12) =

∫
d3 v(13) [〈n̂(3)〉 − 〈n̂cn(3)〉] δ(12), (154)

ΣdGW(12) = Σe(12)− Σcn
e (12). (155)

We emphasize that Eqs. (147)-(155) are just an alternative formulation of the Hedin-Baym
equations in Table 1. The advantage of this formulation is that it better reflects standard
practice, whereby the DFT equations and the GW quasiparticle corrections are evaluated at
clamped nuclei. Equations (147)-(155) are formally exact within the harmonic approximation.

A schematic representation of the Dyson equation for the electron Green’s function and the
decomposition of the electron self-energy are given in Fig. 2. The self-energy contribution ΣFM

in Eq. (153) is a dynamic correction to the electronic excitation energies, and is analogous to
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Figure 2: Diagrammatic representation of the electron Green’s function and electron-phonon
self-energy. (a) Dyson equation for the electron Green’s function, Eq. (151). The thick straight
line represents the fully-dressed electron propagator, the thin straight line is the propagator
calculated at clamped nuclei, and the disc is the electron-phonon self-energy. (b) Decompo-
sition of the electron-phonon self-energy into Fan-Migdal self-energy, Eq. (153), Debye-Waller
contribution, Eq. (154), and the remainder given by Eq. (155). (c) Fan-Migdal electron-phonon
self-energy expressed in terms of the dressed electron-phonon coupling function (dark grey disc
as in Fig. 1), the fully-interacting electron’s Green’s functions (thick straight line), the fully in-
teracting phonon propagator (thick wavy line), and the vertex Γ from Eq. (83). (d) Debye-Waller
contribution resulting from the fully interacting phonon propagator (thick wavy line) and the
matrix element in Eq. (40) (hatched disc). (e) Correction to Hedin’s GW self-energy arising
from the modification of the electronic structure induced by the electron-phonon interaction. We

is the screened Coulomb interaction of Eq. (94) (bold dashed double line). W cn
e is the screened

Coulomb interaction evaluated at clamped nuclei (thin dashed double line). Γcn is the vertex of
Eq. (83), but evaluated at clamped nuclei.
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the GW self-energy at clamped nuclei. Indeed, in the same way as the correlation part of the
standard GW self-energy describes the effect of the dynamic electronic polarization upon the
addition of electrons or holes to the system, the term GWph in Eq. (153) describes the effect of
the dynamic polarization of the lattice.

In the semiconductors community, the self-energy obtained from Eq. (153) by setting Γ(123) =

δ(13)δ(23) is commonly referred to as the Fan self-energy [54, 85, 169, 170]. In the metals and
superconductors communities, the same term is traditionally referred to as the self-energy in
the Migdal approximation [8, 123, 124, 155]. By extension we refer to the self-energy ΣFM in
Eq. (153) as the ‘Fan-Migdal’ (FM) self-energy.

The static term ΣDW in Eq. (154) corresponds to the difference between the self-consistent
potential Vtot calculated for the fully-interacting system, and the same potential evaluated with
the nuclei clamped in their equilibrium positions, V cn

tot. Intuitively this term corresponds to
a time-independent correction to the ‘crystal potential’ that arises from the fuzziness of the
nuclear charge density around the equilibrium nuclear positions. This term is similar to the one
appearing in the study of the temperature dependence of X-ray diffraction and neutron diffraction
spectra [79, 171], and is commonly referred to as the Debye-Waller (DW) term [172–174]. Hedin
and Lundqvist did not include this term in their classic work [126], however this contribution
was discussed in Refs. [85, 86].

The last term Eq. (152), ΣdGW, is the correction to the standard Hedin self-energy arising from
the fact that the fully-interacting electron Green’s function and density are slightly different from
those evaluated at clamped nuclei, owing to the electron-phonon interaction. The magnitude of
this term corresponds to a fraction of the GWΓ quasiparticle corrections at clamped nuclei.
Since ΣdGW has never been investigated so far, we will not discuss this term further.

5.2.2 Expressions for the electron self-energy used in ab initio calculations

A complete self-consistent solution of Eqs. (147)-(155) from first principles is not possible at
present, and one has to replace the various entries of Eq. (152) by the best approximations
available. In practice, one resorts to either DFT or to GW calculations; recent progress will be
reviewed in Secs. 8 and 9.

Using Eqs. (110), (130)-(131), and (144) we can rewrite the Fan-Migdal self-energy as follows:

ΣFM(12) = i
∑
νν′

∫
dω

2π

dq

ΩBZ
d(34)e−iω(t4−t

+
1 )G(13) Γ(324) gccqν(r4, ω)Dqνν′(ω) gqν′(r1, ω). (156)

This shows that the Fan-Migdal self-energy is, in symbolic notation, of the type Σ = g2DGΓ; a
graphical representation of this term is given in Fig. 2(c). In order to make the last expression
amenable to ab initio calculations, it is common to make the following approximations, which
are similar to those introduced earlier for the phonon self-energy:

(i) The vertex Γ(123) is set to δ(13)δ(23);
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(ii) The fully-interacting electron Green’s function is replaced by the Kohn-Sham Green’s func-
tion evaluated at clamped nuclei;

(iii) The fully-interacting phonon propagator Dqνν′(ω) is replaced by the adiabatic propagator
DA

qνν′(ω) from Eq. (134);

(iv) The screened electron-phonon vertex is evaluated using the RPA+xc electronic screening
from a DFT calculation;

(v) The frequency dependence of the electron-phonon coupling is neglected, gqν(r, ω) ' gqν(r, 0).

After using these approximations in Eq. (156), we obtain the following result for the k = k′

matrix elements of the Fan-Migdal self-energy in the basis of Kohn-Sham states:

ΣFM
nn′k(ω) =

1

~
∑
mν

∫
dq

ΩBZ
g∗mnν(k,q)gmn′ν(k,q)

×
[

1− fmk+q

ω−εmk+q/~− ωqν + iη
+

fmk+q

ω−εmk+q/~ + ωqν − iη

]
. (157)

Here fmk+q = 1 for occupied Kohn-Sham states and 0 otherwise, and the matrix element
gmnν(k,q) is obtained from Eq. (38). As for the phonon self-energy in Eq. (145), also in this case
the components of the electron self-energy for k 6=k′ vanish due to the periodicity of the lattice.
The result in Eq. (157) is obtained by closing the contour of the frequency integration in the
upper complex plane, owing to the t+1 in the exponential of Eq. (156). The infinitesimals inside
the electron and phonon propagators, which reflect the time-ordering, are crucial to obtain the
correct result [8]. The spin label is omitted in Eq. (157) since this contribution to the self-energy
is diagonal in the spin indices.

The result above is only valid at zero temperature. The extension to finite temperature requires
going through the Matsubara representation, and then continuing the self-energy from the imagi-
nary axis to the real axis. The procedure is described in many textbooks, see for example Sec. 3.5
of [9]. The result is that at finite temperature the square brackets of Eq. (157) are to be modified
as follows: [

1−fmk+q

· · ·+ iη
+
fmk+q

· · · − iη

]
−−−−→

[
1−fmk+q+nqν
· · ·+ iη

+
fmk+q+nqν
· · ·+ iη

]
, (158)

where fmk+q and nqν are now Fermi-Dirac and Bose-Einstein distribution functions, respectively
(see footnote 3). The change of sign in the imaginary infinitesimal on the second fraction has to
do with the fact that in the Matsubara formalism the analytic continuation from the imaginary
frequency axis to the real axis through the upper complex plane leads to the so-called retarded
self-energy, that is a self-energy with all poles below the real axis [9, 138].

The Debye-Waller term in Eq. (154) can also be written in a form which is convenient for
practical calculations, by expanding the total density operator n̂(3) to second order in the atomic
displacements. Using Eqs. (79) and (109) we find:

ΣDW(12) = δ(12)
i~
2

∑
καp
κ′α′p′

∂2Vtot(1)

∂τ0καp∂τ
0
κ′α′p′

Dκαp,κ′α′p′(t
+
1 , t1). (159)
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In order to arrive at this result, it is necessary to make the additional approximation that
the electronic field operators and the operators for the nuclear displacements are uncorrelated,
that is 〈n̂∆τ̂καp〉 = 〈n̂〉〈∆τ̂καp〉, and similarly for the second power of the displacements. This
requirement was noticed by Gillis [128], and is trivially satisfied if we describe phonons within the
adiabatic approximation of Sec. 5.1.1. Equation (159) motivates the diagrammatic representation
of the Debye-Waller self-energy shown in Fig. 2(d), whereby the phonon line begins and ends at
the same time point. We note that Eq. (159) involves the variation of the screened potential Vtot;
this result, which we here derived starting from Schwinger’s functional derivative technique, is
also obtained when starting from a perturbative diagrammatic analysis [133]. The Debye-Waller
self-energy can be simplified further if we make use of the following approximations, in the same
spirit as for the Fan-Migdal self-energy:

(vi) The fully-interacting phonon propagator is replaced by the adiabatic propagator DA
qνν′(ω)

from Eq. (134);

(vii) The total many-body potential Vtot of Eq. (79) is replaced by the Kohn-Sham potential
V KS(r) evaluated at clamped nuclei. Strictly speaking, the Kohn-Sham effective potential
includes also contributions from exchange and correlation, which in the Hedin-Baym equa-
tions are all contained in the electron self-energy. However, the present discussion holds
unchanged if we add any local and frequency-independent potential to Vtot in Eq. (84),
while removing the same potential from the self-energy [127].

Using these simplifications together with Eqs. (130) and (131), we can write the ΣDW in the
basis of Kohn-Sham eigenstates as follows:

ΣDW
nn′k =

∑
ν

∫
dq

ΩBZ
gDW
nn′νν(k,q,−q), (160)

where the Debye-Waller matrix element gDW is obtained from Eq. (40), and the presence of only
the diagonal terms ν=ν ′ is a result of the Kronecker delta in Eq. (132). In going from Eq. (159)
to Eq. (160) the frequency integration is performed by using Eq. (134), after closing the contour
in the lower half plane. The resulting expression is diagonal in the spin indices.

The expression for the Debye-Waller term in Eq. (160) is only valid at zero temperature. In this
case the extension to finite temperature is immediate since the self-energy does not involve the
electron Green’s function, hence we only need to evaluate the canonical average of Eq. (133) at
equal times. The result is that Eq. (160) is simply to be modified as follows:

gDW
nn′νν(k,q,−q) −−−−→ gDW

nn′νν(k,q,−q)(2nqν + 1), (161)

with nqν being the Bose-Einstein occupations (see footnote 3).

The Debye-Waller contribution to the electron self-energy is almost invariably ignored in the
literature on metals and superconductors, but it is well-known in the theory of temperature-
dependent band structures of semiconductors [54, 85, 104, 105, 112]. Neglecting ΣDW in metals
is partly justified by the fact that this term is frequency-independent, therefore it is expected to
be a slowly-varying function over each Fermi surface sheet. A detailed first-principles analysis of
this aspect is currently lacking.
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5.2.3 Temperature-dependence of electronic band structures

Once determined the electron self-energy as in Sec. 5.2.2 it is possible to study the modification
of the electronic structure induced by the EPI. To this aim it is convenient to rewrite Eq. (151)
in the basis of Kohn-Sham eigenstates:

G−1nn′k(ω) = Gcn,−1
nn′k (ω)− Σep

nn′k(ω). (162)

Assuming that the electronic structure problem at clamped nuclei has been solved using DFT
or DFT+GW calculations, the Green’s function Gcn can be written in terms of simple poles at
the Kohn-Sham or quasiparticle eigenvalues εnk [126]. In this case Eq. (162) reduces to:

G−1nn′k(ω) = (~ω − ε̃nk)δnn′ − Σep
nn′k(ω), (163)

where ε̃nk = εnk ± i~η with the upper/lower sign corresponding to occupied/unoccupied states.
The spin indices are omitted since these self-energy contributions do not mix states with opposite
spin.

In order to gain insight into the effects of the electron-phonon interaction, we start from the
drastic approximation that Σep only leads to a small shift of the quasiparticle poles, from the ‘non-
interacting’ energies εnk to the renormalized energies Ẽnk = Enk + iΓnk. In this approximation,
the fully interacting Green’s function is expressed as a sum of simple poles, given by the zeros
of Eq. (163):

Enk = εnk + Re Σep
nnk(Ẽnk/~), (164)

Γnk = Im Σep
nnk(Ẽnk/~). (165)

As in the case of vibrational frequencies in Eq. (137), we are considering for simplicity non-
degenerate electronic states, and making the assumption that the off-diagonal elements of the
self-energy Σep

nn′k with n 6= n′ can be neglected. In more general situations the right-hand side
of Eq. (163) needs to be to diagonalized, or alternatively the off-diagonal terms Σep

nn′k need to
be treated perturbatively. The energies Enk obtained from Eq. (164) yield the band structure
renormalized by the EPIs, to be discussed below. The imaginary part Γnk in Eq. (165) is
connected with the quasiparticle lifetimes and will be discussed in Sec. 5.2.4.

Equation (164) is to be solved self-consistently for Enk and Γnk. When Eq. (164) is used in
combination with the standard approximations to the Fan-Migdal and Debye-Waller self-energies
given by Eqs. (157) and (160), the result that one obtains is equivalent to describing electron-
phonon couplings to second order in Brillouin-Wigner perturbation theory [9]. Similarly one
recovers the more basic Rayleigh-Schrödinger perturbation theory by making the replacements
Enk→εnk and Γnk→0 in Eq. (164).

By combining Eqs. (157)-(158), (160)-(161), and (164), we obtain the temperature-dependent
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‘band structure renormalization’ arising from the EPI:

Enk = εnk +
∑

ν

∫
dq

ΩBZ

∑
m

|gmnν(k,q)|2

× Re

[
1− fmk+q + nqν

Enk − εmk+q − ~ωqν + iΓnk
+

fmk+q + nqν
Enk − εmk+q + ~ωqν + iΓnk

]
+

∑
ν

∫
dq

ΩBZ
gDW
nnνν(k,q,−q)(2nqν + 1). (166)

For practical calculations it is important to bear in mind that this result rests on the approxi-
mations (i)-(vii) introduced at p. 49, as well as the harmonic approximation.

The theory of temperature-dependent band structures developed by Allen and Heine [85] makes
two additional approximations on top of Eq. (166): Brillouin-Wigner perturbation theory is
replaced by Rayleigh-Schrödinger perturbation theory; and the phonon energies in the denomi-
nators are neglected. Using these additional approximations Eq. (166) becomes:

Enk = εnk +
∑
ν

∫
dq

ΩBZ

[∑
m

|gmnν(k,q)|2

εnk−εmk+q
+ gDW

nnνν(k,q,−q)

]
(2nqν + 1), (167)

which is referred to as the ‘adiabatic Allen-Heine formula’. By setting T = 0 the Bose-Einstein
factors nqν vanish and we have the so-called ‘zero-point renormalization’ of the energy bands,
∆EZP

nk = Enk(T = 0) − εnk. This is the modification of the electronic energies evaluated at
clamped nuclei, which arises from the zero-point fluctuations of the atoms around their equilib-
rium sites.

An expression that is essentially identical to Eq. (167) can also be obtained directly from Eq. (1)
using second-order Raleigh-Schrödinger perturbation theory in Fock space, following the same
lines as in Ref. [78], p. 134. A detailed derivation of the formalism starting from Eq. (1) is given
in Ref. [175].

Historically, the Allen-Heine theory [85] was developed by starting from a straightforward per-
turbation theory expansion of the electron energies in terms of the atomic displacements within
the adiabatic approximation, followed by a canonical average of the displacements using Bose-
Einstein statistics. It is reassuring that, after making a few well-defined approximations, a
field-theoretic method leads to the same result.

Equation (167) was employed in many semi-empirical calculations.4 More recently, this expres-
sion was used in the context of first-principles DFT calculations by Marini [104] and Giustino et
al. [105]. DFT calculations of band structure renormalization based on Eqs. (166) or (167) are
becoming increasingly popular, and the latest developments will be reviewed in Sec. 9.1.1.

The nature of the band structure renormalization by electron-phonon interactions can be under-
stood at a qualitative level by considering a drastically simplified model, consisting of a semicon-
ductor with parabolic and nondegenerate valence and conduction bands, with the band extrema
coupled to all other states by a dispersionless phonon mode of frequency ω0. If the Debye-Waller

4 See for example Refs. [54, 55, 176–179]. Detailed reviews of early calculations and comparison to experiments
can be found in Refs. [170, 174, 180].
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matrix elements are much smaller than the Fan-Migdal matrix elements, then the dominant
contributions to Eq. (167) arise from denominators such as εnk − εnk+q ' ±~2|q|2/2m∗n, where
the upper/lower sign is for the valence/conduction band, and m∗n are the effective masses. As a
result the temperature dependence of the band gap will take the form:

Eg(T ) = Ecn
g −

∣∣∆EZP
g

∣∣ [1 + 2n(~ω0/kBT )], (168)

where Ecn
g is the gap at clamped nuclei, and |∆EZP

g | is the zero-point correction. The negative
sign in the last expression arises from the opposite curvatures of the valence and conduction
bands. In this example the band gap decreases with temperature: this is a well known effect in
semiconductor physics, and is often referred to as the ‘Varshni effect’ [181]. The first measure-
ments of such effects were performed by Becker and Fan [182], and stimulated the development
of the first theory of temperature-dependent band gaps [169]. A schematic illustration of this
qualitative model is provided in Fig. 3(a). The redshift of the gap as a function of temperature
is seen in many albeit not all semiconductors. For example, copper halides [183] and lead halide
perovskites [184] exhibit an ‘inverse Varshni’ effect, that is a blueshift of the gap with temper-
ature; in addition some chalcopyrites exhibit a non-monotonic temperature dependence of the
band gap [185]. We also point out that the qualitative model shown in Fig. 3(a) does not take
into account the subtle temperature-dependence of the band gap renormalization at very low
temperature. These effects were recently investigated by Allen and Nery [186].

5.2.4 Carrier lifetimes

While the real part of the poles in Eq. (164) describes the energy level renormalization induced
by the electron-phonon coupling, the imaginary part Γnk in Eq. (165) carries information on the
spectral broadening, which will be discussed in Sec. (5.2.5), and on quasiparticle lifetimes, which
we discuss below.

After transforming Gnn′k(ω) from Eq. (163) into the time domain it is seen that, for an electron
or hole added to the system at time t in the state |nk〉, the probability amplitude to persist in
the same state decreases as exp[Γnk(t′ − t)/~]. Using Eqs. (157) and (165) it can be seen that
Γnk < 0 for an electron added to the system and Γnk > 0 for a hole. Therefore the average time
spent by the particle in the state |nk〉 is τnk = ~/(2|Γnk|).

A popular expression for the electron and hole lifetimes is obtained by making the replacement
Ẽnk→εnk in Eq. (157), and by taking the absolute value of the imaginary part. We find:

1

τnk
=

2π

~
∑
mν

∫
dq

ΩBZ
|gnmν(k,q)|2

× |(1− fmk+q)δ(εnk − ~ωqν −εmk+q)− fmk+q δ(εnk + ~ωqν −εmk+q)| . (169)

A more accurate expression is discussed after Eq. (174) in the next section. The extension of
the above result to finite temperature is obtained by taking the absolute value of the imaginary
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Figure 3: (Color online) Temperature-dependent band gap and lifetimes in an idealized semicon-
ductor or insulator. (a) Temperature dependence of the band gap according to Eq. (168) (thick
solid blue line). The straight thin black line is the asymptotic expansion at high temperature;
this line intercepts the vertical axis at the band gap calculated with clamped nuclei, Ecn

g . The
difference between the latter value and the band gap at T =0 including the EPI gives the zero-
point renormalization, ∆EZP

g . (b) Temperature dependence of the electron linewidth (solid blue
line) and lifetimes (dashed red line) using the same model as in (a). The zero-point broadening
is ΓZP

nk . This simplified trend is only valid when the electron energy is at least one phonon energy
away from a band extremum, so that both phonon emission and phonon absorption processes
are allowed. The parameters of the model are: Ecn

g = 1 eV, ∆EZP
g = 100 meV, ~ω0 = 100 meV,

ΓZP
nk = 50 meV; these values are representative of common semiconductors.

part of Eq. (158):

1

τnk
=

2π

~
∑
mν

∫
dq

ΩBZ
|gnmν(k,q)|2

×[(1−fmk+q + nqν)δ(εnk − ~ωqν −εmk+q) + (fmk+q + nqν)δ(εnk + ~ωqν −εmk+q)].(170)

We emphasize the change of sign in the third line, resulting from the analytic continuation to
the retarded self-energy. Equation (170) coincides with the expression that one would obtain by
using the standard Fermi golden rule [6]. The intuitive interpretation of this result is that the
quasiparticle lifetime is reduced by processes of phonon emission and absorption, corresponding
to the second and third lines of Eq. (170), respectively. We note that in deriving Eq. (170) we
did not consider the Debye-Waller self-energy; this is because the diagonal matrix elements of
ΣDW are purely real, hence they do not contribute to the quasiparticle widths [187]. Ab initio
calculations of carrier lifetimes using Eq. (170) were first reported by Eiguren et al. [188, 189].
These applications and more recent developments will be reviewed in Sec. 10.1.

If we evaluate Eq. (170) for the same simplified model introduced for the temperature renor-
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malization, and we neglect the phonon energy in the Dirac delta functions, we obtain Γnk(T ) =

ΓZP
nk [1 + 2n(~ω0/kBT )] where ΓZP

nk is the linewidth at T = 0. The dependence of the linewidth
and the corresponding lifetime on temperature for this model are shown in Fig. 3(b). This trend
is typical in semiconductors [190, 191].

5.2.5 Kinks and satellites

In many cases of interest, the use of Brillouin-Wigner perturbation theory as given by Eqs. (164)-
(165) is not sufficient to provide an adequate description of EPIs, and it becomes necessary to
go back to the complete Dyson equation, Eq. (163). Generally speaking a direct solution of the
Dyson equation is important in all those cases where the electronic energy scales are comparable
to phonon energies, namely in metals (including superconductors), narrow-gap semiconductors,
and doped semiconductors. In order to study these systems, it is convenient to introduce an
auxiliary function called the ‘spectral density function’, or simply spectral function.

In its simplest version the spectral function is defined as [9, 138]:

A(k, ω) = − 1

π

∑
n
ImG ret

nnk(ω), (171)

where the superscript ‘ret’ stands for ‘retarded’, and simply indicates that all poles of the Green’s
function Gnn′k(ω) in the upper complex plane must be replaced by their complex conjugate.
The spectral function is positive definite and carries the meaning of a ‘many-body momentum-
resolved density of states’ [138]. This is precisely the function that is probed by angle-resolved
photoelectron spectroscopy experiments or ARPES [192]. Using Eq. (163) the spectral function
can be rewritten as:

A(k, ω) =
∑
n

−(1/π) Im Σep
nnk(ω)[

~ω−εnk−Re Σep
nnk(ω)

]2
+
[
Im Σep

nnk(ω)
]2 . (172)

In order to obtain the correct spectral function, it is important to use the retarded self-energy.
This is done by using Eq. (158) for the Fan-Migdal term, while the static Debye-Waller term
remains unchanged.

It is often convenient to approximate the spectral function as a sum of quasiparticle peaks. To
this aim, one performs a linear expansion of Eq. (172) around each quasiparticle energy Enk, to
obtain:

A(k, ω) =
∑
n

Znk
−(1/π)Znk Im Σep

nnk(Enk/~)

[~ω−Enk]2+
[
Znk Im Σep

nnk(Enk/~)
]2 . (173)

This is a sum of Lorentzians with strength Znk and width Znk Im Σep
nnk(Enk/~). Here the ‘quasi-

particle strength’ is defined as the homonymous quantity appearing in GW calculations [126]:

Znk =
[
1− ~−1∂ReΣep

nnk(ω)/∂ω
∣∣
ω=Enk/~

]−1
. (174)

The result expressed by Eq. (173) shows that, in a rigorous field-theoretic approach, the quasi-
particle broadening and lifetime given by Eqs. (169) and (170) should be renormalized by Znk
and Z−1nk , respectively, and should be evaluated using the quasiparticle energy Enk instead of εnk.
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Figure 4: (Color online) Two-dimensional maps of the electron spectral function A(k, ω) for
electrons coupled to a dispersionless phonon of frequency ω0. The non-interacting bands are given
by ε(k) = −εF + ~2|k|2/2m∗, and the Fermi level coincides with the top of the energy window.
The matrix element is |g|2 = ~ω0/NF when the electron energies differ by less than the cutoff εmax,
and zero otherwise (NF is the density of states at the Fermi level). (a) Spectral function for the
case εF = 10 ~ω0 (white on blue/black), non-interacting band structure (solid line, yellow/light
gray), and fully-interacting band structure within Brillouin-Wigner perturbation theory (solid
line, red/dark gray). (b) Spectral function for the case εF = 2 ~ω0. The model parameters
are: m∗ = 0.1me, ~ω0 = 100 meV, η = 20 meV, εc = 5 eV, For clarity the calculated spectral
functions are cut off at the value 3 eV−1 and normalized. The self-energy is shifted by a constant
so as to have Σep(0) = 0; this correction guarantees the fulfillment of Luttinger’s theorem about
the volume enclosed by the Fermi surface [193].

This result can also be derived from Eq. (165) by performing a Taylor expansion of the self-energy
along the imaginary axis and using the Cauchy-Riemann conditions.

In order to illustrate the typical features of the spectral function, we consider a model system
characterized by one parabolic conduction band. The occupied electronic states couple to all
states within an energy cutoff via a dispersionless phonon mode and a constant electron-phonon
matrix element. A simplified version of this model was discussed by Engelsberg and Schrieffer
by considering a constant density of electronic states [124]. By evaluating the spectral function
in Eq. (172) using the Fan-Migdal self-energy and neglecting the Debye-Waller term, we obtain
the results shown in Fig. 4 for two sets of parameters.

In Fig. 4(a) the Fermi energy is much larger than the characteristic phonon energy. This case
is representative of a metallic system with electron bands nearly linear around the Fermi level.
Here the electron-phonon interaction leads to (i) a reduction of the band velocity in proximity
of the Fermi level, and (ii) a broadening of the spectral function beyond the phonon energy ~ω0.
A detailed analysis of these features for a slightly simpler model system, including a discussion
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of the analytic properties of the Green’s function, can be found in Ref. [124].

The solid line (red/dark gray) in Fig. 4(a) shows the renormalized band structure obtained from
Brillouin-Wigner perturbation theory, Eq. (164). We see that these solutions track the maxima of
the spectral function A(k, ω). The renormalized bands exhibit a characteristic ‘S-shape’ near the
Fermi level, corresponding to multiple solutions of Eq. (164) for the same wavevector k. Starting
from the late 1990s such S-shaped energy-momentum dispersion curves have been observed in a
number of ARPES experiments, and have become known in the literature as the ‘photoemission
kink’ [194]. First-principles calculations of kinks were first reported in Refs. [189, 195], and will
be reviewed in Sec. 8.

In Fig. 4(b) the Fermi energy is comparable to the characteristic phonon energy. This case is
representative of a degenerately doped semiconductor close to a conduction band minimum. Here
the electron-phonon interaction leads to two distinct spectral features: (i) a parabolic band with
a heavier mass, which is well described by the Brillouin-Wigner solutions (solid line, red/dark
gray), and (ii) a polaron satellite that is visible further down. In this example, it is clear that
Eq. (164) is unable to describe the satellite, and that the spectral function carries qualitatively
new information about the system. Polaron satellites resembling Fig. 4(b) have been observed in
ARPES experiments on doped oxides [196–199] and recently calculated from first principles [200].

5.2.6 Model Hamiltonians, polarons, and the cumulant expansion

At the end of this section it is worth mentioning complementary non first-principles approaches
for studying the effects of EPIs on the electronic properties of solids. Model EPI Hamiltoni-
ans can be derived from Eq. (1) by choosing a priori explicit expressions for the electron band
energies, the vibrational frequencies, and the coupling matrix elements. Examples of model
Hamiltonians are those of Fröhlich [30], Holstein [201], Su, Schrieffer, and Heeger [202], the
Hubbard-Holstein model [203], the Peierls-Hubbard model [204], the ‘t-J ’ Holstein model [205],
and the Su-Schrieffer-Heeger-Holstein model [206]. These models involve the tight-binding ap-
proximation, the Einstein phonon spectrum, and electron-phonon couplings to first order in the
atomic displacements. Using these model Hamiltonians it is possible to go beyond the approx-
imations introduced in Sec. 5.2.2, and obtain non-perturbative solutions by means of canonical
Lang-Firsov transformations, path-integral methods, exact diagonalization, variational or quan-
tum Monte Carlo techniques [10, 207]. These models have been used extensively to explore many
aspects of polaron physics, for example the ground-state energy of polarons (weak or strong cou-
pling), their spatial extent (large or small polarons), and transport properties (band-like or
hopping-like).

Given the considerable body of literature on model EPI Hamiltonians, it is natural to ask whether
one could bring ab initio calculations of EPIs to a similar level of sophistication. The main limi-
tation of current first-principles approaches is that, given the complexity of the calculations, the
electron self-energies are evaluated using the bare propagators, as in Eq. (157). As a consequence,
higher-order interaction diagrams beyond the Migdal approximation [123] are omitted altogether.

A promising avenue for going beyond the Migdal approximation consists of introducing higher-
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order diagrams via the ‘cumulant expansion’ approach [126, 208, 209]. In the cumulant expansion
method, instead of calculating the electron Green’s function via a Dyson equation, one evalu-
ates the time evolution of the Green’s function by formulating the problem in the interaction
picture, in symbols: Gnnk(t) = (i/~) exp[−i(εnk/~)t+Cnnk(t)] [209]. The distinctive advantage
of this approach is that the ‘cumulant’ Cnnk(t) can be obtained from a low-order self-energy, for
example the Fan-Migdal self-energy in Eq. (157), and the exponential ‘resummation’ automati-
cally generates higher-order diagrams (Ref. [9], pag. 523). Detailed discussions of the cumulant
expansion formalism can be found in Refs. [210, 211].

The cumulant method provides an interesting point of contact between ab initio and model
Hamiltonian approaches. In fact, the cumulant expansion is closely related to the ‘momentum
average approximation’ introduced by Berciu for studying the Green’s function of the Holstein
polaron [212].

The cumulant expansion has proven successful in ab initio calculations of electron-electron in-
teractions, in particular valence band satellites in semiconductors [213–220]. In the context of
EPIs, the ab initio cumulant expansion method has been applied to elemental metals by Story
et al. [221], and to the ARPES spectra of n-doped TiO2 by Verdi et al. [200]. In the latter work
the cumulant method correctly reproduced the polaron satellites observed in the experiments of
Moser et al. [196].

The study of polarons using ab initio many-body techniques is yet to begin, however a first
calculation of the spectral function of Fröhlich polarons and an approximate polaron wavefunction
have recently been reported [200].

6 Efficient calculations of matrix elements and their integrals

The study of EPIs from first principles requires evaluating Brillouin-zone integrals of functions
that exhibit strong fluctuations. This requirement can be appreciated by inspecting Eqs. (145)
and (157): there the denominators become large whenever the difference between two electronic
eigenvalues approaches a phonon energy. As a result, while in DFT total energy calculations the
Brillouin zone is typically discretized using meshes of the order of 10×10×10 points, the numer-
ical convergence of EPI calculations requires much finer grids, sometimes with as many as 106

wavevectors [112, 165]. Determining vibrational frequencies ωqν and perturbations ∆qνv
KS(r)

for such a large number of wavevectors is a prohibitive task, since every calculation is roughly
as expensive as one total energy minimization.

These difficulties stimulated the development of specialized numerical techniques for making
calculations of EPIs affordable. In the following sections two such techniques are reviewed:
electron-phonon Wannier interpolation and Fermi-surface harmonics.
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6.1 Wannier interpolation

6.1.1 Maximally-localized Wannier functions

In addition to the standard description of electrons in solids in terms of Bloch waves, as in
Eq. (29), it is possible to adopt an alternative point of view whereby electrons are described
as linear combinations of localized orbitals called ‘Wannier functions’ [222]. The most general
relation between Wannier functions and Bloch waves can be written as follows. One considers
electron bands εnk with eigenfunctions ψnk, where the index n is restricted to a set of bands
that are separated from all other bands by finite energy gaps above and below. These bands are
referred to as ‘composite energy bands’ [223]. Wannier functions are defined as:

wmp(r) = N−1p
∑

nk
eik·(r−Rp) Unmk unk(r), (175)

where Unmk is a unitary matrix in the indices m and n. From this definition and Eq. (213) it fol-
lows that Wannier functions are normalized in the supercell, 〈wmp|wm′p′〉sc = δmp,m′p′ . Further-
more, since unk is lattice-periodic, Wannier functions have the property wmp(r) = wm0(r−Rp).
The inverse transformation of Eq. (175) is obtained by using the unitary character of Unmk

together with Eq. (213):

unk(r) =
∑

mp
e−ik·(r−Rp)U †mnkwmp(r). (176)

The unitary matrix Unmk is completely arbitrary, therefore there exists considerable freedom in
the construction of Wannier functions. For example by requiring that Unm,−k = U∗nmk one can
make Wannier functions real-valued. Marzari and Vanderbilt exploited this degree of freedom to
construct Wannier functions that are maximally localized [223].

A comprehensive and up-to-date review of the theory and applications of maximally-localized
Wannier functions (MLWFs) can be found in Ref. [224]. Here we only recall that, in order
to minimize the spatial extent of a function in a periodic solid, one needs to use a modified
definition of the position operator, since the standard position operator is unbounded in an
infinite crystal. This procedure is now well-established and it is linked to the development of the
modern theory of dielectric polarization [225, 226]. Nowadays it is possible to determine MLWFs
routinely [227]. The original algorithm of Marzari and Vanderbilt [223] was also extended to
deal with situations where a composite set of bands cannot be identified. This happens notably
in metals for electronic states near the Fermi energy. For these cases, Souza et al. developed a
band ‘disentanglement’ procedure, which extracts a subset of composite bands out of a larger
set of states [228].

For the purposes of the present article, the most important property of MLWFs is that they
are exponentially localized in insulators, in the sense that |wm0(r)| ∼ |r|−α exp(−h|r|) for large
|r|, with α, h > 0 real parameters. This property was demonstrated in one spatial dimension in
Refs. [229, 230], and in two and three dimensions in Ref. [231], under the condition that the system
exhibits time-reversal symmetry. In the case of metallic systems, no exponential localization
is expected. However, the Wannier functions obtained in metals using the disentanglement
procedure of Ref. [228] are typically highly localized.
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MLWFs are usually comparable in size to atomic orbitals, and this makes them ideally suited
for Slater-Koster interpolation of band structures [228]. This concept was successfully employed
in a number of applications requiring accurate calculations of band velocities, effective masses,
density of states, Brillouin-zone integrals, and transport coefficients [232–235].

6.1.2 Interpolation of electron-phonon matrix elements

Wannier functions were introduced in the study of EPIs by Giustino et al. [165, 236]. The starting
point is the definition of the electron-phonon matrix element in the Wannier representation:5

gmnκα(Rp,Rp′)=〈wm0(r)|∂V
KS

∂τκα
(r−Rp′)|wn0(r−Rp)〉sc, (177)

where the subscript ‘sc’ indicates that the integral is over the BvK supercell. The relation
between these quantities and the standard EPI matrix elements gmnν(k,q) is found by replacing
Eq. (176) inside Eq. (38), and using Eqs. (34)-(35) [165]:

gmnν(k,q) =
∑

pp′
ei(k·Rp+q·Rp′ )

∑
m′n′κα

Umm′k+q gm′n′κα(Rp,Rp′)U
†
n′nkuκα,qν , (178)

where we defined uκα,qν = (~/2Mκωqν)
1
2 eκα,ν(q) and eκα,ν(q) are the vibrational eigenmodes of

Eq. (15). The inverse relation is:

gmnκα(Rp,Rp′) =
1

NpNp′

∑
k,q

e−i(k·Rp+q·Rp′ )
∑
m′n′ν

u−1κα,qν U
†
mm′k+q gm′n′ν(k,q)Un′nk, (179)

with u−1κα,qν = (~/2Mκωqν)−
1
2 e∗κα,ν(q). The last two equations define a generalized Fourier

transform of the electron-phonon matrix elements between reciprocal space and real space. In
Eq. (179) we have Np and Np′ to indicate that the BvK supercells for electronic band structures
and phonon dispersions may not coincide.

If the quantity gmnκα(Rp,Rp′) decays rapidly as a function of |Rp| and |Rp′ |, then only a
small number of matrix elements in the Wannier representation will be sufficient to generate
gmnν(k,q) anywhere in the Brillouin zone by means of Eq. (178). The dependence of the matrix
elements on Rp and Rp′ can be analyzed by considering the following bound: |gmnκα(Rp,Rp′)| ≤∫
sc dr |w

∗
m0(r)wn0(r − Rp)| ×

∫
sc dr |∂V

KS/∂τκα(r − Rp′)|. The first term guarantees that the
matrix element decays in the variable Rp at least as fast as MLWFs. As a result the worst case
scenario corresponds to the choice Rp = 0. In this case, the matrix element |gmnκα(0,Rp′)|
decays with the variable Rp′ at the same rate as the screened electric dipole potential generated
by the atomic displacement ∆τκα. In non-polar semiconductors and insulators, owing to the
analytical properties of the dielectric matrix [113], this potential decays at least as fast as a
quadrupole, that is |Rp′ |−3. As a result, all matrix elements in reciprocal space are finite for
q → 0 [131] and hence amenable to interpolation. In the case of metals the asymptotic trend
of ∂V KS/∂τκα is dictated by Fermi-surface nesting, leading to Friedel oscillations that decay as

5 We note that gmnκα(Rp,Rp′) has dimensions of energy by length, at variance with Eq. (38). For consistency
here we use a definition that differs from that given in [165] by a factor Np; this factor is inconsequential.
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Figure 5: (Color online) Spatial decay of the electron-phonon matrix elements of diamond in
the Wannier representation: (a) max |gmnκα(Rp, 0)| vs. |Rp|, and (b) max |gmnκα(0,Rp′)| vs.
|Rp′ |. The maximum values are taken over all subscript indices, and the data are normalized
to the largest value. The insets show the same quantities in logarithmic scale. The calculations
were performed using the local-density approximation to DFT. Reproduced with permission from
Ref. [165], copyright (2007) by the American Physical Society.

|Rp′ |−4 (Ref. [135], pp. 175–180). These oscillations are connected to the Kohn anomalies in the
phonon dispersion relations [237]. In practical calculations, Friedel oscillations are usually not
an issue since they are suppressed by the numerical smearing of the Fermi-Dirac occupations,
and a Yukawa-type exponential decay is recovered. The case of polar materials is more subtle
and will be discussed in Sec. 6.1.3. Figure 5 illustrates the spatial decay of |gmnκα(Rp,Rp′)| as
a function of Rp and Rp′ for the prototypical case of diamond.

The interpolation strategy is entirely analogous to standard techniques for generating phonon
dispersion relations using the interatomic force constants [102]: one first determines matrix
elements in the Bloch representation using DFPT on a corse grid in the Brillouin zone, as in
Sec. 3.2.3. Then MLWFs are determined using the procedures of Refs. [223, 228]. This yields
the rotation matrices Umnk to be used in Eq. (179). The Fourier transform to real space is
performed via Eq. (179). At this point, one assumes that matrix elements outside of the Wigner-
Seitz supercell defined by the coarse Brillouin-zone grid can be neglected, and uses Eq. (178) in
order to obtain the matrix elements gmnν(k,q) on very fine grids. The last step requires the
knowledge of the rotation matrices Umnk also on the fine grids; these matrices are obtained from
the Wannier interpolation of the band structures, as described in Ref. [228]. The operation is
computationally inexpensive and enables the calculation of millions of electron-phonon matrix
elements. The procedure can now be applied routinely [238, 239]. Figure 6 shows the matrix
elements obtained using this method, as compared to explicit DFPT calculations.

Wannier interpolation of electron-phonon matrix elements was successfully employed in a num-
ber of applications, ranging from metal and superconductors to semiconductors and nanoscale
systems.6

6 See for example Refs. [105, 150, 195, 240–251].
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Figure 6: (Color online) Comparison between Wannier-interpolated electron-phonon matrix
elements and explicit DFPT calculations, for diamond. The interpolated matrix elements were
calculated starting from a coarse 43 Brillouin-zone grid (dotted line, black), a 63 grid (dashed
line, blue), and a 83 grid (solid line, red). The dots indicate explicit DFPT calculations. In this
example |nk〉 is set to the valence band top at Γ; |mk + q〉 spans Λ3, ∆5, and Σ2 bands, and
the phonon is set to the highest optical branch. Reproduced with permission from Ref. [165],
copyright (2007) by the American Physical Society.

6.1.3 Electron-phonon matrix elements in polar materials

In the case of polar materials, that is systems exhibiting nonzero Born effective charges [113],
the interpolation scheme discussed in Sec. 6.1.2 breaks down. In fact, in these systems the
dominant contribution to the potential ∂V KS/∂τκα in Eq. (177) is a dipole, which decays as
|Rp′ |−2. As a consequence some of the matrix elements in reciprocal space diverge as |q|−1 for
q→ 0, and cannot be interpolated straightforwardly from a coarse grid to a fine grid. Physically
this singularity corresponds to the ‘Fröhlich electron-phonon coupling’ [30].

The adaptation of the Wannier interpolation method to the case of polar materials was recently
given by Sjakste et al. [250] and by Verdi and Giustino [249]. In both works the basic idea is
to separate the matrix elements into a short-range contribution, gSmnν(k,q), which is amenable
to standard Wannier interpolation, and a long-range contribution, gLmnν(k,q), which is singular
and is dealt with analytically. The strategy is analogous to that in use for calculating LO-TO
splittings in polar materials [102]. The starting point is to define the long-range component of
the matrix elements by considering the potential generated by the Born charges of all the atoms,
when displaced according to a given vibrational eigenmode. The derivation relies on standard
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electrostatics and can be found in [249]:

gLmnν(k,q) = i
4π

Ω

e2

4πε0

∑
κ

(
~

2NpMκωqν

)1
2

×
∑

G6=−q

(q + G) · Z∗κ · eκν(q)

(q + G) · ε∞ · (q + G)
〈ψmk+q|ei(q+G)·(r−τκ)|ψnk〉sc. (180)

In this expression Z∗κ and ε∞ denote the Born effective charge tensors and the electronic per-
mittivity tensor (that is, the permittivity evaluated at clamped nuclei). This expression is the
generalization of Fröhlich’s model to the case of anisotropic crystalline lattices and multiple
phonon modes [30]. The result can be derived alternatively using the analytical properties of the
dielectric matrix [113] as discussed in Ref. [131].

In order to perform Wannier interpolation, one subtracts Eq. (180) from the matrix elements
computed on a coarse grid, interpolates the remainig short-range part, and then adds back
Eq. (180) on the fine grid. This process requires the interpolation of the brakets 〈· · ·〉sc in
the second line of Eq. (180). Verdi and Giustino showed that, for small q + G, these brakets
can be interpolated via the relation 〈ψmk+q|ei(q+G)·r|ψnk〉sc =

[
Uk+qU

†
k

]
mn

, where the rotation
matrices Umnk are obtained as usual from the procedure of Refs. [223, 228].7 Figure 7 shows an
example of Wannier interpolation for the prototypical polar semiconductor TiO2: it is seen that
the singularity is correctly captured by the modified interpolation method.

At the end of this section, we mention that other interpolation schemes are equally possible [252–
255]. For example Eiguren and Draxl proposed to interpolate only the local component of ∆V KS

qν ,
while calculating explicitly the nonlocal part of the perturbation as well as the Kohn-Sham
wavefunctions in the Bloch representation [252]. Furthermore, Eq. (178) remains unchanged if
MLWFs are replaced by a basis of localized atomic orbitals, and all the concepts discussed in this
section remain valid. An interpolation scheme using local orbitals was recently demonstrated in
Ref. [255].

6.2 Fermi surface harmonics

In the study of metallic systems, one is often interested in describing EPIs only for electronic
states in the vicinity of the Fermi surface. In these cases, besides the Wannier interpolation
discussed in Secs. 6.1.2-6.1.3, it is possible to perform efficient calculations using ‘Fermi-surface
harmonics’ (FSH). FSHs were introduced by Allen [256] and recently revisited by Eiguren and
Gurtubay [257].

The basic idea underlying FSHs is to replace expensive three-dimensional Brillouin-zone integrals
by inexpensive one-dimensional integrals in the energy variable. To this aim, Allen proposed to
expand functions of the band index n and wavevector k, say Ank, in products of pairs of functions,

7 Eq. (4) of Ref. [249] misses a factor e−i(q+G)·τκ ; this factor needs to be retained in order to correctly describe
the acoustic modes near q = 0. In practical calculations the G-vector sum in Eq. (180) is restricted to small
|q + G| via the cutoff function e−a|q+G|2 ; the results are independent of the choice of the cutoff parameter a.
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Figure 7: (Color online) Wannier interpolation of electron-phonon matrix elements for anatase
TiO2. The initial state |nk〉 is set to the bottom of the conduction band at Γ, the final state
|mk + q〉 spans the bottom of the conduction band along high-symmetry lines, and the phonon
is the highest LO mode. The dots correspond to explicit DFPT calculations. The red dashed
line is the short-range component of the matrix elements, gS . The solid curve in blue represents
the matrix elements gS + gL, as obtained from the modified Wannier interpolation of Sec. 6.1.3.
The interpolation was performed starting from a coarse 4×4×4 unshifted grid. Reproduced with
permission from Ref. [249], copyright (2015) by the American Physical Society.

one depending on the energy, AL(ε), and one depending on the wavevector, ΦL(k):

Ank =
∑

L
AL(εnk) ΦL(k). (181)

In this expression, the Fermi-surface harmonics ΦL(k) (to be defined below) are constructed so
as to obey the following orthogonality condition:

N−1p
∑

nk
δ(εnk − ε) ΦL(k) ΦL′(k) = N(ε)δLL′ , (182)

where N(ε) = N−1p
∑

nkδ(εnk − ε) is the density of states. Using Eqs. (181)-(182) one finds:

AL(ε) = N(ε)−1N−1p
∑

nk
δ(εnk − ε) ΦL(k)Ank. (183)

Allen showed that, in the FSH representation, a linear system such as Ank = N−1p
∑

n′k′Mnk,n′k′

×Bn′k′ transforms into AL(ε) =
∑

L′
∫
dε′N(ε′)MLL′(ε, ε

′)BL′(ε
′) [256]. Linear systems of this

kind are common in the solution of the Boltzmann transport equation (Sec. 10) and the Eliashberg
equations for the superconducting gap (Sec. 11.2). If one could perform the expansion using only
a few harmonics, then the transformation would be advantageous, since the integrals over the
wavevectors would have been absorbed in the expansion coefficients.

In the original proposal of Ref. [256], the harmonics ΦL(k) were defined as polynomials in the
band velocities, however the completeness of the basis set was not established. In a recent
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work, Eiguren and Gurtubay proposed to construct these functions as eigenstates of a modified
Helmholtz equation [257]:

|vk|∇2
kΦL(k) = ωLΦL(k), (184)

where vk = ~−1∇kεnk is the band velocity for states at the Fermi surface, and ωL is the eigenvalue
for the harmonic ΦL. The new definition in Eq. (184) maintains the properties of the original
FSHs, and carries the added advantage that the basis set is complete. In this case the subscript L
in ΦL(k) labels the eigenstates of the Helmholtz equation. Eiguren and Gurtubay demonstrated
the construction of ‘Helmholtz FSHs’ for prototypical metals such as Cu, Li, and MgB2.

Recent examples of the application of Fermi surface harmonics to first-principles calculations of
EPIs include work on the photoemission kink of YBa2Cu3O7 [258], and on the Seebeck coefficient
of Li [259].

7 Non-adiabatic vibrational frequencies and linewidths

As discussed in Secs. 5.1.2-5.1.3, the electron-phonon interaction can lead to a renormalization
of the adiabatic vibrational frequencies and to a broadening of the spectral lines.

The first ab initio investigations of the effects of the non-adiabatic renormalization of phonon
frequencies were reported by Lazzeri and Mauri [119] and Pisana et al. [260]. In these works
the authors concentrated on the E2g phonon of graphene, which is found at the wavenumber
ω/2πc = 1585 cm−1 at room temperature (c is the speed of light). This phonon corresponds
to an in-plane C–C stretching vibration with q = 0, and has been studied extensively via Ra-
man spectroscopy. In the graphene literature this mode is referred to as the ‘Raman G band’.
Figure 8 shows a comparison between calculated and measured E2g phonon frequencies, as a
function of doping, from [260]. The calculations were performed (i) within the adiabatic ap-
proximation and (ii) by including the non-adiabatic frequency renormalization using Eq. (145).8

From Fig. 8 we see that the adiabatic theory is unable to reproduce the experimental data. On
the contrary, the calculations including non-adiabatic effects nicely follow the measured Raman
shift. This is a clear example of the limits of the adiabatic Born-Oppenheimer approximation
and a demonstration of the importance of the phonon self-energy in Eq. (145).

The fact that the adiabatic approximation is inadequate for the E2g phonon of doped graphene
should have been expected from the discussion on p. 45. In fact, graphene is a zero-gap semi-
conductor, therefore electrons residing in the vicinity of the Dirac points can make ‘virtual’
transitions with |q| = 0 and energies comparable to that of the E2g mode. As a result, the
condition underlying the adiabatic approximation, |εmk+q − εnk| � ~ωqν , does not hold in this
case.

The importance of non-adiabatic effects was confirmed also in the case of metallic single-walled
carbon nanotubes [167, 168]. In these works, the authors studied the phonon dispersion relations

8 In the works reviewed in this section the authors used Eq. (145) with the bare matrix elements gbmnν(k,q)

replaced by the screened matrix elements gmnν(k,q). All calculations were performed within DFT, using either
the LDA or gradient-corrected DFT functionals.
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Figure 8: (Color online) Frequency of the Raman G band of graphene vs. carrier concentration.
The black filled disks are from Raman measurements of gated graphene on a silicon substrate
at 295 K. The thick horizontal dashed line (red) shows the variation of the E2g mode frequency
with doping, within the adiabatic approximation. The solid blue line shows the variation of the
frequency calculated by including non-adiabatic frequency renormalization. Reproduced with
permission from Ref. [260], copyright (2007) by Macmillan Publishers Ltd.

in the vicinity of |q|=0, and they found that the difference between adiabatic and non-adiabatic
dispersions is concentrated around the zone center. This finding is consistent with earlier models
of non-adiabatic effects. In fact Maksimov and Shulga showed that, for metals with linear electron
bands crossing the Fermi level, ΠNA is only significant for wavevectors |q| ∼ ω/vF, where ω is
the phonon energy and vF the Fermi velocity [160]. This result can be derived from Eq. (145).

In the previous examples, the non-adiabatic renormalization of the vibrational frequencies is
measurable but very small, typically of the order of 1% of the corresponding adiabatic frequen-
cies. Saitta et al. considered the question as to whether one could find materials exhibiting
large non-adiabatic renormalizations, and considered several graphite intercalation compounds,
namely LiC6, LiC12, KC8, KC24, RbC8, CaC6, SrC6, BaC6, as well as other metallic systems
such as MgB2, Mg, and Ti [149]. In order to calculate the non-adiabatic renormalization at a
reduced computational cost, the real part of the phonon self-energy was approximated as fol-
lows: ~Re ΠNA

q=0,νν ' NF 〈|gnnν(k,q = 0)|2〉BZ, where 〈· · ·〉BZ stands for the average taken over
the wavevectors k in the Brillouin zone, and NF is the density of states at the Fermi level. This
expression can be derived from Eq. (145) by replacing the bare matrix elements by their screened
counterparts, and by neglecting the ‘interband’ contributions m 6= n in the sum. Figure 9 shows
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Figure 9: Comparison between measured (ωexp) and calculated (ωth) vibrational frequencies
of the E2g mode of graphite intercalation compounds. Open symbols are adiabatic DFPT cal-
culations, filled symbols are calculations including the non-adiabatic corrections. The line cor-
responds to ωth = ωexp. Reproduced with permission from Ref. [149], copyright (2008) by the
American Physical Society.

a comparison between vibrational frequencies from experiment and those calculated with or
without including the non-adiabatic self-energy. It is clear that the non-adiabatic frequencies
are in much better agreement with experiment than the corresponding adiabatic calculations.
Furthermore, in these compounds the renormalization can reach values as large as ∼300 cm−1.
In contrast to this, the renormalization in Mg and Ti was found to be of only a few wavenumbers
in cm−1.

The case of MgB2 proved more puzzling: here the calculated non-adiabatic frequency is 761 cm−1,
while experiments reported 600 cm−1. In order to explain this discrepancy, Saitta et al. reasoned
that a more accurate calculation would require taking into account the relaxation time of the
electrons [149], as pointed out in Ref. [160]. This would act so as to partly wash out non-adiabatic
effects. In the field-theoretic language of Sec. 5, this observation corresponds to stating that when
one approximates the dressed electron propagator G in Fig. 2(c) using the non-interacting Kohn-
Sham Green’s function, one should include at the very least the effects of finite electron lifetimes
(due to electron-electron, electron-impurity, and electron-phonon scattering), for example via the
imaginary part of Eq. (157).

The calculations discussed so far in this section addressed the non-adiabatic renormalization
of zone-center phonons. The generalization to calculations of complete phonon dispersions was
made by Calandra et al. [150]. In their work, Calandra et al. employed Wannier interpolation
(see Sec. 6) in order to calculate the non-adiabatic phonon self-energy of Eq. (145) throughout
the Brillouin zone. Figure 10 shows a comparison between the standard DFPT phonon dispersion
relations of CaC6 and the dispersions obtained after incorporating the non-adiabatic self-energy.
It is seen that also in this case non-adiabatic effects are most pronounced at small q, and can be
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Figure 10: (Color online) Phonon dispersion relations of CaC6 calculated using Wannier in-
terpolation. The dashed lines (black) and the solid lines (red) represent the standard adiabatic
calculation and the non-adiabatic phonon dispersions, respectively. Reproduced with permission
from Ref. [150], copyright (2010) by the American Physical Society.

as large as 7% of the adiabatic frequency.

In their work Calandra et al. approximated the bare matrix element gbmnν(k,q) appearing in
Eq. (145) by the screened matrix element gmnν(k,q). This replacement was justified by reasoning
that the error is of second-order in the induced electron density, hence it should be negligible.

The broadening of vibrational spectra arising from the electron-phonon interaction is almost
invariably calculated from first principles using Eq. (146). Since the integration of the Dirac
delta is computationally costly, it is common to rewrite that equation by neglecting the phonon
energy in the delta function and by taking the low-temperature limit, as proposed in Ref. [148]:

γqν
πωqν

' 2
∑
mn

∫
dk

ΩBZ
|gmnν(k,q)|2δ(εnk − εF)δ(εmk+q − εF), (185)

where εF is the Fermi energy. Oddly enough, this is a sort of adiabatic approximation to the non-
adiabatic theory. The main advantage is that this expression is positive definite, hence easier to
converge numerically as compared to the complete expression in Eq. (146). The disadvantages are
that the temperature dependence is lost, and that one cannot resolve fine features on the scale of a
phonon energy. There exists a vast literature on first-principles calculations of phonon linewidths
using Eq. (185), mostly in connection with electron-phonon superconductors.9 Equation (185)

9 See for example early frozen-phonon calculations [69, 72, 261] and more recent DFPT calculations [73, 76,
162, 166]. Earlier calculations not based on DFT are reviewed in Ref. [6].
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is now implemented in several large software projects [262, 263], and it is used routinely.

Phonon linewidths range from very small values such as ∼1 meV in Nb [76] to large values such as
∼30 meV in MgB2 [162]. The agreement between calculations and neutron scattering or Raman
measurements is usually reasonable.

Calculations of phonon linewidths using the more accurate expression in Eq. (146) are compu-
tationally more demanding and have been reported less extensively in the literature.10

So far we considered the effect of EPIs on the frequencies and lifetimes of vibrational excitations
in solids. Another important phenomenon which modifies frequencies and lifetimes is anhar-
monicity. Anharmonic effects result from third and higher-order terms in the Taylor expansion
of the total potential energy U in the atomic displacements (Sec. 3.1). These effects can be
interpreted as additional interactions that couple the oscillators of the harmonic lattice; for ex-
ample, third-order anharmonic effects reduce phonon lifetimes via energy up- or down-conversion
processes involving three phonons.

Anharmonic effects can be described using a many-body field-theoretic formalism [265], in com-
plete analogy with the theory of EPIs discussed in Sec. 4. The calculation of anharmonic effects
from first principles goes through the evaluation of third- and fourth-order derivatives of the
total potential energy U in the adiabatic approximation. Third-order coefficients are routinely
computed using DFPT [264, 266–269]. In thoses cases where the harmonic approximation fails
completely, ‘self-consistent phonon’ techniques can be employed [270, 271]; recent implementa-
tions and calculations can be found in Refs. [272–275].

8 Electron-phonon interactions in photoelectron spectroscopy

In Sec. 5.2.5 we have seen how the electron-phonon interaction in metals can lead to band struc-
ture ‘kinks’ near the Fermi energy. This is illustrated by the model calculation in Fig. 4(a). The
experimental investigation of these features started in the late 1990s, following the development
of high-resolution angle-resolved photoelectron spectroscopy (ARPES). Since in ARPES only
the component of the photoelectron momentum parallel to the sample surface is conserved [192],
complete energy vs. wavevector dispersion relations can be measured directly only for 2D or
quasi-2D materials. Accordingly, the first observations of kinks were reported for the surface
states of elemental metals11 and for the CuO2 planes of copper oxide superconductors.12 Ab
initio calculations of ARPES kinks can be performed by using the diagonal part of the Fan-
Migdal self-energy (the Debye-Waller self-energy will be discussed at the end of this section).
To this aim, it is common to rewrite Eqs. (157)-(158) at finite temperature using a spectral
representation:

ΣFM
nnk(ω, T ) =

∫ +∞

−∞
dε

∫ ∞
0
dε′ α2Fnk(ε, ε′)

[
1−f(ε/kBT )+n(ε′/kBT )

~ω−ε− ε′ + i~η
+
f(ε/kBT )+n(ε′/kBT )

~ω−ε+ ε′ + i~η

]
.

(186)
10 See for example Refs. [163–165, 264].
11Refs. [194, 276].
12Refs. [277–279].
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Here the function α2F is the so-called the ‘Eliashberg function’ and is defined as:

α2Fnk(ε, ε′) =
∑
mν

∫
dq

ΩBZ
|gnmν(k,q)|2δ(ε− εmk+q)δ(ε′ − ~ωqν). (187)

This quantity is positive, temperature-independent, and contains all the materials-specific pa-
rameters. Physically it is proportional to the scattering rate of an electron in the state |nk〉
into any electronic state at the energy ε, by emitting or absorbing any one phonon of energy ε′.
One complication related to the Eliashberg function is that in the literature many variants of
Eq. (187) can be found, each stemming from specific approximations; some of these expressions
are summarized in Ref. [6], pp. 107–109.

The first ab initio calculations of the phonon-induced electron self-energies and photoemission
kinks were reported by Eiguren et al. for the surface state of the Be(0001) surface [189]. Since
the evaluation of Eqs. (186) and (187) is computationally demanding, Eiguren et al. employed
simplified expressions which involve three approximations [189]: (i) the Eliashberg function is
replaced by its isotropic average, α2Fn(ε, ε′) =

∫
dk δ(εnk−ε) α2Fnk(ε, ε′)/

∫
dk δ(εnk−ε); (ii)

phonon energies are neglected next to electron energies (as in the adiabatic approximation), and
(iii) particle-hole symmetry is assumed. Using these approximations the imaginary part of the
Fan-Migdal self-energy becomes:

|Im ΣFM
n (ω, T )| = π

∫ ∞
0
dε′ α2Fn(~ω, ε′){1 + 2n(ε′/kBT ) + f [(~ω + ε′)/kBT ]− f [(~ω − ε′)/kBT ]},

(188)
where the average of the self-energy is defined as for the Eliashberg function. The real part of
the self-energy can be found starting from the same approximations, and is given in Ref. [6].

Figure 11 shows the self-energy of the surface state at the Be(0001) surface calculated by Eiguren
et al. using Eq. (188) [189]. The imaginary part resembles a step-function, with an onset around
the energy threshold for phonon emission by a hole (40–80 meV in this case). At a qualitative
level, this trend can be rationalized by replacing the Eliashberg function in Eq. (188) by a
Dirac delta at a characteristic phonon energy ~ωph. In this case, the hole self-energy becomes
proportional to f [(~ω + ~ωph)/kBT ]. At T = 0 this is precisely a step function with onset at
−~ωph. The real part of the self-energy vanishes for |ω| � ωmax, with ωmax being the largest
phonon frequency. This can be seen in Fig. 11(b), and is a consequence of the approximation
of particle-hole symmetry. Eiguren et al. also determined the renormalization of the surface
state band structure arising from electron-phonon interactions, using Eq. (164) [189]; this is
shown in the inset of Fig. 11(a). Overall the calculations of Ref. [189] showed good agreement
with photoelectron spectroscopy experiments, both in the shape and magnitude of the self-
energy [280].

In addition to the above calculations, several studies of the electron-phonon self-energy at metal
surfaces were reported, namely for the Cu(111) and Ag(111) surfaces [188], the Al(100), Ag(111),
Cu(111), and Au(111) surfaces [281], and the W(110) surface [282]. Building on these studies,
Eiguren et al. performed a detailed analysis of the self-consistent solutions of the complex Dyson
equation for the quasiparticle energies, Eq. (164)-(165), and illustrated the key concepts in the
cases of the W(110) surface and for the phonon-mediated superconductor MgB2 [283].
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Figure 11: (Color online) Calculated Fan-Migdal self-energy of the surface state at the Be(0001)
surface. (a) Imaginary part of the self-energy, obtained from Eq. (188). The dashed (black)
line is the self-energy evaluated using the DFT/LDA bands; the solid lines (color/grayscale)
correspond to the self-energy calculated by taking into account the renormalization of the DFT
band structure by the electron-phonon interaction. (b) Real part of the self-energy, using the
same color/grayscale code as in (a). The inset in (a) compares the renormalized band structure
(color) with the ‘bare’ DFT band (black dashed line). The inset of (b) shows the renormalization
of the band velocity induced by the electron-phonon interaction. Reproduced with permission
from Ref. [189], copyright (2003) by the American Physical Society.

Equation (188) or closely-related approximations were also employed in the study of electron and
hole lifetimes in bulk Be [284], Pb [285], and Mg [286]; the photoemission kink in YBa2Cu3O7 [258];
and the spectral function of Ca-intercalated graphite [287].

In the case of complex systems the validity of the approximations (i)–(iii) leading to Eq. (188)
is not warranted, and a direct calculation of the Fan-Migdal self-energy using Eqs. (186) and
(187) is necessary. Calculations of the complete self-energy were reported by Park et al. for
graphene [240], by Giustino et al. for the high-temperature superconductor La1−xSrxCu2O4

[195], and by Margine et al. for Ca-intercalated bilayer graphene [288]. Figure 12 shows the
calculated self-energy and spectral function of graphene calculated in Refs. [240, 289]. The
structure of the self-energy is similar to that of Fig. 11, with one important exception: ΣFM

nnk(ω)

does not vanish a few phonon energies away from the Fermi level, but tends instead towards a
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Figure 12: (Color online) (a), (b) Calculated real part of the Fan-Migdal self-energy in pristine
and n-doped graphene, respectively (solid black lines). The doping level is 4·1013 cm−2. The
dashed lines correspond to a simplified analytical model where particle-hole symmetry is assumed.
(c), (d) Electron band velocity renormalization resulting from the self-energies in (a) and (b).
All calculations in (a)-(d) were performed using DFT/LDA. Reproduced with permission from
Ref. [240], copyright (2007) by the American Physical Society. (e) Calculated spectral function
of n-doped graphene for one of the branches of the Dirac cone. ωph indicates the characteristic
phonon energy leading to the photoemission kink; ED denotes the energy of the Dirac point. The
calculations include GW quasiparticle corrections. Reproduced with permission from Ref. [289],
copyright (2009) by the American Chemical Society.

linear asymptote. Calandra and Mauri performed a combined ab initio/analytical study of the
effects of the electron-phonon interaction on the electron bands of graphene and obtained very
similar results [290]. A linear asymptote in the real-part of the self-energy is a general feature of
systems which do not exhibit particle-hole symmetry. For another example see Ref. [195].

Using the Fan-Migdal self-energy, it is possible to calculate the renormalization of the band
velocity induced by the electron-phonon interaction. Let us denote by vnk = ~−1∇kεnk the
DFT band velocity and Vnk = ~−1∇kEnk the band velocity after including electron-phonon
interactions. Using Eq. (164) with Γnk = 0 we find that these two quantities are simply related
by Vnk = Znk vnk = vnk/(1 + λnk), where Znk is the quasiparticle strength of Eq. (174), and
λnk is the ‘mass enhancement parameter’ or ‘electron-phonon coupling strength’ [6]:

λnk = Z−1nk − 1 = −~−1∂ ReΣnnk(ω)/∂ω
∣∣
ω=Enk/~

. (189)

In the study of EPIs in metals, the coupling strength λnk is of significant interest since it is
related to the superconducting transition temperature of phonon-mediated superconductors (see
Secs. 8.0.1 and 11).

The velocity renormalization in graphene calculated using Eq. (189) is shown in Fig. 12(c) and
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(d), while a calculation of the complete spectral function A(k, ω) is shown in Fig. 12(e). Here
the characteristic photoemission kink is visible between 150–200 meV but it is not very pro-
nounced, since in this case λnk ∼ 0.1 [289]. These results are in good agreement with measured
photoelectron spectra [291, 292].

Incidentally, we remark that in the analysis of ARPES data it is common to extract the coupling
strength λnk directly from the ratio of the band velocities above and below the electron-phonon
kink. However, this procedure is subject to a significant uncertainty, since the ‘bare’ velocity is
not known and must be approximated by fitting the fully-interacting dispersions using ad hoc
models. For example, in the vicinity of Van Hove singularities this procedure leads to a significant
overestimation of the electron-phonon coupling strength λnk [241, 293].

In addition to photoemission kinks, recent ARPES measurements revealed the existence of po-
laron satellites in doped oxides, namely TiO2 [196] and SrTiO3 [197–199]. The phenomenology
is similar to what was discussed in relation to Fig. 4(b). The first theoretical studies along this
direction were reported by Story et al., who applied the cumulant expansion approach to the
case of the electron-phonon self-energy [221]; by Antonius et al. who identified satellites in the
spectral functions of LiF and MgO [294]; and by Verdi et al., who calculated the ARPES spectra
of n-doped TiO2 [200].

At the end of this section, it is worth coming back to the Debye-Waller self-energy. So far we only
discussed the Fan-Migdal self-energy, starting from Eq. (186), and we ignored the Debye-Waller
self-energy appearing in Eq. (152). This omission reflects the fact that, in the literature on
electron-phonon interactions in metals, the DW term has always been disregarded. In order to
rationalize this approximation, we rewrite the DW self-energy as follows, by combining Eqs. (160)
and (40):

ΣDW
nnk = 〈unk|VDW|unk〉uc, (190)

with VDW(r) = Ω−1BZ

∑
ν

∫
dq (nqν + 1/2)∆qν∆−qνv

KS(r). The subscript ‘uc’ indicates that the
integral is over one unit cell. From Eq. (190) we see that VDW acts like a static local potential;
indeed the first calculations including DW effects were performed by directly modifying the ionic
pseudopotentials [172, 173]. From Eq. (190) we also see that the only variation in the DW
self-energy comes from the Bloch amplitudes unk. Let us consider the limiting situation of the
homogeneous electron gas. In this case |unk(r)|2 = 1/Ω (Sec. 3.2.5), therefore ΣDW

nnk is a constant,
independent of k. This behavior should be contrasted with the Fan-Migdal self-energy, which
exhibits significant structure near the Fermi energy, as it can be seen in Fig. 4.

In more realistic situations, such as doped semiconductors, k ·p perturbation theory [78] can be
used to show that ΣDW

nnk varies smoothly as a function of k within the same band. In contrast
with this scenario, ΣDW

nnk exhibits large variations across different bands. This carries important
consequences for the calculation of temperature-dependent band gaps (Sec. 9.1.1).
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8.0.1 Electron mass enhancement in metals

We now come back to the mass enhancement parameter λnk introduced in Eq. (189), since this
quantity played a central role in the development of the theory of EPIs in metals.

The notion of ‘mass enhancement’ becomes clear when we consider a parabolic band as in the
model calculations of Fig. 4. Near the Fermi surface the non-interacting dispersions are given by
εnk = ~kF·~ (k−kF)/m∗, where kF is a wavevector on the Fermi surface, and the electron velocity
is vnk = ~kF/m

∗. After taking into account the EPI, the electron velocity is renormalized to
Vnk = vnk/(1 + λnk). Since the magnitude of the Fermi momentum is unchanged (see caption
of Fig. 4) this renormalization can be interpreted as an effective increase of the band mass from
m∗ to mep = m∗(1 + λnk). This reasoning holds for metals with parabolic bands and for doped
semiconductors near band extrema, and does not take into account the Debye-Waller self-energy.

The electron mass enhancement is reflected into the increase of the heat capacity of metals at
low temperature. In fact, below the Debye temperature the electronic contribution to the heat
capacity dominates over the lattice contribution [80]. Since the heat capacity is proportional to
the density of states at the Fermi level, and the density of states is inversely proportional to the
band velocity, it follows that the heat capacity is directly proportional to the electron mass. This
property can be used as a means to determine the strength of the electron-phonon coupling in
simple metals from specific heat measurements [295].

The general theory of the effects of electron-phonon interactions on the heat capacity and other
thermodynamic functions was developed by Eliashberg [296], Prange and Kadanoff [297], and
Grimvall [47]. A field-theoretic analysis of the effect of EPIs on thermodynamic functions was
developed by Eliashberg starting from the identities of Luttinger and Ward [298] in the zero-
temperature limit. Eliashberg’s analysis was subsequently extended to all temperatures by Grim-
vall. Here we only quote Grimvall’s result relating the electronic entropy to the Fan-Migdal
self-energy of Sec. 5.2.1:

Se =
NFkB~3

(kBT )2

∫ ∞
0

ω
[
ω − ~−1ReΣFM

nnk(ω, T )
]

cosh2(~ω/2kBT )
dω. (191)

In order to derive this relation, Grimvall started by expressing the thermodynamic potential of
the coupled electron-phonon system in terms of the electron and phonon propagators and self-
energies, and identified the electronic contribution by neglecting terms of order (me/M0)

1/2 as
well as electron-electron interactions (Ref. [47], Appendix).

Below the Debye temperature, an explicit expression for the entropy in Eq. (191) can be obtained
by noting that the function cosh−2(~ω/2kBT ) is nonvanishing only for ~ω . 2kBT ; in this range
Eq. (189) yields ΣFM

nnk(ω, T ) ' −λnk ~ω, therefore the integration in Eq. (191) can be carried out
explicitly. As a result, the low-temperature heat capacity can be written as:

Ce = T
∂Se
∂T

=
2

3
π2kB

2NF(1 + λnk)T. (192)

If we ignore the EPI by setting λnk = 0, this expression reduces to the standard textbook result
for the free electron gas [80]. At high temperature Eq. (192) is no longer valid, and one has to
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evaluate the integral in Eq. (191) using the complete frequency-dependent FM self-energy. The
main result of this procedure is that at high temperature the electronic heat capacity is no longer
renormalized by EPIs. A detailed discussion of this aspect is given in Ref. [47].

Early examples of DFT calculations of mass enhancement parameters and comparisons with
specific heat measurements in simple metals can be found in Refs. [69, 73, 74].

9 Electron-phonon effects in the optical properties of semicon-
ductors

9.1 Temperature dependence of band gaps and band structures

9.1.1 Perturbative calculations based on the Allen-Heine theory

In Sec. 5.2.3 we discussed how the electron-phonon interaction induces a ‘renormalization’ of
the electronic energy levels, and thereby gives rise to ‘temperature-dependent band structures’.
These effects have been studied in detail using the Fan-Midgal and the Debye-Waller self-energies,
either via the Raleigh-Schrödinger approximation to Eq. (166), or via its adiabatic counterpart
given by Eq. (167).

Equation (167) was first employed in a number of calculations based on empirical pseudopoten-
tials, following the seminal work of Allen and Heine [85] (see footnote 4). Allen and Cardona
offer a clear introduction to the basic theory, a discussion of the computational methodology, as
well as an historical perspective on earlier calculations [54].

The evaluation of the Debye-Waller contribution to the self-energy requires the calculation of
the second-order variations of the Kohn-Sham potential with respect to the ionic displacements,
Eq. (40). From a computational standpoint, this is challenging because one would have to use
second-order DFPT, as discussed at the end of Sec. 3.2.3. In order to avoid this complication,
it is common practice to recast all second-order derivatives as products of first-order derivatives.
This strategy was introduced by Allen and Heine in the case of monoatomic crystals [85], and
extended to polyatomic unit cells by Allen and Cardona [54]. The key observation behind
this approach is that one can impose translational invariance of the theory to second order in
the nuclear displacements. Specifically, the variation of the Kohn-Sham eigenvalues ensuing an
arbitrary displacement of the nuclei should not change if all nuclei are further displaced by the
same amount. Using time-independent perturbation theory, this condition yields the following
two sum rules: ∑

κp

〈ψnk|∂καpV KS|ψnk〉sc = 0, (193)

∑
κ′p′

〈ψnk|∂2καp,κ′α′p′V KS|ψnk〉sc = −2 Re
∑
κ′p′

′∑
mq

〈ψnk|∂καpV KS|ψmk+q〉sc〈ψmk+q|∂κ′α′p′V KS|ψnk〉sc
εnk − εmk+q

.

(194)
Here ∂καpV KS is a short-hand notation for ∂V KS/∂τκαp and similarly for the second derivative;
the primed summation indicates that eigenstates ψmk+q such that εnk = εmk+q are skipped.
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The first sum rule is equivalent to stating that the electron-phonon matrix elements gmnν(k,q)

associated with the three translational modes at |q| = 0 must vanish; this is an alternative
formulation of the ‘acoustic sum rule’. The second sum rule, Eq. (194), suggests to express
the matrix elements of the second derivatives of the potential in terms of first-order derivatives.
However, Eq. (194) cannot be used as it stands, since it involves a sum of matrix elements on
the left-hand side. In order to proceed, Allen and Heine employed the ‘rigid-ion’ approximation,
whereby V KS is written as a sum of atom-centered contributions (see Sec. 2.1.1). Under this
approximation all the terms κp 6= κ′p′ on the left-hand side of Eq. (194) are neglected, and an
explicit expression for 〈ψnk|∂2καp,καpV KS|ψnk〉sc is obtained.

In view of practical DFT implementations, Giustino et al. used the sum rule in Eq. (194) in
order to rewrite the Debye-Waller self-energy as follows [105]:

ΣDW
nnk = −

∑
νm

′
∫
dq

ΩBZ

g2,DW
mnν (k,q)

εnk − εmk
(2nqν + 1). (195)

Here gDW
mnν(k,q) is an ‘effective’ matrix element, and it is obtained from the standard DFPT

matrix elements by means of inexpensive matrix multiplications:

g2,DW
mnν (k,q) =

∑
κα
κ′α′

tνκα,κ′α′(q)

2ωqν
h∗mn,κα(k)hmn,κ′α′(k), (196)

tνκα,κ′α′(q) =
eκαν(q)e∗κα′ν(q)

Mκ
+
eκ′αν(q)e∗κ′α′ν(q)

Mκ′
, (197)

hmn,κα(k) =
∑

ν
(Mκ ω0ν)

1
2 eκαν(0)gmnν(k, 0). (198)

In the case of the three translational modes at |q|=0, these definitions are replaced by gDW
mnν(k,q) =

0, see the discussion at the top of p. 98. The derivation of Eqs. (195)-(198) requires using
Eqs. (20), (33)-(35), and (38), as well as taking the canonical average over the adiabatic nuclear
quantum states.

Equation (195) involves a summation over unoccupied Kohn-Sham states, and so does the Fan-
Migdal self-energy in Eq. (167). The numerical convergence of these sums is challenging, since
one needs to evaluate a very large number of unoccupied electronic states. To address this issue,
Gonze et al. developed a procedure whereby only a subset of unoccupied states is required, along
the lines of the DFPT equations of Sec. 3.2.3 [106].

The first ab initio calculations using the formalism of Allen and Heine were reported by Marini,
who investigated the temperature dependence of the optical absorption spectrum of silicon and
boron nitride [104]. In this work Marini included excitonic effects by combining the Bethe-
Salpeter formalism [158] with the Allen-Heine theory, and obtained good agreement with experi-
ments by calculating the direct absorption peaks using DFT/LDA phonons and matrix elements
(indirect optical absorption will be discussed in Sec. 9.2).

The second application of the Allen-Heine theory using DFT/LDA was reported by Giustino et
al. for the case of diamond [105]. Here the authors investigated the temperature dependence
of the direct band gap of diamond, and found that the Fan-Migdal and the Debye-Waller self-
energies are of comparable magnitude. The calculations captured the characteristic Varshni effect
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Figure 13: (Color online) Temperature dependence of the direct band gap of diamond calculated
using the Allen-Heine theory. The upper curve shows the results obtained within DFPT at the
LDA level. The lower curve was obtained via GW calculations in the frozen-phonon approach.
Triangles are experimental data. The zero-point renormalization calculated by including GW
quasiparticle corrections is 628 meV. Reproduced with permission from Ref. [110], copyright
(2014) by the American Physical Society.

(Fig. 3), and were able to reproduce the measured redshift of the band gap in the temperature
range 80-800 K. These calculations were based on the adiabatic version of the Allen-Heine theory,
and employed Eqs. (196)-(198) for the Debye-Waller self-energy. The calculations of Ref. [105]
confirmed the large (> 0.5 eV) zero-point renormalization of the direct gap of diamond predicted
by Zollner et al. using the empirical pseudopotential method [178].

The unusually large zero-point correction to the electronic structure of diamond stimulated fur-
ther work on this system: Cannuccia and Marini calculated the gap renormalization in diamond
by employing both the adiabatic version of the Allen-Heine theory, as well as the non-adiabatic
Green’s function approach, as described in Sec. 5.2.5 [299, 300]. Their calculations confirmed the
large zero-point renormalization, and showed that the adiabatic theory underestimates the effect
to some extent. Cannuccia and Marini also analyzed the quasiparticle renormalization and the
spectral function [107, 300].

Antonius et al. revisited the electron-phonon interaction in diamond by assessing the reliability
of the rigid-ion approximation and the importance of many-body GW quasiparticle corrections
to the DFT/LDA band structure [110]. The main findings were that the rigid-ion approximation
introduces a very small error in diamond, of the order of ∼10 meV, while GW quasiparticle
corrections can increase the electron-phonon renormalization of the band gap by as much as
∼200 meV. The temperature dependence of the band gap of diamond calculated by Antonius et
al. is shown in Fig. 13.

Further work on diamond was reported by Poncé et al., who compared ab initio calculations
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based on the Allen-Heine theory with explicit frozen-phonon calculations (Sec. 9.1.2) [109]. The
corrections to the rigid-ion approximation were found to be smaller than 4 meV in all cases
considered. Poncé et al. also reported a detailed assessment of the accuracy of the various levels
of approximation in the calculation of the zero-point renormalization of energy levels, as well as a
thorough comparison between the results of different first-principles implementations [108, 109].

The electron-phonon renormalization of band structures was also investigated in a number of
other systems. For example Kawai et al. studied zinc-blend GaN by combining the Allen-Heine
theory with the Bethe-Salpeter approach [111]. Poncé et al. investigated silicon, diamond, BN,
α-AlN, and β-AlN using both the adiabatic version of the Allen-Heine theory and the non-
adiabatic Green’s function method of Eqs. (157)-(158) [112]. Friedrich et al. investigated the
zero-point renormalization in LiNbO3 using the adiabatic Allen-Heine theory [301]. Villegas et
al. studied the anomalous temperature dependence of the band gap of black phosphorous [302].
Antonius al. investigated diamond, BN, LiF, and MgO, focusing on the dynamical aspects and
the spectral function (see Sec. 8) [294]. Refs. [112, 294] were the first to report complete band
structures at finite temperature.

In Ref. [112] the authors paid special attention to the numerical convergence of the self-energy
integrals with respect to the limit η → 0 of the broadening parameter; they noted that in the
case of polar crystals the adiabatic correction to the electron energies of band extrema, as given
by Eq. (167), diverges in the limit of dense Brillouin-zone sampling. This behavior stems from
the polar singularity in the electron-phonon matrix elements, Eq. (180). In fact, near band
extrema the bands are approximately parabolic, and the integrand in the adiabatic Fan-Migdal
self-energy goes as q−4 for q → 0, while the volume element goes only as dq = 4πq2dq. This
problem can be avoided by first performing the integration over q in principal value, without
neglecting phonon frequencies, and then taking the limit ωqν → 0 so as to recover the adiabatic
approximation ([169], Sec. IV); in this way the adiabatic approximation can still be employed
without incurring into a singularity in the calculations. A practical strategy to correctly perform
the principal value integration in first-principles calculations was recently proposed by Nery and
Allen [303]; here the authors treat the singularity via an explicity analytic integration near q = 0.
The complications arising in polar materials can also be avoided at once by using directly the
more accurate expression in Eq. (166) based on Brillouin-Wigner perturbation theory, or even
better by calculating the spectral functions as in Refs. [111, 294]. In particular, Eq. (166) shows
that in more accurate approaches the infinitesimal η should be replaced by the finite physical
linewidth Γnk.

Although temperature-dependent band structures of polar materials were recently reported [111,
112, 294], the specific role of the Fröhlich coupling discussed in Sec. 6.1.3 received only little
attention so far. The only ab initio investigations which specifically addressed the role of polar
couplings in this context are those of Botti and Marques [304] and of Nery and Allen [303]. In
order to understand the strategy of Botti and Marques, we refer to the Hedin-Baym equations
in Sec. 4.2.1. They proposed that, instead of splitting the screened Coulomb interaction W

into electronic and nuclear contributions as in Eq. (104), one could try to directly calculate
the screened Coulomb interaction W including the lattice screening, as in Eqs. (85) and (86).
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In order to make the calculations tractable, Botti and Marques evaluated the total dielectric
matrices using a simplified model based on the Lyddane-Sachs-Teller relations. The resulting
formalism combines GW calculations and experimentally measured LO-TO splittings. The zero-
point renormalization of the band gaps calculated by Botti and Marques for LiF, LiCl, NaCl, and
MgO were all > 1 eV. This is an interesting result and deserves further investigation. We note
incidentally that the Allen-Heine theory and that of Botti and Marques can both be derived from
the Hedin-Baym equations. Therefore the approach of Ref. [304] should effectively correspond
to calculating the Fan-Migdal self-energy by retaining only the long-range part of the polar
electron-phonon matrix elements. In the case of Ref. [303], Nery and Allen reported a Fröhlich
contribution to the zero-point renormalization of the band gap of GaN of 45 meV, to be compared
with the total renormalization of 150 meV arising from all modes.

9.1.2 Non-perturbative adiabatic calculations

An alternative approach to the calculation of temperature-dependent band structures consists
of avoiding perturbation theory and electron-phonon matrix elements altogether, and replacing
the entire methodology discussed in Sec. 9.1.1 by straightforward finite-differences calculations.
To see how this alternative strategy works we perform a Taylor expansion of the Kohn-Sham
eigenvalues εnk to second order in the atomic displacements ∆τκαp, and then average the result
on a nuclear wavefunction identified by the quantum numbers {nqν}. After using Eq. (20) one
obtains:

〈εnk〉{nqν} = εnk +
∑

ν

∫
dq

ΩBZ
(nqν + 1/2)

∂εnk
∂nqν

, (199)

where we used the formal definition ∂/∂nqν = ∆qν∆−qν , and the variations ∆qν are the same
as in Eqs. (33)-(35). The nuclear wavefunctions are obtained from the ground-state in Eq. (223)
by applying the ladder operators, as discussed in Appendix B. The above expression can be
generalized to finite temperature by considering a canonical average over all possible nuclear
states. The result maintains the same form as in Eq. (199), except that we now have the Bose-
Einstein occupations nqν(T ) (see footnote 3). Equation (199) is precisely the conceptual starting
point of the Allen-Heine theory of temperature-dependent band structures, and appeared for the
first time in [54]. If the variations ∆qν∆−qνεnk are calculated in second-order perturbation
theory, one obtains precisely the formalism of Allen and Heine [85].

It has been proposed that the coefficients ∂εnk/∂nqν could alternatively be obtained from the
derivatives of the vibrational frequencies with respect to the electronic occupations, ~∂ωqν/∂fnk

[109, 305, 306]. A formal derivation of the link between these alternative approaches can be
found in Ref. [305], Appendix (the authors refer to this as Brooks’ theorem). Incidentally, the
first ab initio calculation of temperature-dependent band gaps relied on this approach [306].

Most commonly, the coefficients ∂εnk/∂nqν in Eq. (199) are evaluated using frozen-phonon su-
percell calculations, via the second derivative of the eigenvalue εnk with respect to collective
atomic displacements along the vibrational eigenmodes eκαν(q). This approach was employed
by Capaz et al. to study the temperature dependence of the band gaps in carbon nanotubes
(within a tight-binding model) [307], and by Han and Bester to obtain the zero-point renor-
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malization and temperature dependence of the gaps of silicon and diamond quantum dots [308].
Recent examples include works on diamond, silicon, SiC [309], as well as CsSnI3 [310].

Frozen-phonon supercell calculations based on Eq. (199) carry the advantage that the rigid-ion
approximation, which is necessary to obtain Eqs. (195)-(198), is no longer required. Therefore
this approach is more accurate in principle. In practice, however, the calculations are challenging
as they require large supercells, and the derivatives must be evaluated for every vibrational mode
of the supercell. Several computational strategies were developed to tackle this challenge. Patrick
and Giustino proposed to perform the averages leading to Eq. (199) via importance-sampling
Monte Carlo integration [311]. Monserrat described a constrained Monte Carlo scheme which
improves the variance of the Monte Carlo estimator [312]. Recently Zacharias and Giustino
showed that it is possible to perform these calculations more efficiently by replacing the stochas-
tic sampling by a suitable choice of an ‘optimum’ configuration; the result becomes exact in the
thermodynamic limit of large supercells [313]. In order to reduce the computational cost asso-
ciated with the use of large supercells, Lloyd-Williams and Monserrat introduced ‘non-diagonal’
supercells, which allow one to access phonon wavevectors belonging to a uniform grid of Np

points using supercells containing only N1/3
p unit cells [314].

The merit of these non-perturbative approaches is that they treat explicitly the nuclear wave-
functions, and enable exploring effects which go beyond the Allen-Heine theory. For example in
Refs. [275, 315–317] the authors were able to investigate effects beyond the harmonic approxi-
mations in several systems, such as LiH, LiD, high-pressure He, molecular crystals of CH4, NH3,
H2O, HF, as well as Ice. In all these cases the authors found large zero-point effects on the band
gaps.

Finally, we mention that the calculation of electronic properties at finite temperature via the
Allen-Heine theory and its variants is closely related to what one would obtain using path-integral
molecular dynamics simulations [318–320], or even classical molecular dynamics simulations at
high enough temperatures [321].

9.2 Phonon-assisted optical absorption

In addition to modifying the electron energy levels in solids, the electron-phonon interaction plays
an important role in the optical properties of semiconductors and insulators, as it is responsible for
phonon-assisted optical transitions. Phonon-assisted processes could be analyzed by considering
the many-body electronic screening function εe(12) in Eq. (95), by using the electron Green’s
function G dressed by the electron-phonon self-energy Σep as in Eq. (151). Since this would
require us a lengthy detour, here we simply reproduce the standard result of second-order time-
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Figure 14: (Color online) Phonon-assisted optical absorption in silicon: comparison between
first-principles calculations (solid lines, orange) and experiment (circles, blue). The calculations
were performed using the theory of Hall et al., as given by Eq. (200) [324]. Spectra calcu-
lated at different temperatures were shifted horizontally so as to match the experimental onsets.
Reproduced with permission from Ref. [244], copyright (2012) by the American Physical Society.

dependent perturbation theory [322, 323]:

α(ω) =
πe2

ε0 cΩ

1

ω nr(ω)

∫
dk dq

Ω2
BZ

∑
mnν

∑
s=±1

(fnk − fmk+q)

×

∣∣∣∣∣e·∑p

[
vnp(k)gpmν(k,q)

εpk − εnk − ~ω
+
gnpν(k,q)vpm(k + q)

εpk+q − εnk + s~ωqν

]∣∣∣∣∣
2

(nqν + 1/2 + s/2) δ(εmk+q−εnk−~ω+s~ωqν). (200)

In this expression α(ω) is the absorption coefficient for visible light, e is the photon polarization,
vmn are the matrix elements of the electron velocity operator, and nr(ω) is the real part of
the refractive index. The two denominators in the second line corresponds to indirect processes
whereby a photon is absorbed and a phonon is absorbed or emitted (left), and processes whereby
a phonon is absorbed or emitted, and subsequently a photon is absorbed (right). The above
expression relies on the electric dipole approximation and is therefore valid for photon energies
up to a few electronvolts. The theory leading to Eq. (200) was originally developed by Hall,
Bardeen, and Blatt [324].

The first ab initio calculation employing Eq. (200) was reported by Noffsinger et al. for the
prototypical case of silicon [244]. The authors employed DFT for computing phonons and
electron-phonon matrix elements, and the GW method for the quasiparticle band structures.
The sampling of the Brillouin zone was achieved by means of the interpolation strategy de-
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scribed in Sec. 6. Figure 14 shows that the calculations by Noffsinger et al. are in very good
agreement with experiment throughout the energy range of indirect absorption.

Further work along similar lines was reported by Kioupakis et al., who calculated the indirect
optical absorption by free carriers in GaN [325]; and Peelaers et al., who studied the indirect ab-
sorption by free carriers in the transparent conducting oxide SnO2 [326]. Recently, the ab initio
theory of phonon-assisted absorption was also extended to the case of indirect Auger recombi-
nation [327].

One limitation of the theory by Hall et al. is that the indirect absorption onset is independent
of temperature [324]. This is seen by noting that the Dirac delta functions in Eq. (200) contain
the band structure energies at clamped nuclei. The generalization to incorporate temperature-
dependent band structures as discussed in Sec. 9.1.1 is nontrivial. Refs. [313, 328] showed that
the electron-phonon renormalization of the band structure modifies the energies of real transi-
tions but leaves unchanged the energies of virtual transitions; in other words the Allen-Heine
renormalization should be incorporated only in the Dirac delta functions and in the first denom-
inator in Eq. (200). In order to avoid these complications at once, Zacharias et al. [329] devel-
oped an alternative approach which relies on the ‘semiclassical’ approximation of Williams [330]
and Lax [331]. In this approximation, the initial states in the optical transitions are described
quantum-mechanically, and the final states are replaced by a quasiclassical continuum. In the for-
mulation of Zacharias et al. the imaginary part of the temperature-dependent dielectric function
takes the form [329]:

ε2(ω;T ) =
1

Z

∑
{nqν}

e−E{nqν}/kBT 〈ε2(ω)〉{nqν}, (201)

where ε2(ω) denotes the imaginary part of the dielectric function at clamped nuclei, and the
expectation values have the same meaning as in Eq. (199). E{nqν} is the energy of the quantum
nuclear state specified by the quantum number {nqν} and Z is the canonical partition func-
tion. Zacharias et al. demonstrated that this approach provides an adiabatic approximation to
Eq. (200), and seamlessly includes the temperature dependence of the electronic structure within
the Allen-Heine theory. Using techniques similar to those of Sec. 9.1.2, the authors calculated the
indirect optical absorption lineshape of silicon at various temperatures and obtained very good
agreement with experiment. These results were recently extended to the temperature-dependent
optical spectra of diamond and gallium arsenide [313].

10 Carrier dynamics and transport

10.1 Electron linewidths and lifetimes

In Sec. 5.2.4 we have seen how the Fan-Migdal self-energy can be used in order to evaluate the
quasiparticle lifetimes (or equivalently linewidths) resulting from the electron-phonon interac-
tion. The first ab initio calculations of this kind were reported by Eiguren et al. in the study of
the decay of metal surface states [188, 189], and by Sklyadneva et al. [284, 285] and Leonardo et
al. [286] in the study of electron lifetimes of elemental metals. Some of these calculations and the
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underlying approximations were reviewed in Sec. 8. Calculations of quasiparticle linewidths were
also employed to study the temperature-dependent broadening of the optical spectra in semi-
conductors. For example Refs. [105, 112] investigated the broadening of the direct absorption
edge of diamond and silicon, respectively. In both cases good agreement with experiment was
obtained. More recently, the same approach was employed to study the broadening of photolu-
minescence peaks in lead-iodide perovskites [332]. In this case, it was found that the standard
Fermi golden rule expression, Eq. (170), significantly overestimates the experimental data. The
agreement with experiment is restored by taking into account the quasiparticle renormalization
Znk; see discussion following Eq. (174).

While these works were primarily concerned with the broadening of the spectral lines in pho-
toemission or optical experiments, Eq. (170) can also be used to study carrier lifetimes in time-
resolved experiments. The first ab initio study in this direction was reported from Sjakste et
al. who investigated the thermalization of hot electrons in GaAs and the exciton lifetimes in
GaP [333]. In the case of GaAs, Sjakste et al. found thermalization rates in quantitative agree-
ment with time-resolved luminescence and transient optical absorption measurements. Work
along similar lines was also reported for the intervalley scattering times in Ge [334]. Recently,
the thermalization rates of hot electrons in GaAs were revisited by Bernardi et al. [251]. The au-
thors employed Eq. (170) and the Wannier interpolation technique described in Sec. 6 in order to
finely sample the electron-phonon scattering processes near the bottom of the conduction band,
see Fig. 15. Based on these calculations they were able to interpret transient absorption mea-
surements in terms of the carrier lifetimes within each valley. Another interesting application of
Eq. (170) was reported by Bernardi et al., who investigated the rate of hot carrier thermalization
in silicon within the context of photovoltaics applications [248].

Very recently Sangalli and Marini employed the lifetimes calculated using Eq. (170) in order to
study carrier dynamics in silicon in real time [335, 336]. Strictly speaking, these developments
lie outside of the scope of equilibrium Green’s functions discussed in Sec. 4, and require concepts
based on non-equilibrium Green’s functions [137]. However, the basic ingredients of the electron-
phonon calculations remain unchanged.

In all calculations discussed in this section, the electron-phonon matrix elements were obtained
within DFT. However, in order to accurately describe electron-phonon scattering near band
extrema in Refs. [248, 251, 332] the authors employed GW quasiparticle band structures. This
is important in order to obtain accurate band effective masses, which affect the carrier lifetimes
via the density of states.

10.2 Phonon-limited mobility

The carrier lifetimes τnk of Eq. (170) are also useful in the calculation of electrical mobility,
conductivity, and resistivity, within the context of the semiclassical model of electron dynamics
in solids [79]. In the semiclassical model, one describes the electronic response to an external
perturbation by taking the fermionic occupations fnk to represent the probability density function
in the phase space defined by the unperturbed band structure. The probabilities fnk are then
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Figure 15: (Color online) Electron relaxation times in GaAs resulting from electron-phonon
scattering. (a) Calculated relaxation times as a function of electron energy with respect to the
conduction band bottom. The color code (gray shades) of the data points identifies the valley
where each electronic state belongs. (b) Schematic representation of the conduction band valleys
in GaAs. Reproduced with permission from Ref. [251], copyright (2015) by the National Academy
of Sciences.

determined using a standard Boltzmann equation. A comprehensive discussion of these methods
can be found in the classic book of Ziman [7].

Here we only touch upon the key result which is needed in ab initio calculations of elec-
trical conductivity. In the semiclassical model, the electrical current is calculated as J =

−2eΩ−1BZ

∑
n

∫
dk vnkfnk. In the absence of external fields and thermal gradients, the occu-

pations fnk reduce to the standard Fermi-Dirac occupations at equilibrium, f0nk, and the current
vanishes identically. Upon introducing an electric field E, the electrons respond by adjusting
their occupations. In this model it is assumed that the variation fnk − f0nk is so small that the
electronic density is essentially the same as in the unperturbed system. The modified occupations
can be calculated using the linearized Boltzmann transport equation [7]:

∂f0nk
∂εnk

vnk · (−e)E = −
∑

ν

∫
dq

ΩBZ
Γmnν(k,q)

[
(fnk − f0nk)− (fmk+q − f0mk+q)

]
, (202)

where the kernel Γmnν(k,q) is defined as:

Γmnν(k,q) =
∑

s=±1

2π

~
|gmnν(k,q)|2f0nk(1− f0mk+q)(nqν+1/2−s/2) δ(εnk + s~ωqν − εmk+q).

(203)
The left-hand side of Eq. (202) represents the collisionless term of the Boltzmann equation, that
is the change in occupations due to the particle drift under the electric field. The right-hand side
represents the change of occupations resulting from electrons scattered in or out of the state |nk〉
by phonon emission or absorption. The rates in Eq. (203) are simply derived from Fermi’s golden
rule [6]. By solving Eq. (202) self-consistently for all fnk it is possible to calculate the current,
and from there the conductivity. The connection with the carrier lifetimes τnk of Eq. (170) is
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obtained within the so-called ‘energy relaxation time approximation’. In this approximation the
incoming electrons are neglected in Eq. (202), that is the last term (fmk+q − f0mk+q) in the
square brackets is ignored. As a result the entire right-hand side of the equation simplifies to
−(fnk − f0nk)/τnk.

The direct solution of Eq. (202) is computationally challenging, and fully ab initio calculations
were reported only very recently by Li for Si, MoS2, and Al [337], and by Fiorentini and Bonini for
n-doped Si [338]. Figure 16 shows that the mobility of n-type silicon calculated by Li is in good
agreement with experiment. The theory overestimates the measured values to some extent, and
this might have to do with the limitations of the DFT matrix elements (see Sec. 12). In addition
to the carrier mobility, Fiorentini and Bonini employed the ab initio Boltzmann formalism to
calculate thermoelectric properties, such as the Lorenz number and the Seebeck coefficient [338].

The first ab initio calculation of mobility was reported by Restrepo et al. for the case of silicon,
within the energy relaxation time approximation [339]. Other recent calculations using various
approximations to Eq. (202) focused on silicon [340, 341], graphene [247, 255, 342–345], MoS2
[255, 344, 346, 347], silicene [255, 347], SrTiO3 and KTiO3 [348, 349].

Ab initio calculations of the resistivity of metals are less challenging than for semiconductors,
and started appearing already with the work of Bauer et al. [76]. Most calculations on metals
are based on Ziman’s resistivity formula, see Ref. [6], p. 210. An interesting recent example can
be found in the work by Xu and Verstraete on the transport coefficients of lithium [259]. We
also highlight related work on phonon-limited transport in organic crystals [243, 243, 350–352].

11 Phonon-mediated superconductors

The last application of ab initio calculations of EPIs that we will consider is the study of phonon-
mediated superconductivity [8]. This research field is so vast that any attempt at covering it
in a few pages would not make justice to the subject. For this reason, it was decided to limit
the discussion to those novel theoretical and methodological developments which are aiming at
fully predictive calculations, namely the ‘anisotropic Migdal-Eliashberg theory’ (Sec. 11.2), and
the ‘density functional theory for superconductors’ (Sec. 11.3). For completeness, in Sec. 11.1
we also summarize the most popular equations employed in the study of phonon-mediated su-
perconductors. All calculations described in this section were performed at the DFT level.

11.1 McMillan/Allen-Dynes formula

Most ab initio calculations on phonon-mediated superconductors rely on a semi-empirical expres-
sion for the critical temperature, first introduced by McMillan [353] and then refined by Allen
and Dynes [354]:

kBT c =
~ωlog

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
. (204)

Here Tc is the superconducting critical temperature, ωlog is a ‘logarithmic’ average of the phonon
frequencies [354], λ is the electron-phonon ‘coupling strength’, and µ∗ is a parameter describing
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Figure 16: (Color online) Temperature-dependent mobility of n-type silicon. The solid line (red)
indicates the mobility calculated using the linearized Boltzmann transport equation, Eq. (202);
the dashed line (blue) corresponds to the energy relaxation time approximation. The trian-
gles and diamonds are experimental data points. Reproduced with permission from Ref. [337],
copyright (2015) by the American Physical Society.

the Coulomb repulsion. The functional form of Eq. (204) was derived by McMillan by determining
an approximate solution of the Eliashberg gap equations (see Sec. 11.2) [353]. λ and ωlog are
calculated from the isotropic version of the Eliashberg function in Eq. (187) as follows [6, 353–
355]:

α2F (ω) =
1

NF

∫
dk dq

Ω2
BZ

∑
mnν

|gmnν(k,q)|2δ(εnk−εF)δ(εmk+q−εF)δ(~ω−~ωqν), (205)

λ = 2

∫ ∞
0

α2F (ω)

ω
dω, (206)

ωlog = exp

[
2

λ

∫ ∞
0
dω

α2F (ω)

ω
logω

]
, (207)

where NF is the density of states at the Fermi level and the matrix elements gmnν(k,q) are
the same as in Eq. (38). The remaining parameter µ∗ [356] is obtained as 1/µ∗ = 1/µ +

log(ωp/ωph), where ~ωp is the characteristic plasma energy of the system, ~ωph the largest
phonon energy, and µ is the average electron-electron Coulomb repulsion across the Fermi surface.
More specifically: µ = NF〈〈Vnk,n′k′〉〉FS, where 〈〈· · ·〉〉FS denotes a double average over the Fermi
surface, and Vnk,n′k′ = 〈k′n′,−k′n′|W |kn,−kn〉, withW being the screened Coulomb interaction
of Sec. 4.2.2 [357, 358].

The coupling strength λ is related to the mass enhancement parameter λnk discussed in Sec. 8.0.1.
The main difference between λ and λnk is that the former represents an average over the Fermi
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surface, while the latter refers to the Fermi velocity renormalization of a specific electron band.
While these quantities are related, they do not coincide and hence cannot be used interchangeably.

Equations (204)-(207) involve a number of approximations. For example, it is assumed that
the superconductor is isotropic and exhibits a single superconducting gap. Furthermore, almost
invariably the effective Coulomb potential µ∗ is treated as an adjustable parameter, on the
grounds that it should be in the range µ∗ = 0.1-0.2. This procedure introduces a large uncertainty
in the determination of Tc, especially at moderate coupling strengths.

11.2 Anisotropic Migdal-Eliashberg theory

A first-principles approach to the calculation of the superconducting critical temperature is pro-
vided by the anisotropic Migdal-Eliashberg theory [123, 359]. This is a field-theoretic approach to
the superconducting pairing, formulated in the language of finite-temperature Green’s functions.
At variance with the Hedin-Baym equations of Table 1, the Migdal-Eliashberg theory is best
developed within the Nambu-Gor’kov formalism [360, 361], which enables describing the propa-
gation of electron quasiparticles and of superconducting Cooper pairs on the same footing [8, 155].
A comprehensive presentation of the Migdal-Eliashberg theory is provided by Allen and Mitrovic
[355]. Their article served as the starting point of current first-principles implementations of the
theory.

In the Migdal-Eliashberg theory, one solves the two coupled equations:

Znk(iωj) = 1 +
πkBT

NF

∑
n′k′j′

ωj′/ωj√
~2ω2

j′ + ∆2
n′k′(iωj′)

λnk,n′k′(iωj−iωj′)δ(εn′k′−εF), (208)

Znk(iωj)∆nk(iωj) =
πkBT

NF

∑
n′k′j′

∆n′k′(iωj′)√
~2ω2

j′ + ∆2
n′k′(iωj′)

[
λnk,n′k′(iωj−iωj′)−NFVnk,n′k′

]
× δ(εn′k′−εF), (209)

where
∑

k′ stands for Ω−1BZ

∫
dk′. In these equations, T is the absolute temperature, Znk(iωj) is

the quasiparticle renormalization function, and is analogous to Znk in Eq. (189). ∆nk(iωj) the
superconducting gap function. The functions Znk(iωj) and ∆nk(iωj) are determined along the
imaginary frequency axis, at the fermion Matsubara frequencies iωj = i(2j + 1)πkBT/~ with j
an integer. The anisotropic and frequency-dependent generalization of Eq. (206) to be used in
the Migdal-Eliashberg equations is:

λnk,n′k′(iω) =
NF

~
∑

ν

2ωqν

ω2
qν + ω2

|gnn′ν(k,q)|2, (210)

with q = k′−k. Equations (208)-(209) are to be solved self-consistently for each temperature T .
The superconducting critical temperature is then obtained as the highest temperature for which
a nontrivial solution is obtained, that is a solution with ∆nk(iωj) 6= 0. From the superconducting
gap along the imaginary axis it is then possible to obtain the gap at real frequencies by analytic
continuation [362], and from there one can compute various thermodynamic functions.

The first ab initio implementation of the anisotropic Migdal-Eliashberg theory was reported
by Choi et al. in a study of the superconducting properties of MgB2 [363–365]. The authors
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Figure 17: (Color online) (a) Energy distribution of the superconducting gap function of MgB2

as a function of temperature, calculated using the anisotropic Migdal-Eliashberg theory. The gap
vanishes at the critical temperature (in this calculation Tc = 50 K). Two distinct superconducting
gaps can be seen at each temperature. (b) Density of electronic states in the superconducting
state of MgB2 at various temperatures calculated within the Migdal-Eliashberg theory. Repro-
duced with permission from Ref. [245], copyright (2013) by the American Physical Society.

succeeded to explain the anomalous heat capacity of MgB2 in terms of two distinct supercon-
ducting gaps, and obtained a Tc in good agreement with experiment. These calculations were
later extended to MgB2 under pressure [366] and other hypothetical borides [367]. Margine
and Giustino demonstrated an implementation of the Migdal-Eliashberg theory based on the
Wannier interpolation scheme of Sec. 6, and reported applications to Pb and MgB2 [245]. The
superconducting gap and superconducting density of states of MgB2 calculated by Margine and
Giustino are shown in Fig. 17. In all these calculations, the Coulomb repulsion was described
empirically via µ∗, and this partly accounts for the slight discrepancy between the calculated Tc
of 50 K and the experimental Tc of 39 K [368]. Additional calculations based on the anisotropic
Migdal-Eliashberg theory include a study of doped graphene [246], as well as investigations of
Li-decorated monolayer graphene [369] and Ca-intercalated bilayer graphene [288]. In this lat-
ter work the authors incorporated Coulomb interactions from first principles, after calculating
µ∗ via the screened Coulomb interaction in the random-phase approximation. The calculated
Tc = 7-8 K was in reasonable agreement with the experimental value of 4 K [370]. The Migdal-
Eliashberg theory has also been extended to describe the superconducting state as a function of
applied magnetic field; a complete ab initio implementation was successfully demonstrated with
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an application to MgB2 [371]. Very recently Sano et al. performed ab initio Migdal-Eliashberg
calculations including retardation effects on high-pressure sulfur hydrides, obtaining good agree-
ment with experiment [372]. Interestingly in this work the authors also checked the effect of the
zero-point renormalization of the electron bands within the Allen-Heine theory, and found that
it accounts for a change in Tc of up to 20 K.

11.3 Density functional theory for superconductors

Another promising ab initio approach to the calculation of the superconducting critical temper-
ature is the density functional theory for superconductors [373, 374]. The starting point of this
approach is a generalization of the Hohenberg-Kohn theorem [60] to a system described by three
densities: the electron density in the normal state, the density of superconducting pairs, and
the nuclear density. Based on this premise, Lüders et al. mapped the fully-interacting system
into an equivalent Kohn-Sham system [61] of non-interacting nuclei and non-interacting, yet su-
perconducting, electrons [373]. The resulting Kohn-Sham equations for the electrons take the
form of Bogoliubov-de Gennes equations [375], whereby electrons are paired by an effective gap
function ∆(r, r′).

In its simplest formulation, the density functional theory for superconductors determines the ex-
pectation value of the pairing field over Kohn-Sham eigenstates, ∆nk = 〈unk(r)|∆(r, r′)|unk(r′)〉,
using the following gap equation:

∆nk = −Znk∆nk −
∑
n′k′

Knk,n′k′∆n′k′

2En′k′
tanh

(
En′k′

2kBT

)
, (211)

where E2
nk = ε2nk + |∆nk|2. In this expression, the kernel K contains information about the

phonon-mediated pairing interaction and the Coulomb repulsion between electrons, K = Kep +

Kee, and Z contains information about the electron-phonon interaction. More specifically, Kep

and Z are evaluated starting from the electron-phonon matrix elements gmnν(k,q) and the
DFT electron band structure and phonon dispersions, as in the Migdal-Eliashberg theory. Kee

is approximated using the screened Coulomb interaction Vnk,n′k′ introduced below Eq. (207).
Complete expressions for Z and K can be found in [374].

Equation (211) is reminiscent of the gap equation in the Bardeen-Cooper-Schrieffer (BCS) the-
ory [8], with the difference that the ab initio kernel K replaces the model interaction of the BCS
theory, and the function Z introduces quasiparticle renormalization as in the Migdal-Eliashberg
theory, see Eq. (208). At variance with the Migdal-Eliashberg theory, the gap function in the
density functional theory for superconductors does not carry an explicity frequency dependence.
Nevertheless, retardation effects are fully included through the dependence of the kernels Z and
K on the electron bands and the phonon dispersions. An important advantage of this theory is
that the Coulomb potential µ∗ is not required, since the electron-electron repulsion is seamlessly
taken into account by means of the kernel Kee.

The density functional theory for superconductors was successfully employed to study the su-
perconducting properties of MgB2 [376], Li, K, and Al under pressure [377, 378], Pb [379], Ca-
intercalated graphite [380], high-pressure hydrogen [381, 382], CaBeSi [383], layered nitrides [384],
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Figure 18: (Color online) Superconducting order parameter χ(r, r′) in real space, calculated
for (a) MgB2 and (b) hole-doped graphane. The plots show a top view (top) and a side view
(bottom) of the hexagonal layers in each case. The variable s=r−r′ is the relative coordinate in
the order parameter, while the center-of-mass coordinate is placed in the middle of a B-B bond
or a C-C bond. Reproduced with permission from Ref. [388], copyright (2015) by the American
Physical Society.

alkali-doped fullerides [385], compressed sulfur hydrides [386], and intercalated layered carbides,
silicides, and germanides [387].

An interesting recent development of the theory was the determination of the superconducting
order parameter in real space, χ(r, r′) = 〈ψ̂↑(r)ψ̂↓(r

′)〉 [388]. In the density functional theory
for superconductors, the order parameter is obtained from the superconducting gap using the
relation χnk = ∆nk/(2|Enk|) tanh [Enk/(2kBT )]. Figure 18 shows the order parameter calculated
by Linscheid et al. [388] for both MgB2 and hole-doped graphane [389]. The plots show Friedel-
like oscillations of the superconducting density as a function of the relative coordinates between
two paired electrons.

Further developments of the superconducting density functional theory include the study of
non-phononic pairing mechanisms, such as plasmon-assisted superconductivity [390], and the
extension to magnetic systems [391, 392].

12 Electron-phonon interactions beyond the local density approx-
imation to DFT

The calculations of electron-phonon interactions reviewed in Sec. 7-11 have in common the fact
that most investigations used the local density approximation to DFT or a generalized gradient
approximation (GGA) such as the PBE functional [393]. Although the LDA and the GGA do
represent the workhorse of electron-phonon calculations from first principles, there is growing
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evidence that these choices can lead to an underestimation of the electron-phonon coupling
strength. At a conceptual level we can understand this point by rewriting the electron-phonon
matrix element after combining Eqs. (38) and (142), (143):

gmnν(k,q) = 〈umk+q|
∫
dr′ ε−1e (r, r′, ω)∆qνv

en(r′)|unk〉uc. (212)

In DFT the many-body dielectric matrix εe appearing in this expression is replaced by the
RPA+xc screening εHxc from Eq. (54). Given the DFT band gap problem, we expect εHxc to
overestimate the screening, thereby leading to matrix elements gmnν(k,q) which are underesti-
mated to some extent.

Several groups investigated this point on quantitative grounds. Zhang et al. studied the electron-
phonon coupling in a model copper oxide superconductor, CaCuO2 [394]. By calculating the
vibrational frequencies of the half-breathing Cu-O stretching mode, the authors established that
the local spin-density approximation (LSDA) yields phonons which are too soft (65.3 meV) as
compared to experiment (80.1 meV). In contrast, the introduction of Hubbard corrections in a
LSDA+U scheme restored agreement with experiment (80.9 meV). Since the electron-phonon
matrix elements are connected to the phonon frequencies via the phonon self-energy, Eq. (145),
a corresponding underestimation of the matrix elements can be expected. These results were
supported by the work of Floris et al., who developed DFPT within LSDA+U , and applied their
formalism to the phonon dispersions of antiferromagnetic MnO and NiO [93]. Here the authors
found that the DFT underestimates measured LO energies by as much as 15 meV in MnO, while
the use of LSDA+U leads to good agreement with experiment. Related work was reported by
Hong et al., who investigated the multiferroic perovskites CaMnO3, SrMnO3, BaMnO3, LaCrO3,
LaFeO3, and the double perovskite La2CrFeO6 [395]. Here the authors calculated the variation of
the vibrational frequencies between the ferromagnetic and the antiferromagnetic phases of these
compounds as a function of the Hubbard U parameter, and compared DFT+U calculations with
hybrid-functional calculations.

Lazzeri it et al. investigated the effect of quasiparticle GW corrections on the electron-phonon
coupling of graphene and graphite, for the A′1 phonon at K and the E2g phonon at Γ [396].
They evaluated the intraband electron-phonon matrix elements using a frozen-phonon approach,
noting that gnnν(k,q = 0) represents precisely the shift of the Kohn-Sham energy εnk upon
displacing the atoms according to the ν-th phonon eigenmode at q = 0. Lazzeri et al. found
that the matrix elements increase by almost 40% from DFT to GW [396]. The GW values
led to slopes in the phonon dispersions near K in very good agreement with inelastic X-ray
scattering data [397]. Similar results, albeit less dramatic, were obtained by Grüneis et al. for
the potassium-intercalated graphite KC8 [398].

Laflamme Janssen et al. studied the electron-phonon coupling in the C60 molecule as a model for
superconducting alkali-doped fullerides [399]. They employed the PBE0 hybrid functional [400]
with a fraction of exact exchange α= 30%, and obtained an enhancement of the total coupling
strength λ of 42% as compared to PBE. This work was followed up by Faber et al., who used
the GW approximation and obtained a similar enhancement of 48% [401]. We also point out an
earlier work by Saito based on the B3LYP functional, reporting similar results [402].
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Yin et al. investigated the effects of using the GW approximation and the HSE hybrid func-
tional [403] on the electron-phonon coupling in the superconducting bismuthates Ba1−xKxBiO3

and chloronitrides β-ZrNCl, as well as MgB2 [404]. In the case of Ba1−xKxBiO3 the authors
obtained a three-fold increase in the coupling strength λ from PBE to HSE. This enhancement
brought the critical temperature calculated using Eq. (204) to 31 K, very close to the experi-
mental value of 32 K. Similarly, in the case of β-ZrNCl, Yin et al. obtained a 50% increase of λ,
bringing the calculated critical temperature, 18 K, close to the experimental value of 16 K [404].
Instead, in the case of MgB2, they noticed only a slight increase of the electron-phonon coupling
as compared to the standard LDA.

Another application of hybrid functionals to the study of EPIs was reported by Komelj and
Krakauer [405]. Here the authors investigated the sensitivity of the superconducting critical
temperature of the H3S phase of sulfur hydride to the exchange and correlation functional. They
found that the PBE0 functional enhances the critical temperature by up to 25% as compared to
PBE, bringing Tc from 201-217 K to 253-270 K (the spread in values is related to the choice of
the parameter µ∗).

Mandal et al. reported work on the superconductor FeSe based on dynamical mean-field theory
(DMFT) [406]. In this case DMFT yielded a three-fold enhancement of the coupling strength
for selected modes.

As already mentioned in Sec. 9.1.1, Antonius et al. performed GW calculations of the electron-
phonon coupling in diamond using a frozen-phonon approach [110]. They found that quasiparticle
corrections lead to a uniform enhancement of the electron-phonon matrix elements. The net effect
is an increase of the zero-point renormalization of the band gap by 40% as compared to standard
LDA calculations. Monserrat confirmed this result and found a GW correction of comparable
magnitude in the case of silicon [407]. However, Monserrat also found that the GW corrections
to the zero-point band gap renormalization of LiF, MgO, and TiO2 are very small (∼5% of the
PBE value), therefore at present it is not possible to draw general conclusions.

Finally, we mention that Faber et al examined possible strategies for systematically incorporating
GW corrections in electron-phonon calculations [408]. By using diamond, graphene, and C60 as
test cases, the authors showed that a ‘constant screening’ approximation is able to reproduce
complete GW results with an error below 10% at reduced computational cost. This approxima-
tion amounts to evaluating the variation of the Green’s function G in a frozen-phonon calculation,
while retaining the screened Coulomb interaction W of the unperturbed ground state.

All these recent developments point to the need of moving beyond local exchange and correlation
functionals in the study of electron-phonon interactions from first principles. In the future, it will
be important to devise accurate computational methods for calculating not only the intraband
electron-phonon matrix elements (as in the frozen-phonon method) but also matrix elements
between all states and for scattering across the entire Brillouin zone.

For the sake of completeness we emphasize that the underestimation of the EPI matrix elements
by semilocal DFT functionals does not propagate in the same way into different materials prop-
erties. This is readily understood by examining two fundamental quantities, the Allen-Heine
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renormalization of electron bands, Eq. (167), and the adiabatic phonon frequencies, as obtained
from Eqs. (126) and (127). In the former case the electronic screening enters as ε−2∞ ; in the
latter case the screening contributes through a term which scales with ε−1/2∞ . As a result, in the
hypothetical case of a semiconductor for which DFT underestimated the electronic permittivity
by 20%, we would have an error of ∼40% in the energy renormalization, and of ∼10% in the
phonon frequencies. This example is an oversimplification of the problem, but it shows that dif-
ferent properties relating to the EPI could be affected to a very different degree by the inherent
limitations of DFT functionals.

13 Conclusions

The study of electron-phonon interactions has a long and distinguished history, but it is only
during the past two decades that quantitative and predictive calculations have become possible.
First-principles calculations of electron-phonon couplings are finding an unprecedented variety
of applications in many areas of condensed matter and materials physics, from spectroscopy to
transport, from metals to semiconductors and superconductors. In this article we discussed the
standard DFT formalism for performing calculations of electron-phonon interactions, we showed
how most equations can be derived from a field-theoretic framework using a few well-defined
approximations, and we reviewed recent applications of the theory to many materials of current
interest.

As calculation methods improve relentlessly and quantitative comparisons between theory and
experiment become increasingly refined, new and more complex questions arise. Much is still left
to do, both in the fundamental theory of electron-phonon interactions, and in the development
of more accurate and more efficient computational methods.

For one, we are still using theories where the coupling matrix elements are calculated using the
adiabatic local density approximation to DFT. The need for moving beyond standard DFT and
beyond the adiabatic approximation can hardly be overemphasized. Progress is being made
on the incorporation of nonlocal corrections into electron-phonon matrix elements, for example
using hybrid functionals or GW techniques, but very little is known about retardation effects.
It is expected that such effects may be important in the study of heavily doped oxides and
semiconductors, both in their normal and superconducting states (Ref. [9], Sec. 6.3.A), but
ab initio investigations are currently missing. This is truly uncharted territory and a systematic
effort in this direction is warranted.

In this article we emphasized that it is possible to formulate a compact, unified theory of electron-
phonon interactions starting from a fully ab initio field-theoretic approach. The only assumption
which is absolutely crucial to the theory is the harmonic approximation. Abandoning the har-
monic approximation leads to the appearance of several new terms in the equations, and the
resulting formalism becomes considerably more complex than in Table 1. Despite these difficul-
ties, given the importance of anharmonic effects in many systems of current interest, extending
the theory to the case of anharmonic phonons and multi-phonon interactions constitutes a press-
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ing challenge. Ab initio investigations of anharmonic effects on the temperature dependence of
band gaps have recently been reported [275, 294]. Since these studies rely on non-perturbative
adiabatic calculations in supercells, it would be highly desirable to establish a clear formal con-
nection of these methods with the rigorous field-theoretic approach of Sec. 4. Along the same line,
it would be important to clarify the relation between many-body approaches, adiabatic supercells
calculations, and more traditional classical or path-integral molecular dynamics simulations.

The study of electron-phonon interactions has long been dominated by Fröhlich-like Hamil-
tonians, whereby the electron-phonon coupling is retained only to linear order in the atomic
displacements. This is the case for all the model Hamiltonians mentioned in Sec. 5.2.6. It is now
clear that quadratic couplings, leading to the Debye-Waller contributions in the optical spectra
of semiconductors, are by no means negligible and should be investigated more systematically.
For example, in the current literature it is invariably assumed that Debye-Waller contributions
are negligible in metals near the Fermi surface; while this is probably the case for the simplest
elemental metals, what happens in the case of multiple Fermi-surface sheets is far from clear,
and should be tested by direct calculations.

The identification of the correct matrix elements to be calculated is not always a trivial task,
as it was discussed for the case of the non-adiabatic phonon self-energy. In the future it will
be important to pay attention to these aspects, especially in view of detailed comparison with
experiment. For now, the issue on whether the phonon self-energy arising from EPIs should
be calculated using bare or screened EPI matrix elements (Sec. 7) is to be considered an open
question, and calls for further investigation.

The theory and applications reviewed in this article focused on non-magnetic systems. The
rationale for this choice is that a complete many-body theory of electron-phonon interactions
for magnetic systems is not available yet. Recent investigations of spin-phonon couplings were
conducted by assuming that the spin and the vibrational degrees of freedom can be decoupled,
as in the Born-Oppenheimer approximation. Under this assumption it is possible to investigate
how the spin configuration responds to a frozen phonon, or alternatively how the vibrational
frequencies depend on the spin configuration (see for example Refs. [409–412]). In all these
cases it would be desirable to employ a more rigorous many-body theory of spin-phonon inter-
actions. The Hedin-Baym equations discussed in Sec. 4 maintain their validity in the case of
spin-polarized systems, provided collinear spins are assumed. In more general situations, where it
is important to consider noncollinear spins, external magnetic perturbations, or spin-dependent
interactions such as spin-orbit and Rashba-Dresselhaus couplings, it becomes necessary to gen-
eralize the equations in Table 1. Although such a generalization has not been reported yet,
the work of Aryasetiawan and Biermann constitutes a promising starting point [413]. In that
work the Schwinger functional derivative technique (see Sec. 4.2.1) was used to extend Hedin’s
equations at clamped nuclei to systems containing spin-dependent interactions. Generalizing
Aryasetiawan and Biermann’s work to incorporate nuclear vibrations will be important for the
study of electron-phonon interactions in many systems of current interest, from multifunctional
materials to topological quantum matter.

At this time it is not possible to predict how this fast-moving field will evolve over the years to
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come. However, the impressive progress made during the past decade gives us confidence that
this interesting research area will continue to thrive, and will keep surprising us with fascinating
challenges and exciting new opportunities.
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A Born-von Kármán boundary conditions

In this Appendix we provide more details on the notation related to the Born-von Kármán
boundary conditions used throughout this article. The crystalline unit cell is defined by the
primitive lattice vectors ai with i = 1, 2, 3, and the p-th unit cell is identified by the vector
Rp =

∑
i niai with ni integers between 0 andNi−1. The BvK supercell containsNp = N1×N2×N3

unit cells. The primitive vectors of the reciprocal lattice are denoted by bj , and fulfil the duality
condition ai · bj = 2πδij . We consider Bloch wavevectors q belonging to a uniform grid in one
unit cell of the reciprocal lattice: q =

∑
j(mj/Nj)bj with mj being integers between 0 and

Nj−1. This grid contains the same number of q-vectors as the number of unit cells in the BvK
supercell. From these definitions the standard sum rules follow:∑

q
exp(iq ·Rp) = Npδp0,

∑
p

exp(iq ·Rp) = Npδq0. (213)

If G is a reciprocal-lattice vector, the replacement of any of the q-vectors by q + G in these
expressions and in all expressions presented in this article is inconsequential, as exp(iG ·Rp) = 1.
Similarly any replacement of Rp by Rp + T where T is a lattice vectors of the BvK supercell is
inconsequential. Owing to these properties we are at liberty to replace the q-grid defined above
with a Wigner-Seitz grid, i.e. the first Brillouin zone, and the supercell with a Wigner-Seitz
supercell. These choices are useful for practical calculations in order to exploit the symmetry
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operations of the crystal, and to truncate the interatomic force constants, given by Eq. (13),
outside a Wigner-Seitz supercell.

B Ladder operators in extended systems

In this Appendix we describe the construction of the phonon ladder operators âqν/â
†
qν , and

derive the phonon Hamiltonian given by Eq. (22). We show how the definition of the ladder
operators depends on the behavior of the wavevector q under inversion.

The normal modes introduced in Eq. (15) can be used to define a linear coordinate transformation
of the ionic displacements as follows:

zqν = N
− 1

2
p

∑
καp

e−iq·Rp(Mκ/M0)
1
2 e∗κα,ν(q) ∆τκαp. (214)

Here zqν is referred to as ‘complex normal coordinate’ [414]. The exponential and the masses in
Eq. (214) are chosen so as to obtain Eq. (22) starting from Eq. (12). Since there are 3MNp degrees
of freedom, and since the complex normal coordinates correspond to 2 × 3MNp real variables,
this coordinate transformation carries some redundancy. Indeed by combining Eqs. (18) and
(214) it is seen that:

z−qν = z∗qν . (215)

The inverse relation of Eq. (214) is:

∆τκαp = N
− 1

2
p (M0/Mκ)

1
2

∑
qν
eiq·Rpeκα,ν(q) zqν . (216)

The right-hand side is real-valued after Eqs. (18) and (215). In preparation for the transition to
a quantum description of lattice vibrations, it is useful to identify 3MNp independent normal
coordinates. This can be done by partitioning the grid of q-vectors in three sets. We call A the
set of vectors which are invariant under inversion, that is −q + G = q for some reciprocal lattice
vector G (including |G|=0). The center of the Brillouin zone and the centers of its faces belong
to this set. The remaining vectors can be separated further in B and C, in such a way that all
the vectors in C are obtained from those in B by inversion (modulo a reciprocal lattice vector).
After defining zqν =xqν+ iyqν , Eq. (216) can be rewritten as:

∆τκαp = N
− 1

2
p (M0/Mκ)

1
2

[∑
q∈A,ν

eκα,ν(q)xqν + 2Re
∑

q∈B,ν
eiq·Rpeκα,ν(q)(xqν + iyqν)

]
.

(217)
The q-vectors of the set C have been grouped together with those in B by taking the real part in
the second line. It can be verified that in this expression there are exactly 3MNp real coordinates,
therefore we can choose the xqν for q in A and the pairs xqν , yqν for q in B as the independent
variables. These variables are referred to as ‘real normal coordinates’ [414].

Using Eqs. (12)-(18), (213), and (217) the nuclear Hamiltonian can be written in terms of 3MNp

independent harmonic oscillators in the real normal coordinates:

Ĥp =
1

2

∑
q∈B,ν

~ωqν

(
− ∂2

∂x̃2qν
− ∂2

∂ỹ2qν
+ x̃2qν + ỹ2qν

)
+

1

2

∑
q∈A,ν

~ωqν

(
− ∂2

∂x̃2qν
+ x̃2qν

)
, (218)
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where for ease of notation we performed the scaling:

x̃qν = xqν/2 lqν for q in A, (219)

x̃qν = xqν/lqν , ỹqν = yqν/lqν for q in B, (220)

with lqν being the zero-point displacement amplitude of Eq. (21). In the case of |q|= 0 there
are three normal modes for which ωqν = 0, and the corresponding potential terms x̃2qν must be
removed from Eq. (218).

The eigenstates of Eq. (218) are found by introducing the real ladder operators for each normal
coordinate [415]:

âqν,x =
1√
2

(
x̃qν +

∂

∂x̃qν

)
, (221)

and similarly for âqν,y. With these definitions Eq. (218) becomes:

Ĥp =
∑

q∈A,ν
~ωqν

(
â†qν,xâqν,x + 1/2

)
+
∑

q∈B,ν
~ωqν

(
â†qν,xâqν,x + â†qν,yâqν,y + 1

)
. (222)

The eigenstates of this Hamiltonian are products of simple harmonic oscillators [84], and the
ground state is:

χ0({τκp}) = Ae−
1
2(

∑
q∈A,ν x̃

2
qν+

∑
q∈B,ν x̃

2
qν+ỹ

2
qν), (223)

with A a normalization constant. The relations between the positions τκp and the normal
coordinates x̃qν , ỹqν are given by Eqs. (214), (219)-(220), and (21).

The eigenstates of Ĥp can be generated by applying â†qν,x and â†qν,y to the ground state χ0.
However this approach is not entirely satisfactory, since we cannot assign separate quantum
numbers to modes with wavevectors q or −q. In order to avoid this inconvenience we observe
that, for each normal mode, the first set of brackets in Eq. (218) defines an effective isotropic two-
dimensional harmonic oscillator. The degenerate eigenstates of these oscillators can be combined
to form eigenstates of the angular momentum; this leads to right and left circular quanta with
the same energy and definite angular momentum [415]. This analogy motivates the consideration
of the following linear combinations, for q in B:

â+qν = (âqν,x + iâqν,y)/
√

2, (224)

â−qν = (âqν,x − iâqν,y)/
√

2. (225)

Since both âqν,x and âqν,y lower the energy of an eigenstate by the same quantum of energy
~ωqν , the resulting states are degenerate and their linear combinations are also eigenstates for
the same eigenvalue. As a consequence we can generate all the eigenstates of the Hamiltonian Ĥp

by acting on the ground state χ0 with the creation operators â+,†qν and â−,†qν . In this reasoning the
wavevectors q belong to B; if we now consider Eqs. (215), (224), and (225) we see that formally
we also have â−qν = â+−qν . Therefore it is natural to associate â−qν to phonons propagating along
the direction −q.

These observations suggest replacing the real ladder operators of Eq. (221) by the complex ladder
operators â+qν and â−−qν for q in B and C, respectively. In the case of q in A we keep the real
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operators âqν,x. These definitions can be turned into the compact expressions:

âqν = âqν,x for q in A, (226)

âqν = (âqν,x + iâqν,y)/
√

2 for q in B, C. (227)

Using these operators the nuclear Hamiltonian of Eq. (218) takes the well-known form given by
Eq. (22). Any eigenstate of Ĥp can now be generated as

∏
qν(nqν !)−

1
2 (â†qν)nqνχ0. In this form

we see that it is possible to assign independently a number of phonons nqν to each wavevector
q and each mode ν. Using Eqs. (219)-(221) and (226)-(227) we also have the basic identity:

zqν = lqν (âqν + â†−qν). (228)

By combining this last expression with Eq. (216) we obtain Eq. (20).
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